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Abstract

Background: Whole-genome sequencing is increasingly used in clinical diagnosis of tuberculosis and study of
Mycobacterium tuberculosis complex (MTC). MTC consists of several genetically homogenous mycobacteria species
which can cause tuberculosis in humans and animals. Regions of difference (RDs) are commonly regarded as gold

standard genetic markers for MTC classification.

Results: We develop RD-Analyzer, a tool that can accurately infer the species and lineage of MTC isolates from
sequence reads based on the presence and absence of a set of 31 RDs. Applied on a publicly available diverse set
of 377 sequenced MTC isolates from known major species and lineages, RD-Analyzer achieved an accuracy of 98.
14 % (370/377) in species prediction and a concordance of 9847 % (257/261) in Mycobacterium tuberculosis lineage
prediction compared to predictions based on single nucleotide polymorphism markers. By comparing respective
sequencing read depths on each genomic position between isolates of different sublineages, we were able to
identify the known RD markers in different sublineages of Lineage 4 and provide support for six potential
delineating markers having high sensitivities and specificities for sublineage prediction. An extended version of
RD-Analyzer was thus developed to allow user-defined RDs for lineage prediction.

Conclusions: RD-Analyzer is a useful and accurate tool for species, lineage and sublineage prediction using known
RDs of MTC from sequence reads and is extendable to accepting user-defined RDs for analysis. RD-Analyzer is
written in Python and is freely available at https://github.com/xiaeryu/RD-Analyzer.
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Background

Tuberculosis (TB) is a major infectious disease of global
public health concern, which resulted in an estimated
9.6 million new cases and 1.5 million deaths worldwide
in 2014 [1]. Mycobacterium tuberculosis complex (MTC)
is the causal agent of TB, which comprises of several
genetically homogenous mycobacteria species including
human-adapted pathogens of Mycobacterium tubercu-
losis (Mtb), M. africanum, M. canettii, M. bovis and
animal-adapted pathogens of M. caprae, M. microti and
M. pinnipedii which have been reported to cause human

* Correspondence: twee_hee_ong@nuhs.edu.sg

TEqual contributors

“Saw Swee Hock School of Public Health, National University of Singapore,
Tahir Foundation Building, 12 Science Drive 2, #10-01, Singapore 117549,
Singapore

Full list of author information is available at the end of the article

( ) BiolVled Central

infections as well [2]. Recent molecular studies have pro-
vided significant insights in revealing the population
structure of MTC, identifying distinct MTC lineages
associated with geographical regions [3], and have dem-
onstrated that strain diversity is also associated with
differences in disease transmissibility, virulence, drug
resistance and immune responses [4].

The earliest methods for discriminating strains of clin-
ical MTC isolates relied upon differences in phenotypic
characteristics such as colony morphology, which were
time consuming, had low discriminatory power, and
were not easily performed routinely. Various molecular
genotyping techniques for DNA fingerprinting have
since been introduced for MTC isolates, including
IS6110-restriction fragment length polymorphisms
(IS6110-RFLP) [5], spoligotyping [6] and Mycobacterial
interspersed repetitive units-variable number tandem
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repeats (MIRU-VNTR) [7]. It has been suggested that
one of the best strategies for MTC genotyping is using
MIRU-VNTR combined with spoligotyping, which can
differentiate between clinical isolates to identify disease
transmission and outbreak, distinguish between disease
relapse and re-infection, and identify contamination [8, 9].
Several studies have however shown that the rapidly
evolving genetic markers used in MIRU-VNTR and spoli-
gotyping, although highly discriminatory, are prone to
homoplasy or convergent evolution, where the same
genetic profile could be obtained in distinct MTC strains
that are phylogenetically unrelated, thus confounding
strain classification and phylogenetic inference [10-12].

Genotyping methods based on large sequence poly-
morphisms (LSPs) [13, 14] and single nucleotide
polymorphisms (SNPs) [15] are useful tools for phylo-
genetic study and strain classification of MTC. MTC
strains harbor different genomic insertions or deletions
called LSPs, which are also known as regions of differ-
ence (RDs). In a study of clinical Mtb isolates, RDs were
demonstrated to be unique event polymorphisms, where
the mutations have occurred once in the phylogeny of a
species and are thus unique, irreversible, and do not
display homoplasy [16]. This is supported by the clonal
population structure and lack of horizontal gene transfer
events in MTC. RDs can thus be used as robust
phylogenetic markers as the deletion of a long genetic
sequence in a strain would be inherited and harbored by
all descendants of the strain. Specific RDs have been
reliably identified in multiple distinct MTC strains,
and have been used as gold standard genetic markers
for MTC species and phylogenetic lineage prediction
[3, 17-19].

Advancements in next-generation sequencing tech-
nologies are now enabling whole-genome sequencing
(WGS) of MTC clinical isolates to be considered for
routine use in the clinical diagnosis of TB, where a
single WGS workflow can potentially replace multiple
tests currently performed for species identification,
phylogenetic strain classification, drug resistance deter-
mination and public health molecular epidemiology
investigation for disease outbreak and transmission [20, 21].
As a result, bioinformatics tools are needed to translate
genomic data into genotypes, especially those obtainable
from conventional genotyping techniques to correlate
sequenced isolates with previously genotyped MTC isolates
that were not sequenced. For genotyping of MTC, in silico
spoligotyping has been made possible by the development
of bioinformatics tools like SpoTyping [22] and SpolPred
[23], which serves as the bridge between WGS data and la-
boratory tests. Other genotyping methods like 1S6110-RFLP
and MIRU-VNTR are difficult to be determined using the
short sequence reads generated by the current most widely
used sequencing platforms. For phylogenetic study of
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MTC, SNP-based phylogeny from sequence reads is widely
used and various pipelines have been developed for variant
calling. However, there is currently no method available for
RD analysis from WGS data. Compared to SNP-based
lineage prediction, RD has the merits of: (i) being able to
classify different MTC species; and (ii) can be easily
obtained from both WGS data and current laboratory tests
for comparison and validation.

Here we describe RD-Analyzer, a useful tool that
accurately infers the species and lineage of MTC isolates
from sequence reads based on the presence and absence
of a set of 31 RDs. Candidate RDs for more accurate
sublineage prediction in Lineage 4 were identified by
comparing isolates of different sublineages, which
showed high concordance with existing RD markers and
provided support for new markers. An extended version
of RD-Analyzer was thus developed to accept such user-
defined RDs for lineage prediction. The six potential
markers identified all showed great sensitivity and speci-
ficity in sublineage prediction. RD-Analyzer is written in
Python and is freely available [24].

Implementation

Informative RD markers for MTC species and Mtb lineage/
sublineage

Thirty-one RDs were identified in previous studies [3,
17-19] as robust phylogenetic markers that were able
to distinguish between distinct species and lineages of
MTC. Of these, 13 RDs are relevant for MTC species
differentiation, while the remaining 18 are used to
resolve different lineages of Mtb (Additional file 1:
Table S1).

Longest unique sequence determination for each RD

Genomic sequences of each RD were retrieved from the
corresponding genomic regions of the H37Rv genome
[GenBank:NC_00962.3]. The RD sequences could span
several kilo base pairs, where some fragments may not
be unique and have homologous sequences in other
regions of the genome. We thus sought to increase the
specificity of reads mapping to the RDs by identifying
the longest unique sequence (LUS), which is defined as
the longest continuous genomic sequence of the RD that
is uniquely identified in this RD in all known complete
reference genome sequences of MTC species (i.e. Mth
H37Rv, M. canetii [GenBank:NC019952.1], M. bovis
[GenBank:BX248333.1], M. bovis BCG AF2122/97 [Gen-
Bank:NC_002945.3], M. bovis BCG Moreau [GenBan-
k:AM412059.2], M. bovis BCG Pasteur [GenBank:
NC_008769.], and M. africanum type II [GenBank:
NC_015758.1]) and sequence reads of the remaining
species where complete genome is not available (i.e., M.
africanum type 1 [ENA:ERR400492], M. microti [ENA:
ERR027295], M. pinnipedii [SRA:SRR1239336], and M.
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caprae [SRA:SRR650219]). The catalog of LUS corre-
sponding to each RD used in RD-Analyzer is presented
in Additional file 1: Table S1.

Description of algorithm

RD-Analyzer is written in Python and can be used to
accurately determine the presence or absence of 31
informative RD markers from raw sequence reads in
order to infer the species and lineages of MTC isolates.
A schematic representation of the processes in RD-
Analyzer is shown in Fig. 1la. RD-Analyzer accepts input
files of both single-end and pair-end sequence reads in
uncompressed or compressed (using gzip) FASTQ for-
mat. The input sequence reads would first be mapped to
the LUSs corresponding to each RD using BWA-MEM
[25]. Read depths along each LUS would then be calcu-
lated using SAMtools [26], which would then be divided
by the average sequencing read depth of the isolate esti-
mated from the input sequence reads (number of input
sequence bases divided by 4.5 million base pairs) to be
transformed into a ratio to eliminate the effect of
sequencing throughput. Normally, an RD is identified as
‘present’ in the MTC isolate if the median ratio of read
depth along the LUS is above a specified threshold
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(default value of 0.09 for all RDs, except for RD12"
where 2.97 is used). The default setting of using the
median ratio (ratio at the 50™ percentile) can be chan-
ged to other percentiles subject to user’s preference. RD
pks15/1 can be present in three possible genotypes: (i)
complete form; (ii) incomplete form with a 6 base pair
deletion, or (iii) incomplete form with a 7 base pair dele-
tion. To determine the genotype of RD pks15/1, CIGAR
strings of mapped reads spanning the potential deletion
region would be examined in the BAM file, where dele-
tions at base positions from 152 to 167 of the LUS
sequence would be translated to the corresponding
genotype. The presence or absence of each RD would be
summarized in the output file with the extension of ‘re-
sult’ (Fig. 1b). The lineage of the isolate would then be
predicted based on the deletion of specific RDs as elabo-
rated in Additional file 2: Table S2.

The extended version of RD-Analyzer is designed to
accept user-specified RD sequences instead of using the
LUSs identified for the 31 known RDs with similar
processing steps except that only RD prediction for pres-
ence and absence but not strain prediction would be
performed. An example output of the extended
RD-Analyzer is shown in Fig. 1c.

Input: raw sequence reads (.fastq/.fastq.gz) |

Reads mapping
Map reads to reference RD sequences using BWA

di i (-bam) |

P

Large deletions

Small deletions

Determine small deletions from the CIGAR strings of

b

# Input: /exampleData/SRR650219_1.fastq.gz
#Input: JexampleData/SRR650219_2 fastq.gz

# Number of bases in the input file(s): 123930842
# Estimated read depth (#Bases/(4.5Mbp)): 27.54
# Minimum depth cut-off: 2.48

# Minimum depth cut-off for RD12can: 81.79

# Minimum coverage cut-off: 0.5

Calculate sequencing read depth using SAMtools the bam file
¢ # Predicted lineage: M.caprae - (RD9, 7,8,10, pks15/1:6D, 12bov)
Output 1: sequencing read depth (.depth Maximum  Minimum  Median #pos_pass  #total %pos_pass
d al ] pth (.depth) | #R0_namo _depth  _depth  _depth  _cutoff  _pos cutoff  Prediction
¢ RDY_1 0 0 [ 0 1230 0.00 A
e RD711_2 30 3 18 888 888 1.00 P
. prediction RD702_3 37 16 25 726 726 1.00 3
For each position: ) RD4_4 54 15 29 1291 1201 1.00 3
compare the read depth with depth threshold » 4 RD1bcg_5 48 4 31 4332 4332 1.00 P
read depth > depth threshold: covered; uncovered otherwise Strain prediction RD1mic_6 43 4 31 1179 1179 1.00 P
=3 Predict the lineage based on the pattern of RD2seal_7 52 18 36 883 883 1.00 P
For each RD sequence: RD presence and absence RD2bcg_8 53 12 26 1562 1562 1.00 P
compare the proportion of covered positions with coverage RD7_9 0 0 0 0 763 0.00 A
threshold RD8_10 0 0 0 0 950 0.00 A
proportion > coverage threshold: present; absent otherwise RD10_11 0 0 0 486 0.00 A
RD12bovis_12 0 [ [ 0 931 0.00 A
$ y RD12can_13 234 106 199 564 564 1.00 P
— - — RD105_14 44 15 32 619 619 1.00 P
Output 2: summary of RD prediction and lineage prediction (.result) | RD239_15 54 17 34 843 843 1.00 P
RD750_16 29 15 25 82 82 1.00 P
RD142_17 44 20 32 594 594 1.00 P
RD150_18 54 12 28 2488 2488 1.00 P
# Input: ./exampleData/ERR038740_1 fastq.gz RD181_19 4 20 29 264 264 1.00 li
#Input: /exampleData/ERR038740_2 fastq.qz C phaor.2 A B 3 2200 200 100 £
e : 115_21 49 4 21 2201 2201 1.00 P
# Number of bases in the input file(s): 943036350 RD122 22 22 5 19 172 172 1.00 P
# Estimated read depth (#Bases/(4.5Mbp)): 209.56 RD174_23 43 18 30 835 835 1.00 P
M: Minimum Median #pos_pass #total %pos_pass RDge o4 P 3 2 124; ;2“ 1% 4
faximum | o RD183_25 52 12 30 291 918 1.00 P
# Rb_nams _depth _depth _depth _cutoff _pos _cutoff Prodictior  Informalion RD193_26 36 14 25 502 502 1.00 P
Lineaged.4.1.1/2 522 0 35 1217 2033 06 P RD219_27 49 0 25 1164 1223 095 P
Lineaged.4.1.1/1 945 215 428 2678 2678 1 P RD724_28 M 16 32 1128 1128 1.00 P
Lineage4.3.4.2.1 463 245 396 799 799 1 P RD726_29 37 1" 27 480 480 1.00 P
Lineaged.6.1.2/2 1 0 0 0 1100 0 A Lineaged.6.1.2/2 RD761_30 38 " 28 425 425 1.00 P
Lineage4.6.1.2/1 3 0 0 0 1773 0 A Lineage4.6.1.2/1 7bp_pks15.1 - = - = - {e:17y 6D
Lineage4.6.2.2 560 287 468 2651 2651 1 P

Fig. 1 The work flow and output of RD-Analyzer. a A schematic representation of the processes in RD-Analyzer. RD-Analyzer accepts sequence
reads in FASTQ format. The input sequence reads are mapped to reference RD sequences, after which read depths along the reference sequences
would be calculated. Normally, an RD is identified as ‘present’ in the MTC isolate if the median ratio of read depth along the reference sequence
is above a specified threshold (default of 0.09 for all RDs, except 2.97 for RD12<"). The default setting of using the median ratio (ratio at the 50t
percentile) can be changed to other percentiles subject to user's preference. Small RDs are detected from CIGAR strings of mapped reads
spanning the potential deletion region. The default RD-Analyzer uses the LUSs of 31 RDs and performs lineage prediction using rules elaborated
in Additional file 2: Table S2. The extended version of RD-Analyzer allows for user-defined reference RD sequences without strain prediction.

b An example output file of default RD-Analyzer. ¢ An example output file of extended RD-Analyzer
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Description of dataset

Analysis and assessment using RD-Analyzer in this study
were based on 377 diverse sequenced MTC clinical iso-
lates from known major species and lineages in public
databases [27-30]. The MTC isolates span the major
MTC species (261 Mtb, 30 M. africanum, 17 M. canettii,
54 M. bovis, 4 M. caprae, 5 M. microti, and 6 M. pinni-
pedii) and the main Mtb lineages (31 Lineage 1, 48
Lineage 2, 65 Lineage 3, and 117 Lineage 4). They were
sequenced with varying characteristics of: (i) sequencing
platforms of Illumina HiSeq, MiSeq and Genome
Analyzer; (ii) either single-end reads and paired-end
reads; and (iii) a wide range of sequencing read depths
ranging from 5X to 600X. The sequence reads of these
isolates were downloaded from European Nucleotide
Archive (ENA) and NCBI Sequence Read Archive
(SRA), of which the details are presented in Additional
file 3: Table S3. No sequence reads for M. bovis BCG
strains were available. We thus simulated the sequence
reads using the ART read simulator [31]. Three
complete M. bovis BCG genomes were each used as a
reference sequence to generate sequence reads: (i) M.
bovis AF2122/97; (ii) M. bovis BCG str. Moreau RDJ;
and (iii) M. bovis BCG Pasteur 1173P2. For each refer-
ence sequence, pair-end reads of 250 and 100 bp were
each generated at read depths of 50X and 100X.

The validation dataset included 100 randomly selected
MTC isolates that cover major Mtb lineages and subli-
neages based on SNP markers, with publicly available
sequence reads (Additional file 4: Table S4).

Threshold selection

The default threshold to determine an RD as present or
absent in a sequenced isolate was selected based on the
377 diverse MTC isolates mentioned above. Two vari-
ables were used for each RD in each isolate to assess the
optimal threshold: (i) the ratio between the median read
depth of the corresponding LUS and the estimated se-
quencing read depth of the isolate, which was used as
the explanatory variable for classification; and (ii) the
fact of the presence or absence of the RD, which was
used as the outcome of classification. The fact of the
presence or absence of RDs distinguishing MTC species
was defined based on phenotypic assays and molecular
technique from previous studies [27-30], while the fact
of the presence or absence of RDs for Mtb lineage and
sublineage prediction was defined based on the results
of TB-profiler [32] that makes use of a robust SNP
marker set for Mtb classification. A set of different ratios
was used as the thresholds for RD prediction to assess
the performance of the classifier. A receiver operating
characteristic (ROC) curve was plotted to show the true
positive rate (TPR) against the false positive rate (FPR)
at various threshold settings. AUC was calculated as the
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area under the ROC curve. The default threshold was
selected to weigh both TPR and FPR equally, thus being
the threshold that could minimize the value of FPR®
+ (1-TPR)%.

Performance assessment

The performance of RD-Analyzer in species, lineage and
sublineage prediction was assessed based on the dataset
of 377 diverse MTC species and Mtb strains mentioned
above. The performance of RD-Analyzer in RD predic-
tion was assessed based on an independent validation
dataset described above. In all assessments, RD-Analyzer
was run using default settings.

Detection of potential RDs for sublineage classification in

Lineage 4 Mtb isolates

Of the 377 MTC clinical isolates, 117 were predicted to
be of Lineage 4 based on the robust SNP marker set [15]
and were used in the detection of potential RDs for sub-
lineage classification. Thirteen sublineages in Lineage 4
had more than 4 isolates in the studied dataset, of which
six sublineages have well defined RD markers for classifi-
cation (Lineage 4.8, 4.1.2.1, 4.3.3, 4.1.1.3, 4.1.1.1, and
4.5), while seven sublineages do not have such an RD
marker (Lineage 4.3.4.2.1, Lineage 4.6.1.2, Lineage
4.3.4.1, Lineage 4.6, Lineage 4.6.2.2, Lineage 4.4.1.1, and
Lineage 4.2.2).

For the 117 isolates, sequence reads of each isolate
were aligned to the H37Rv reference sequence to calcu-
late the read depth for each position, which was later di-
vided by the average sequencing read depth of the
isolate to be transformed into a ratio. A comparison was
conducted for each sublineage, where isolates of this
sublineage were used as the experiment group while iso-
lates of other sublineages were used as the control
group. In the comparison, the mean depth (represented
as a ratio) of the experiment group would be compared
with the mean depth of the control group using z-test
position by position, producing p-values indicating the
significance in the difference of the average depth
between the two groups. Consecutive regions with low
p-values are thus possible candidate RD markers for
sublineage classification. In our analysis, consecutive po-
sitions having -log;o (p-value) larger than 60 were taken
as a candidate marker, resulting in candidate RD
markers for 10 of the 13 sublineages.

For sublineages with robust RD markers, the identified
RDs were compared with existing markers to assess the
validity of this identification method. For sublineages
without robust RD markers, the longest identified RDs
were used as the reference RD sequences to be searched
in the 117 isolates using extended RD-Analyzer, where
the classification sensitivity and specificity of each RD
marker would be calculated based on the output.
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Results or absence of the RD. In general, the ratios of two out-

Threshold selection in RD-Analyzer

comes (‘Presence’ or ‘Absence’) differed greatly. In Fig. 2a,

Determining an RD as ‘present’ or ‘absent’ is generally a  the distribution of ratios grouped by the outcome for
binary classification problem on a univariate dataset. each RD was summarized as boxplots, where clear dif-
The explanatory variable for classification is the median  ferences were observed. RD12“" was plotted separately
ratio, where a ratio is calculated as read depth on a spe-  because the ratios have a different scale compared to
cific position of the corresponding LUS divided by the other RDs, and was thus optimized separately with a dif-
estimated average sequencing read depth of the isolate.  ferent threshold. Both ROC curves (Fig. 2b for all RDs
The outcome for classification is the fact of the presence  excluding RD12°%, and Fig. 2c for RD12%") show very
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Fig. 2 Threshold selection in RD-Analyzer. a Different ratios of read depths between present and absent RDs. The ratio refers to the ratio between
the median read depth along the RD sequence and estimated genome read depths. The dotted lines indicate the optimal threshold of the read
depth (0.09 for all RDs, except 2.97 for RD12°°"). The numbers above the boxes indicate the number of instances included in the box. b ROC curve
for threshold selection for RDs except RD12can. The ROC curve shows very high TPR and very low FPR at nearly all thresholds with the area under
the curve being 0.9907. The dotted diagonal line is the line of no discrimination. The default threshold was selected to be 0.09, which produced a
TPR of 0.9949 and an FPR of 0.9856. ¢ ROC curve for threshold selection for RD12°". The ROC curve has an AUC of 1. The default threshold was
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high TPR and very low FPR at nearly all thresholds with
the AUC being 0.9907 and 1, respectively. The default
thresholds were selected to be 0.09 for all RDs, which
produced a TPR of 0.9949 and an FPR of 0.9856, except
for RD12°", where 2.97 was used and a TPR of 1.0000
and an FPR of 1.0000 were produced.

Performance assessment of RD, species, lineage, and
sublineage prediction
RD-Analyzer was run on the dataset of 377 isolates
using default settings to assess the accuracy in predicting
species, lineages and sublineages (Table 1). RD-Analyzer
achieved an accuracy of 98.14 % (370/377) in species
prediction. Of the seven discordant species predictions,
two are Lineage 3 Mtb isolates that have the typical M.
bovis deletion RD4, three are M. africanum isolates that
do not have the typical M. africanum deletions of RD7,
RDS8, RD9Y, and RD702, one M. canettii isolate has the
typical Mtb Lineage 3 deletion RD105, and one M.
caprae isolate was sequenced at extremely low sequen-
cing depth. For Mtb lineage/sublineage prediction, a
concordance of 98.47 % (257/261) was reported. Homo-
plasy was observed in 4 isolates, resulting in reports of
more than one lineage (Additional file 3: Table S3).
RD-Analyzer was also run on an independent
validation dataset of 100 Mtb isolates to assess the
performance in predicting RD, and lineage/sublineage.
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RD-Analyzer achieved an average accuracy of 99.64 % in
predicting RDs (ranging from 96 to 100 % for different
RDs, Table 1 and Additional file 4: Table S4), and an ac-
curacy of 97 % (97/100) in predicting lineage/sublineage.

Detection of potential RDs for sublineage classification in

Lineage 4 Mtb isolates

Though the 31 RD markers used in RD-Analyzer can ac-
curately predict MTC species and Mtb lineage, they have
lower discriminatory power than SNP markers. Some
sublineages with robust SNP marker cannot be distin-
guished using existing RDs. We thus made the attempt
to identify RDs that can potentially be markers for subli-
neage classification.

Of the 117 Lineage 4 Mtb clinical isolates, 13 subli-
neages had more than 4 isolates in the studied dataset
and were thus included in the analysis. Using our cri-
teria, potential RD markers have been identified in 10 of
the 13 sublineages (Fig. 3). For sublineages with well-
defined RD markers, the RDs identified were compared
with existing markers (Table 2). In all the six sublineages
with existing markers, the longest RDs identified using
our method were nearly identical to existing markers,
which is a strong indication of the effectiveness of our
detection method. Out of the seven sublineages without
well-defined RD markers, four has at least one RD iden-
tified as potential RD maker (Table 3). Lineage 4.3.4.2.1,

Table 1 Performance of RD-Analyzer for predicting RD and differentiating Mtb lineages and MTC species

Species and lineages

Region of difference

Concordance

9 711 702 4 1ME TEETRME 7 g 0 12% 12" 105 239 750 142 150 181 207 115 122 174 182 183 193 219 724 726 761 pks (Lineage)
M. tuberculosis
Indo-Oceanic P P P P pp PP PP P P P/AP PP P P P P P P P P P P P P com 31/31(00%)
East-African Indian P P p pP P P P P P P P P P P P P P P P P P P P P P P P P lcom 62/65(95.4%)
East-Asian
Lineage 2.1 P P P PP P PP P PP P P|AP PP PP P PP P P P P P P P P com NA
Lineage 2.2.2 P P P PP P PP P PP P P AP P P PP AP P P P P P P P P Pcom I/1(100%)
Lineage 2.2.1.2 P P P PP P PP P PP P P AP P AP AAUPP PP P P P P P P com NA
Lincage 2.2.1 P P P PP P P PP PP P P AP P P P A AP P P P P P P P P P com 41/42097.6%
Lineage 2.2.1.1 P P P p P P P P P P P P P AP P P A AAZP P P P P P P P P P com 55(100%)
Euro-American
Lineage 4.3.3 p p P P P PP P P P P P P P P P P P P P/A P P P P P P P P PI[ID 99(00%)
Lineage 4.5 P P P P P P P P P PP P P P P P P P P P P AP P P P P P P P ID 66(00%)
Lineage 4.3.4 P P P P P P P P P PP P P P P P P P P P P P/A P P P P P P P 7D 2222(00%)
Lineage 4.1.2.1 P P P P P P P P P PP P P P P P P P P P P P P A P P P P P P 7D 122(00%)
Lineage 4.1.1.1 P P P P P PP PP PP P P P PP PP P P P P P P AP P P P P ID 77(00%)
Lineage 4.1.1.3 P P P PP PP PP PP P P PP P P P P P P P P P P A P P P P D 99(00%)
Lineage 4.8 P P P PP PP PP PP P P P P P P P P P P P P P P P A P P P 7D I55(00%)
Lineage 4.6.1 P P P PP PP PP PP P P PP P P P P P P P P P P P P[A P P 7D I1414(100%)
Lineage 4.6.2 P P P P P P P PP PP P P PP P PP P P P P P P P P P P[A P D 55(100%
Lineage 4.3.2.1 P P P P P PP PP PP P P P PP PP P P P P P P P P P P P A D 1/1 (100%)
Others P P P p P P P P P P P P P P P P P P P P[P P P P P P P P P P 7D 1717(100%)
Other MTC species
M. canetii P P p p p P P P P P P P[A PP PP P PP P P P P P P P P P P ocom 1617041%)
M. africanum | A LA p P PP/ P PP PP P P PP PP PP P P PP P P P P P P P 6 1/1 (100%)
M. africanum 1l A P 4 p P P P P A AL P P P P P P P P P P P P P P P P P P P 6D 2629(8.7%)
M. microti A P P P P/AlP P A AA P P PP P P P P P P P P P P P P P P P 6D 55100%)
M. pinnipedii A [P P PP P/A P A A A P P P PP P P P P P P P P P P P P P P[6D 66(100%)
M. caprae A P P P P P P P A A A A P P PP P P P P P P P P P P P P P P 6D 3/4(50%)
M. bovis (classical) A P P A P P P P A A A A P P P P P P P P P P P P P P P P P P 6D 46/46(100%)
M. bovis BCG Moreau A P P A AP P P A AA A P P PP P P PP P P P P P P P P P P 6D 44(100%)
M. bovis BCG Merieux A P P A AP P A A A A A P P P P P P P P P P P P P P P P P P 6D 44(100%)
Concordance (Validation, %) 100 100 99 100 100 100 100 100 100 100 100 100 100 99 100 99 100 96 100 100 99 100 100 100 100 100 100 98 99 100 100

Note A absence, P presence, com complete (no deletion), 7D 7 bp deletion, 6D 6 bp deletion; and NA not available. Concordance (Validation, %): concordance in
predicting respective RDs in the validation dataset, in the unit of %. Concordance (Lineage): concordance of lineage/sublineage prediction for each lineage. Bold
letters with grey shades refer to key makers for species or lineages identification. Italic characters denote where unexpected absence and presence was
discovered, with the superscript denotes the number of strains with unexpected predictions
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Fig. 3 Detection of potential RDs for sublineage classification in
Lineage 4 Mtb isolates. In the detection of potential RDs for a certain
sublineage, isolates belong to this sublineage constitute the
experiment group while other isolates constitute the control group.
For each sublineage, the p-values reflecting the difference in the
read depth between the experiment group and the control groups
were calculated for each position and translated into —log; (p-value)
to be plotted on the y-axis of the plot, where the x-axis is grouped by
the studied sublineage and the values indicate the genomic positions
along the reference genome. Extremely low p-values are indicative of
significant difference in read depth between the two groups. Regions
with consecutive positions having —log;o (p-value) larger than 60 were
regarded as candidate RD markers. Those sublineages with well-defined
RD makers are shaded gray in the background

Lineage 4.6.1.2, Lineage 4.6.2.2 and Lineage 4.4.1.1 have
one, five, four, five such regions detected, respectively. For
sublineages with more than one region identified, regions
longer than 1000 bp were taken as potential RD markers.

An extended version of RD-Analyzer was used to iden-
tify the potential RD markers in all the 117 Lineage 4
Mtb isolates to assess the sensitivity and specificity using
these markers for classification. The results demon-
strated that a 799 bp deletion served as a marker for
Lineage 4.3.4.2.1 at 100 % sensitivity and specificity. Two
markers, each of 1773 and 1100 bp in length, served as
markers for Lineage 4.6.2.1 both at sensitivity of 100 %
and specificity of 97.17 and 98.11 % respectively. One
2651 bp deletion identifies Lineage 4.6.2.2 at a sensitivity
of 100 % and a specificity of 99.12 %. The two markers,
2678 and 2033 bp in length, respectively, both detected
Lineage 4.4.1.1 Mtb isolates at a sensitivity of 100 % and
a specificity of 99.12 %. These are candidate RD markers
for Mtb sublineage prediction that may be useful in
increasing the resolution of MTC classification using
RD, though not validated by laboratory tests.

Page 7 of 10

Discussion

With the advancements in sequencing technology, WGS
has become more accessible to microbiology laboratories
for clinical diagnosis of TB and study of MTC. Though
RD is considered as the gold standard for molecular
genotyping of MTC species and Mtb lineage determin-
ation, no in silico tool is available for RD analysis. In this
study, we present a new bioinformatics tool, RD-
Analyzer, for in silico RD analysis and genotyping of
MTC clinical isolates from raw sequence reads. When
using default settings, RD-Analyzer can accurately infer
the species and lineage of MTC based on the presence
and absence of a set of 31 RDs well described for MTC
classification. A useful method was also described in this
study to identify potential RD markers for lineage identi-
fication. We thus extended the use of RD-Analyzer to
allow user-specified RDs to be used.

Analysis of RDs can provide useful information for
WGS analysis of MTC. In the practical workflow for
rapid diagnosis of TB based on WGS, the DNA would
be extracted from automated liquid culture with positive
result of acid fast bacilli staining and submitted for high-
throughput sequencing. After obtaining the raw
sequence reads, in silico spoligotyping tools like SpoTyp-
ing and SpolPred can be used to differentiate MTC from
nontuberculous mycobacteria (NTM) as the direct re-
peat region assessed in spoligotyping is specific for MTC
and not found in NTM. The next step would be differ-
entiating the species of MTC. Though SNPs are useful
for phylogenetic study of Mtb, SNP markers presently
cannot be used to distinguish all reported MTC species
[32, 33]. While spoligotyping patterns can be used to
identify species if a specific pattern has previously been
reported for a certain species, the determination would
be based on searching the database, and some patterns
may not have been reported before. RD is therefore a
useful marker that can be used to differentiate MTC
species, where certain deletions are indicative of specific
species. If the clinical isolate is Mtb, lineages and subli-
neages would be identified as a routine. SNPs and RDs
are both regarded as gold standard for lineage identifica-
tion, which are well correlated with each other. The
advantages of SNPs are that: (i) the current SNP sets can
provide higher resolution than the RD set; and (ii)
homoplasy is less observed in robust SNP sets. Though
having lower discriminatory power than SNP markers,
the RD markers used in RD-Analyzer can accurately pre-
dict MTC species and Mtb lineage. Here, we have also
reported a method for determination of potential RD
markers for lineage prediction from sequence reads, we
could thus not only discover more informative RDs to
increase the classification resolution, but also propose
candidate RDs for further laboratory verification on a
larger dataset.
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Table 2 Identification of potential RDs for lineage classification in Mtb lineages with existing RD markers

Page 8 of 10

Lineage Sample size Existing RD markers RD detected
Name Start End No. Start End Length (bp)
Lineage 4.8 15 RD219 3,448,504 3,451,396 1 3,448,497 3,451,398 2,902
Lineage 4.1.2.1 12 RD182 2,545,194 2,551,674 1 2,545,195 2,551,675 6,481
2 2,361,910 2,363,682 1,773
3 3,194,709 3,194,793 85
4 4,375,626 4,375,708 83
Lineage 433 9 RD115 453,364 455,971 1 453,367 455,972 2,606
2 171,458 171,778 321
3 2,306,444 2,306,724 281
Lineage 4.1.1.3 9 RD193 2,704,306 2,704,807 1 2,704,310 2,704,806 497
2 2,339,260 2,339,402 143
Lineage 4.1.1.1 7 RD183 2,585,853 2,588,770 1 2,585,856 2,588,768 2,913
2 4,370,424 4,373,233 2810
3 2,866,744 2,866,852 109
Lineage 4.5 6 RD122 669,793 670,964 1 669,795 670,965 1,171

Note Bold letters emphasize the concordance between exiting RD markers and RDs detected. The start and end positions correspond to the genomic positions of

Mtb H37Rv genome

Deletion of certain RDs is causing structural variation,
which can be determined by detecting structural variants
in WGS analysis. However, such determinations are not
targeted, need post-processing to determine the absence
or presence of the RDs, and are difficult to incorporate
into the comprehensive WGS pipeline for MTC. We
thus streamline the process to a more targeted approach
as a pipeline that not only determines the RD patterns

but also performs species and lineage predictions based
on the patterns.

RDs are useful markers but are not perfect. We have
observed occurrences of homoplasy in our analysis,
which could either be due to true homoplasy present in
the sample that is sporadic deletion of RDs or as a result
of an erroneous identification made by RD-Analyzer. It
is possible that RD-Analyzer make a prediction of

Table 3 Identification of potential RDs for lineage classification in Mtb lineages without existing RD markers

Lineage Sample size RD detected Performance
No. Start End Length (bp) Sensitivity Specificity
Lineage 4.34.2.1 15 1 164,942 165,740 799 100 % (15/15) 100 % (102/102)
Lineage 4.6.1.2 " 1 2,902,556 2,904,328 1,773 100 % (11/11) 97.17 % (103/106)
2 2,265,142 2,266,241 1,100 100 % (11/11) 98.11 % (104/106)
3 1,190,141 1,190,733 593
4 2,634,174 2,634,542 369
5 3,594,343 3,594,407 65
Lineage 4.6.2.2 4 1 1,897,554 1,900,204 2,651 100 % (4/4) 99.12 % (112/113)
2 3,785,220 3,785,638 419
3 3,905,337 3,905,721 385
4 3,742,614 3,742,895 282
Lineage 4.4.1.1 4 1 2,025,760 2,028,437 2,678 100 % (4/4) 99.12 % (112/113)
2 3,123,673 3,125,705 2,033 100 % (4/4) 99.12 % (112/113)
3 3,112,311 3,112,459 149
4 1,313,135 1,313,278 144
5 3,377,623 3,377,670 48

Note Bold letters refer to the potential RD markers whose sensitivity and specificity for classification have been assessed. The start and end positions correspond

to the genomic positions of Mtb H37Rv genome
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presence of an RD where the actual biology of the bacilli
is absence due to similar genomic sequences in the gen-
ome, unspecific reads mapping, and false read depth cal-
culation. Attempts were made to solve this problem by
excluding RD sequences that are not unique in reported
reference sequences and using the LUSs in the detection.
It is less likely that RD-Analyzer will falsely determine
an RD to be absent or deleted when it is present pro-
vided the sample is sequenced to a sufficient throughput
and read depth (>10X read depth, for example).

The technical limitations of RD-Analyzer were also
noted. First, RD-Analyzer did not work well with iso-
lates sequenced at low read depth. For example, RD-
Analyzer presented unexpected RD patterns when
used on an M. caprae isolate [SRA:SRR650226] se-
quenced at ~5X read depth. Second, though we have
made efforts to eliminate unspecific reads mapping by
identifying LUSs in a sufficiently diverse and moder-
ate number of sequenced MTC isolates, there is no
guarantee of the uniqueness of the LUSs in newly se-
quenced isolates. Third, RD-Analyzer can fail to dif-
ferentiate between mixed infections as deletion in one
strain may be compensated by reads from another
strain, thus making an incorrect inference of presence
of the RD.

In this study, we have explored the identification of po-
tential RD markers for sublineage prediction using 117
Lineage 4 Mtb isolates. Though the sample sizes for each
sublineage were not large, results were clear and showed
patterns of specific sequence deletions in some subli-
neages. The effectiveness of this identification method was
well demonstrated by the perfect concordance between
the potential RD markers determined using this method
and the well-defined RD markers in sublineages with de-
fined RD markers. This method thus has high potential to
be used for detecting novel RDs for sublineage identifica-
tion. Assessment of the potential RD markers identified
showed the markers are highly sensitive though some are
not 100 % specific. Those RDs are also potentially useful
to inform laboratory tests to determine lineage and subli-
neage of Mtb isolates without using WGS.

Conclusions

RDs are robust markers for MTC strain identification and
can be analyzed and determined using sequence reads.
RD-Analyzer is a useful tool for accurate species, lineage
and sublineage prediction using known RDs of MTC from
sequence reads and is extendable to user-defined RDs.
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characteristics of WGS from Mtb lineage and sublineages and other species
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