
The Author(s) BMCGenomics 2016, 17(Suppl 11):1043
DOI 10.1186/s12864-016-3263-4

RESEARCH Open Access

Predicting disease-related genes using
integrated biomedical networks
Jiajie Peng1, Kun Bai2,7, Xuequn Shang1, Guohua Wang2, Hansheng Xue2, Shuilin Jin3,
Liang Cheng4, Yadong Wang2* and Jin Chen5,6*

From The 27th International Conference on Genome Informatics
Shanghai, China. 3-5 October 2016

Abstract

Background: Identifying the genes associated to human diseases is crucial for disease diagnosis and drug design.
Computational approaches, esp. the network-based approaches, have been recently developed to identify
disease-related genes effectively from the existing biomedical networks. Meanwhile, the advance in biotechnology
enables researchers to produce multi-omics data, enriching our understanding on human diseases, and revealing the
complex relationships between genes and diseases. However, none of the existing computational approaches is able
to integrate the huge amount of omics data into a weighted integrated network and utilize it to enhance disease
related gene discovery.

Results: We propose a new network-based disease gene prediction method called SLN-SRW (Simplified Laplacian
Normalization-Supervised RandomWalk) to generate and model the edge weights of a new biomedical network that
integrates biomedical data from heterogeneous sources, thus far enhancing the disease related gene discovery.

Conclusions: The experiment results show that SLN-SRW significantly improves the performance of disease gene
prediction on both the real and the synthetic data sets.
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Background
One crucial step toward understanding the molecular
basis of diseases, such as cancer, diabetes, and cardiovas-
cular disorders, is to identify the predisposing or virulence
genes of these diseases, which will lead to early disease
diagnosis and effective drug design [1]. With the avail-
ability of the big biomedical data, researchers tend to
get insights into human diseases by identifying genes
that might cause or relate to them. Given the fact that
experimentally identifying of the complete list of disease-
related genes is generally impractical due to the high
cost, computational methods have been proposed in the
last decades to predict the relationships between genes
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and human diseases [2–10]. However, these tools, includ-
ing filtering methods based on a set of criteria [11],
text mining of biomedical literature [12], integration of
genomic data [13–15], semantic similarity [16–21] based
disease gene prioritization [22] and network analysis
based and highly robust approach [8, 23–26], remain
pre-eminent [27].
A human cell consists of several functionally inter-

dependent molecular components. A human disease
rarely results from an abnormality in a single gene but
reflects the perturbations of the complex molecular net-
work induced by different kinds of factors, such as genetic
variations, pathogens and epigenetic changes [28]. The
molecular network links molecular states to physiological
states associated with diseases in a whole system view [29].
Therefore, network-based approaches may offer better
targets for drug development, and may lead to multi-
ple potential biological and clinical applications including
disease gene discovery [28].
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The network-based approaches for disease gene iden-
tification can be loosely grouped into three categories.
The simplest approach, named direct neighbor counting,
is to check whether two genes are connected directly in
a molecular network. The idea is that if a gene is con-
nected to one of the known disease genes, it may be
associated with the same disease [30]. The experimental
result demonstrates that using molecular networks can
effectively increase the likelihood of identifying candi-
date disease genes. The direct neighbor counting method,
however, does not consider the situation that two genes
are not connected directly but still have certain biologi-
cal associations. To address this problem, Kruthammmer
et al. employed the shortest path length approach to
measure the closeness between a disease gene and a can-
didate gene. This method has been successfully applied
to predict the genes associated Alzheimer’s disease, and
the prediction results agree with the manually curated
candidates [31]. Since both the direct neighbor counting
method and the shortest path method are local distance
measurements, they largely ignore the global structure of
the whole molecular network and cannot fully capture the
complex relationships between network nodes [32]. Sub-
sequently, methods have been proposed to predict the
gene-disease relation using the global network structure,
such as random walk with restart (RWR) [33], propaga-
tion flow [34], Markov clustering [35] and graph parti-
tioning [36]. The performance evaluation on HPRD [37],
OPHID [38] and OMIM [39] dataset shows that RWR is
the best among the then-existing methods [5].
Rapidly evolving bio-technologies promote collect-

ing multiple types of biological data, including diverse
genome-scale data, clinical phenotype data, environment
data, and data of daily activities [40], making it feasible and
attractive to build integrated biomedical networks from
multiple sources, rather than focus on one single data
set. The integrated network that includes multiple, het-
erogeneous types of resources, greatly extends the scope
and ability for disease gene prediction [41]. For exam-
ple, BioGraph [42] uses data from 21 publicly available
curated databases to identify relations between heteroge-
neous biomedical entities. The work by Ganegoda et al.
runs RWR on a integrated network, and has successfully
identified disease-related genes with significant improved
performance [43].
Using integrated networks for gene-disease relationship

discovery is still a difficult task due to the existence ofmul-
tiple biomedical entities in the integrated networks. In a
network built using a single type of biomedical data, there
is only one type of nodes and one type of edges. For exam-
ple, in a protein-protein interaction network, nodes and
edges represent proteins and protein interactions respec-
tively. The integrated network, on the contrary, contains
multiple types of nodes and edges representing different

biomedical entities (such as genes, diseases, and ontology
terms) and relationships (such as DNA-protein binding
and gene ontology annotation). In order to differentiate
these edge types, edge weights in the integrated biomedi-
cal network should be appropriately assigned [44].
In this article, we present a new algorithm called SLN-

SRW (Simplified Laplacian Normalization-Supervised
Random Walk) to define edge weights in an inte-
grated network and use the weighted network to predict
gene-disease relationships. Comparing with the existing
approaches, SLN-SRW has the following advantages:

* SLN-SRW is the first approach, to the best of our
knowledge, to predict gene-disease relationships
based on a weighted integrated network with its edge
weight being computed to precisely describe the
importance of different edge types.

* The performance of random walk may be strongly
affected by the super hub nodes in an integrated
network. SLN-SRW adopts a Laplacian
normalization based method to avoid such bias.

* To prepare inputs for SLN-SRW, we constructed a
new heterogeneous integrated network based on
three widely used biomedical ontologies, i.e. Human
Phenotype Ontology [45], Disease Ontology [46], and
Gene Ontology [47, 48], and biological databases
such as STRING [49]. This integrated network
combines biomedical knowledge from ontologies that
are manually curated and big biomedical data that
have been deposited in databases. Based on these two
distinctively different types of information, this
network forms a foundation for disease gene
discovery.

Methods
We propose SLN-SRW to compute and model the edge
weight of an integrated network and then predict disease
genes. To achieve the goal, SLN-SRW consists of three
steps. First, it integrates knowledge and data from mul-
tiple ontologies and databases to construct an integrated
network G(V ,E), where V is a set of nodes and E is a set
of edges that connect the nodes in V . Second, it uses a
Laplacian normalization based supervised random walk
algorithm to learn the edge weight of networkG, resulting
in a weighted integrated networkGw. Third, it employs the
RWRmethod onGw to predict disease-gene relationships.
The diagram of the whole process of SLN-SRW is shown
in Fig. 1. We will introduce the key steps of SLN-SRW in
the rest of this section.

Step 1. Integrating heterogeneous knowledge and data
sources for integrated network construction
In the first step of SLN-SRW, an integrated network is
constructed based on eleven heterogeneous data sources
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Fig. 1 The Framework of SLN − SRW . Framework of SLN-SRW for
estimating the edge weight of the integrated network automatically
and predicting disease genes based on it. The second step is the
essential part of SLN-SRW algorithm

in four distinct forms, i.e. ontologies, networks, unified
vocabularies, and relational databases. The data sources
are listed in Table 1, and they are mainly used for rela-
tion extraction, name mapping, and unified vocabulary.
The data sources can be grouped into two categories:
1) Curated data that were collected from literature and
other high quality data sources, such as Search Tool
for the Retrieval of Interacting Gene/Proteins (STRING)
and Online Mendelian Inheritance in Man (OMIM), and
2) Curated ontologies that constructed manually by the
domain expert, such as Gene Ontology (GO) and Disease
Ontology (DO).
The workflow for constructing the integrated network

out of the heterogeneous data sources is shown in Fig. 2.
Specifically, the network construction process has the
following four steps:

1. Extracting information from heterogeneous data
sources. Ontology parser and database parser have
been developed for ontology and database data
extraction respectively. The ontology parser
processes the OBO file and the ontology annotation
file, since HPO, DO and GO are all in Open
Biomedical Ontologies (OBO) format. The database
parser processes files in Tab Separated Values (TSV),
Comma Separated Values (CSV), and Extensible

Markup Language (XML) format. The outputs of the
two parsers are pair-wise relations and their
properties between two biomedical entities.

2. Unifying biomedical entity IDs. The same
pair-wise relation may be extracted from multiple
data sources with different identifiers. To avoid
confusion, we provide a distinct ID number for each
biomedical entity by mapping all types of identifiers
to the ones provided in the Unified Medical Language
System (UMLS). The challenge is that some types of
identifiers cannot be direct mapped to UMLS. For
example, only a small part (61%) of HPO and DO
term can be mapped to UMLS. Therefore, we adopted
ClinVar [50] to map all the HPO terms to UMLS, and
utilized SIDD [51] to map all the disease names in
DO to MeSH ID, provided that there are direct
mappings between MeSH ID and UMLS. Please see
Additional file 1 for more details. After unifying the
entity IDs from multiple data sources, each entity
only has one identifier in the database. We removed
the identifiers that cannot be mapped to UMLS.

3. Constructing the integrated network. The binary
relations extracted from multiple data sources form
an integrated network G, in which nodes are
biomedical entities (i.e. ontology terms and genes),
and edges are the relationships between the entities,
which have seven different types: GO term - GO
term, GO term - gene, DO term - DO term, DO term
- gene, HPO term - HPO term, HPO term - gene, and
gene - gene.

4. Edge initial weight assignment.We assign the
initial edge weight t(u, v) to every edge < u, v >

according to its edge type and the evidence code
associated to the edge, where both u and v are nodes
in G. Specifically, for the edge types that have edge
confidence scores in the source databases, we use the
confidence scores directly. For the edge types that do
not have confidence scores but are associated with
evidence codes, we manually assign initial edge
weights based on their edge evidence codes (see
Additional file 2 for the manually assigned weights).
The edge initial weights are between 0 and 1, and
the experimentally verified edges have higher initial
weights than computational predictions. For
example, an edge between a GO term and a gene
with evidence code “EXP” has a high weight (1.0),
whereas an edge with “IEA” code has a low weight
(0.4), since “EXP” indicates the GO-gene relationship
has been experimentally verified while “IEA” means
computational prediction. Note that for the
edges that have two or more evidences in E, the
initial weights are calculated as the maximal weight
of all the valid evidence codes.
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Table 1 Integrated databases and ontologies. The first column, second column, and third column represent the abbreviation of the
data source, simplify the description of the data source and the relationship extracted from the data source respectively. Eleven data
sources are used to construct the integrated network. Specific types of nodes and edges are extracted from various data sources and
integrated into a network

Abbreviation Data sources Relationship

STRING Search Tool for the Retrieval of Interacting Gene/Proteins gene-gene

CTD-DG The Comparative Toxicogenomics Database - Curated Disease-Gene Interactions disease-gene

OMIM Online Mendelian Inheritance in Man Disease Subtypes disease-gene

ClinVar Clinical Variants and phenotypes Disease/Phenotype-gene

HGNC HUGO gene Nomenclature Committee Database gene name mapping

MeSH Medical Subject Headings Unified vocabulary

UMLS Unified Medical Language System Unified vocabulary

SIDD Semantically Integrated Disease-associated Database disease name mapping

DO Human Disease Ontology DO term-gene/ DO term-DO term

HPO Human Phenotype Ontology HPO term-gene/ HPO term-HPO term

GO Gene Ontology GO term-gene/GO term-GO term

Step 2. Weighing the importance of different types of
edges in integrated network
Given an integrated network G with manually assigned
initial edge weights, the aim of this step is to automatically
re-assign all the edge weights, such that the weighted

network Gw can be used for more precise disease gene
prediction. To achieve this goal, we develop a new edge
weight optimization algorithm based on supervised ran-
dom walks (SRW) [52]. SRW combines the information
from network structure with the node and edge level

Fig. 2 The workflow of constructing the integrated network. Work flow of constructing the integrated network based on multiple data sources
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attributes, which can guide the random walk on the net-
work. By running SRW, we expect to re-assign weights to
all the edges, such that the random walker from a dis-
ease node is more likely to visit the nodes representing
the associated genes. However, the training process of
supervised random walks (i.e. RWR) can be significantly
affected by the hub nodes in the network. To solve this
problem, we propose a Laplacian normalization method
to weigh the importance of different types of edges in an
integrated network described as follows.
Given an integrated network G(V ,E), let node vd ∈ V

represent a kind of disease and let Vg ⊂ V be the set of
the candidate genes of vd, then the disease gene predic-
tion problem can be converted to a problem to predict
all the new edges between vd and a subset of nodes in
Vg , where a critical step is to weigh the edges such that a
random walker from vd has higher probabilities to reach
the known disease genes in Vg than to reach the other
genes. To provide the training set for learning the edge
weight, we generate a positive set Vp and a negative set Vn
for every disease node vd, where Vp includes known dis-
ease genes associated with vd and Vn includes genes not
associated with vd.
The approach to weigh the importance of different edge

types consists of the following three steps:

1. Laplacian normalization on edge weights. To
avoid the biases caused by the hub nodes in the
integrated network, we adopt the Laplacian
normalization method [53] to normalize all the edge
weights. Given a edge (u, v) ∈ E, the edge weight of
edge (u, v) is normalized by all the edges connecting
to node u or node v. Mathematically, the laplacian
normalized edge weight a(u, v) is defined as:

a(u, v) = f (u, v)√∑
i∈N(u) f (u, i)

∑
j∈N(v) f (v, j)

(1)

where N(x) is the set of neighbors of node x;
f (x, y) = 1/

(
1 + e−w·t(x,y)); w is the edge type

importance vector for graph G that we will learn in
the next step using an optimization process, and its
length is equal to the number of possible edge types
(in our case, seven); t(x, y) is the vector of the initial
weight of edge < x, y >, which has the same length as
w. t(x, y) is all zero except one cell because each edge
can have one and only one kind of edge type. Note
that the edge type is decided by the type of nodes
connected by it. For example, gene - gene and HPO
term - gene are two different types of edges in the
integrated network. a(u, v) integrates and normalizes
both the edge type importance w and the initial edge
weight t; it can be used to model the random walk
transition probability.

2. Edge weight optimization - problem formation. In
order to learn the optimal w for all the seven edge
types in an integrated network, we minimize an
optimal function defined in Eq. 2, such that the
random walker in the network is more likely to reach
the genes in Vp than the genes in Vn.

w = argmin
w

O(w)

= argmin
w

⎛
⎝1
2
||w||2+λ

∑
vd∈D

∑
vp∈Vp,vn∈Vn

h
(
Svn−Svp

)
⎞
⎠

(2)

where ||w|| is the euclidean norm; and D is a set of
starting nodes representing the diseases in the
training set. For each disease node vd ∈ D, Vp and Vn
representing the positive training set and the negative
training set respectively. Svp (Svn ) is the association
value between vd and vp ∈ Vp (vd and vn ∈ Vn),
which can be calculated by running RWR on G [54].
λ is the weight penalty score deciding to what extent
the constraints can be violated. Given the value of
Svn − Svp , h() is a loss function that returns a
non-negative value:

h(x) =
⎧
⎨
⎩

0, x < 0
1

1 + e−
x
b
, x ≥ 0

(3)

where b is a constant positive parameter,
x = Svn − Svp . The smaller the b is, the more sensitive
the loss function is (see Additional file 3). If
Svn − Svp < 0, the association between a disease and a
gene in the positive training set is stronger than the
association between the same disease and a gene in
the negative training set, so h() = 0. Otherwise, the
constraint is violated, so h() > 0.

3. Edge weight optimization - our solution. To
optimize edge type importance parameter w to
minimize Eq. 2, we adopt a widely used
meta-heuristics method called the gradient based
optimization method [20], which has been
successfully adopted to solve the link prediction
problem in social networks and collaboration
networks [52].
To make the story complete, we briefly describe the
gradient-based optimization method in the following
text.
First, we construct a stochastic transition matrix Q′

uv
of RWR using Eq. 1.

Q′
uv =

⎧
⎪⎨
⎪⎩

a(u, v)∑
w a(u, v)

, if (u, v) ∈ E

0, otherwise
(4)
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And then, based on the transition matrix Q′
uv, RWR

can be described as:

Quv = (1 − α)Q′
uv + α1(v = s) (5)

where u and v represent two arbitrary nodes in G; α
is the restart probability, which is a user given
threshold (in this case, we find the best value based
on the training data set); and node s is a disease node,
which is the starting node of random walk. Let p(k)

i be
the probability to reach node i from s after k
iterations. The probability vector at the kth iteration
can be represented as P(k) = (p(k)

1 , p(k)
2 , ..., p(k)

|V |)T . The
stationary probability vector P, which can be
obtained after certain iterations, is the solution of the
following equation:

PT = PTQ (6)

The next step is to apply a gradient based method to
identify w to minimize O(w) in Eq. 2. The derivative
of O(w) can be calculated as follows.

∂O(w)

∂w
= 2w +

∑
vn,vp

∂h(Svn − Svp)
∂w

= 2w +
∑
vn,vp

∂h(Svn − Svp)
∂(Svn − Svp)

(
∂Svn
∂w

− ∂Svp
∂w

)

(7)

∂Svx
∂w can be calculated as follows:

∂Svx
∂w

=
∑
vi

Qvivx
∂Svi
∂w

+ Svi
∂Qvivx

∂w
(8)

This derivative can be repeatedly computed based on
the estimate obtained in the previous iteration. The
iteration stops when ∂Svi

∂w and Svi do not change. The
initial value of ∂Svi

∂w is 0. The Svi is initialized as 1
|V | .

The initialization process is the same as the traditional
SRWmethod. ∂Qvivx

∂w can be calculated as follows.
Particularly, ∂Qvivx

∂w = 0, if edge (vi, vx) does not exist
in the network.

∂Qvivx
∂w

= (1 − α)

∂a(vi ,vx)
∂w

(∑
vj a(vi, vj)

)
− a(vi, vx)

∑
vj

∂a(vi ,vj)
∂w(∑

k a(vi, vj)
)2

(9)

∂a(vi, vx)
∂w

=
∂f (vi,vx)

∂w π(f (vi, vx)) − f (vi, vx) ∂π(f (vi,vx))
∂w

π(f (vi, vx))2
(10)

where π(f (vi, vx)) and ∂π(f (vi,vx))
∂w are:

π(f (vi, vx)) =
√ ∑

vj∈N(vi)
f (vi, vj)

∑
vy∈N(vx)

f (vx, vy)

(11)

∂π(f (vi, vx))
∂w

=
∑

vj∈N(vi)
∑

vy∈N(vx)

(
∂f (vj ,vi)

∂w f
(
vy, vx

)+ ∂f (vy ,vx)
∂w f (vj , vi)

)

2
√∑

vj∈N(vi) f (vj , vi)
∑

vy∈N(vx) f (vy, vx)

(12)

where N(v) is the set of neighbors of node v. After we
get the solution of Eq. 7, we can apply a gradient
descent based method and minimize O(w).

Practically, the process of obtaining w has four steps
(Fig. 3). Firstly, we initial the O(w) based on the initial
parameters. Secondly, the derivative ∂O(w)

∂w is calculated in
step 2. The power iteration is applied to calculate ∂Svi

∂w and
∂Qvivx

∂w respectively. Thirdly, based on the derivative, we
can update the gradient to obtain an updated parameter
w. Fourthly, taking the updated w as input, step 4 calcu-
lates the stationary probability of the RWR. In the process,
the iteration for derivative calculation (step 2 in Fig. 3)
and the RWR algorithm (step 4 in Fig. 3) are the two key
steps. After estimating the edge weight of the integrated
network, we can directly apply RWR on the weighted inte-
grated network to predict the relation between diseases
and genes.

Results and discussion
We compare SLN-SRW with SRW and RWR, where the
latter has been widely used in network-based disease gene
prediction, on a real and a synthetic data sets. SLN-SRW
was implemented with Java 7 in Linux.

Data preparation
As shown in Table 1, eleven data sources, i.e.
STRING [49], CTD [55], OMIM [56], ClinVar [50],
HGNC [57], MeSH [58], UMLS [59], SIDD [51], DO [60],
HPO [61] and GO [62], are used to construct the inte-
grated network G, which has 78,786 nodes and 504,517
edges.
To test the performance of SLN-SRW, we select 430

disease-gene edges from the integrated network as the
positive set. The rules for data selection are similar to the
rules used in [42]. In the positive set, there are 16 diseases,
each of which has at least five known disease-associated
genes in the integrated network. More detail about the
positive set is listed in Additional file 4. The disease-gene
pairs included in the negative set are generated in two
steps. First, we select a disease d from the positive set.



The Author(s) BMCGenomics 2016, 17(Suppl 11):1043 Page 7 of 11

Fig. 3 The process of training the the parameter w. The steps of training the the parameter w

Second, we repeatedly and randomly select genes that do
not connect to d in the integrated networkG. The number
of the randomly selected genes is the same as the num-
ber of genes that connect to d in the positive set. We
repeat the process until all disease nodes in the positive
set are elected. Note that the positive set is removed from
the integrated network in the testing process. Both pos-
itive and negative sets are evenly divided into two parts
randomly, one for training and the other for testing.
A synthetic data set is generated following the rules

in [52]. Specifically, we generated a scale-free network
with 1,000 nodes using the Copying model [63] The gen-
eration process starts with three connected nodes. We
connect a new node u to any of the existing nodes, which
are selected at random with probability 0.8 or with prob-
ability proportional to the node degree. Parameter b is
equal to 0.03 in all the experiments. For each edge in the
network, we set w = {1,−1} as the gold standard labeled
as w′. Then, we randomly choose one of the original three
nodes as the start point v. Based on the edge strength
determined byw′, we run RWR starting from v and ranked
the other nodes via the stationary probability. We select
the top 20 nodes that directly connect with v as the posi-
tive training set, and select the nodes that do not connect
with v are the negative set. Note that both the positive
set and the negative set are removed from the inte-
grated network in the testing process. In the subsection
“Performance evaluation on synthetic data set”, we test
whether w′ can be estimated precisely.

Disease gene prediction
The parameters in SLN-SRW and SRW method are esti-
mated based on the training set. The RWR method does
not need the training set for edge weight assignment.
Alternatively, the training set is used to estimate the best

restart probability in RWR. Finally, the performance of all
the three methods is tested based on the testing set.
Varying the restart probability α from 0.1 to 0.9, the

AUC (area under receiver operating characteristic curve)
scores [64] of all the three methods are shown in Fig. 4.
If α = 0.2, SLN-SRW method reaches the highest AUC
score 0.81, whereas SRW and RWR have the highest AUC
scores if α = 0.6, indicating that SLN-SRW can find the
disease genes which are far from the disease node. Based
on the edge weights learned using the training data, we
predicted the disease-gene relationships in the testing set.
We compared the performance of all the three methods
using the receiver operating characteristic (ROC) curve.
In our test, the AUC score of SLN-SRW (0.79) is the

Fig. 4 he AUC score for each given restart probability for three
methods. The AUC score for each given restart probability for three
methods. The red, blue and yellow lines are represent SLN-SRW, SRW
and RWR method respectively
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highest (see Fig. 5). Especially, the true positive rate of
SLN-SRW is significantly higher than RWR and SRW
while its false positive rate keeps low. This is important
for disease gene predict, since researchers usually select
candidate disease genes with a stringent threshold, which
corresponds to a low false positive rate.
Finally, we ranked the predicted disease genes to check

whether the true disease-related genes have higher ranks
than the other genes. Figure 6 shows that the prediction
result of SLN-SRW contains more known disease-related
genes than SRW and RWR at a majority of the top k
levels, indicating that the edge weighing process in SLN-
SRW has contributed significantly to the high recall of the
results.

Performance evaluation on synthetic data set
To compare SLN-SRW with SRW, we ran both meth-
ods on synthetic data, following the method described
in below [52]. For SRW and SLN-SRW, we estimated the
edge-type parameter based on the synthetic network and
the training set described in the “Data preparation” sub-
section, resulting in w∗. We measure the performance
of SRW and SLN-SRW by comparing the true edge-type
parameter w′ with w∗, using error = ∑

i |w′
i − w∗

i |. After
repeating the experiment 100 times, we find that the

error of SLN-SRW is statistically significantly lower than
that of SRW (t-test p − value < 0.05) indicating that
SLN-SRW performs better than SRW (see Fig. 7). The
error of SLN-SRW is also lower in the first and third
quartile.

Conclusions
Identifying the relationships between diseases and genes
is vital for disease diagnosis and drug design. Recently,
researchers have started to employ integrated biomedical
networks to extend the scope and ability for disease gene
prediction. In this article, we proposed a novel network-
based method named SLN-SRW to define the weight of
edges in an integrated network and then use it to pre-
dict the gene-disease relationships. SLN-SRW has the
following advantages: 1) it can estimate edge weight by
differentiating different edge-types; 2) it adopts a Lapla-
cian normalization based method to avoid the bias caused
by the super hub nodes in an integrated network; 3) three
widely used biomedical ontologies are used to construct
a new heterogeneous integrated network. To demonstrate
the advantages of SLN-SRW, we compare it with two
existing methods SRW and RWR. The experiment on a
real data set shows that SLN-SRW performs best among
all the three methods. Furthermore, the experiment on

Fig. 5 ROC curves for the experimental results on testing set. ROC curves for the experimental results on testing set. ROC curves for the
experimental results calculated with SLN-SRW (green), SRW (red) and RWR (blue)
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Fig. 6 True disease-gene pair rates. True disease-gene pair rates at different top k levels

a synthetic data set indicates that the edge weights pre-
dicted by SLN-SRW are more precise than SRW. Compar-
ing with the existing methods, SLN-SRW has the unique
function to identify disease genes, which are not close to
any disease node in the disease-gene networks. This could
benefit clinicians on discovering new disease-associated
genes that have not been identified by the existing meth-
ods. Besides, SLN-SRW provides a novel approach to
automatically assign weights to the heterogeneous edge
types in the disease-gene networks, whereas the existing
methods can only define the edge weights manually.
In the future, SLN-SRWwill be applied to networks with

different edge densities and qualities to test its robustness.

Fig. 7 The boxplot of the error score. The boxplot of the error score
for SLN-SRW and SRW

Furthermore, we will apply SLN-SRW on more recent
datasets and examine the results using both biological
experiments and literature.
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