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Abstract

Background: Sorghum [Sorghum bicolor (L) Moench] is an important cereal crop for dryland areas in the United
States and for small-holder farmers in Africa. Natural variation of sorghum grain composition (protein, fat, and
starch) between accessions can be used for crop improvement, but the genetic controls are still unresolved.
The goals of this study were to quantify natural variation of sorghum grain composition and to identify single-
nucleotide polymorphisms (SNPs) associated with variation in grain composition concentrations.

Results: In this study, we quantified protein, fat, and starch in a global sorghum diversity panel using near-infrared
spectroscopy (NIRS). Protein content ranged from 8.1 to 18.8%, fat content ranged from 1.0 to 4.3%, and starch content
ranged from 61.7 to 71.1%. Durra and bicolor-durra sorghum from Ethiopia and India had the highest protein and fat
and the lowest starch content, while kafir sorghum from USA, India, and South Africa had the lowest protein and the
highest starch content. Genome-wide association studies (GWAS) identified quantitative trait loci (QTL) for sorghum
protein, fat, and starch. Previously published RNAseq data was used to identify candidate genes within a GWAS QTL
region. A putative alpha-amylase 3 gene, which has previously been shown to be associated with grain composition
traits, was identified as a strong candidate for protein and fat variation.

Conclusions: We identified promising sources of genetic material for manipulation of grain composition traits, and
several loci and candidate genes that may control sorghum grain composition. This survey of grain composition in
sorghum germplasm and identification of protein, fat, and starch QTL contributes to our understanding of the genetic

basis of natural variation in sorghum grain nutritional traits.
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Background

Chronic hunger can be alleviated by improving the nu-
trition of staple cereal crops, which provide the majority
of nutrients to the world’s population [1]. Grain compos-
ition varies within and among cereal crops, but, gener-
ally, grain contains 79-83% starch, 7-14% protein and
1-7% fat. Crop vyields in the arid and semi-arid regions
of the world are challenged by low precipitation, leaving
populations in these regions particularly vulnerable to
chronic hunger and malnutrition. Sorghum is a cereal
crop that is well adapted to regions of low precipitation,
and thus, has become a staple crop that feeds millions of
people in sub-Saharan Africa [2], where the highest
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prevalence of undernourishment in the world is found
[3]. Understanding the natural variation of protein, fat,
and starch, and identifying QTL associated with their
natural variation in sorghum grain can help improve its
nutritional quality through crop improvement programs
and marker-assisted selection.

Until the seed is self-sustaining, protein, fat, and starch
stores are used to support the developing seedling. Since
these nutrient stores are also critical components of the
human diet, many researchers have focused on improv-
ing the nutrient composition of seeds [4]. For instance,
the Illinois long-term selection experiment, which began
in 1896, has increased the oil and protein content of
maize inbred lines to 20 and 27%, respectively, com-
pared to ~6 and ~12%, in an average maize line [5-8].
The chemical composition of grain is controlled by com-
plex regulations that takes place during the seed filling
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stage of seed maturation, when protein, fat, and starch
storage compounds accumulate [9-11]. Key insights into
the genetic controls of grain composition have been dis-
covered through several rice and maize mutations with al-
tered grain composition, including opaque-2 and floury-2,
which affect protein content [12—15]; linoleicl and fad?2,
which affect fat content [16-18]; and shrumnkenl and
amylose extenderl, which affect starch content [19-21].
Sorghum mutations have also contributed to our know-
ledge of the genetic controls of grain composition.
These mutations include waxy, which has little to no
amylose, increased protein, and improved starch digest-
ibility [22-24]; sugary, which has increased sucrose
content [25, 26]; and high-lysine, which has increased
lysine content and protein digestibility [27].

GWAS have identified allelic polymorphisms for im-
portant agronomic traits in cereal crops [28-32], includ-
ing alleles responsible for variation in grain composition
of rice [30, 32], maize [33-36], and barley [37, 38]. Link-
age and association studies have identified several loci
controlling sorghum grain composition [39-43], and the
identification of the gene underlying the waxy mutation
has been fine mapped to 1.8 Mb on chromosome 10
[44], but more work needs to be done to precisely iden-
tify genes responsible for natural variation of grain com-
position. GWAS for sorghum grain composition have
identified QTL for polyphenol [45] and mineral traits
[46], but no GWAS have been conducted for protein,
fat, and starch composition.

Surveying the natural variation of grain composition in
the sorghum germplasm and finding loci underlying the
variation can aid efforts to improve the nutritional value
of sorghum. New sources of genetic variation can be
used for crop improvement, especially in developing
countries where technologies that exist for improving
the nutritional value of grain, such as commercial fortifi-
cation, are not accessible or affordable [47-49]. The
goals of this study were to quantify natural variation of
sorghum grain protein, fat, and starch and to identify as-
sociated SNPs. Here, we characterize the natural vari-
ation of sorghum grain composition in a global sorghum
diversity panel and use GWAS to identify allelic vari-
ation underlying variation in grain composition.

Methods

Plant materials

We grew 390 sorghum accessions from the Sorghum As-
sociation Panel (SAP) [50]. The panel includes important
breeding lines from the United States and traditional var-
ieties from all five major races (bicolor, guinea, caudatum,
kafir, and durra) and 10 intermediate races (all combina-
tions of the major races) [51]. Seeds were originally ob-
tained from the U.S. National Plant Germplasm System’s
Germplasm Resources Information Network (GRIN) [52]
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and planted in late April to May 2012, 2013, and 2014 at
Clemson University Pee Dee Research and Education
Center in Florence, SC. The field design has been de-
scribed previously [28]. Briefly, a two-fold replicated
complete randomized block design was used. Panicles
from each plot were collected at physiological maturity
(black layer), which occurs once grain filling is complete.
Due to differences in maturity among these accessions,
harvest occurred between September and October. Once
harvested, panicles were air dried in a greenhouse and
mechanically threshed. In the following analyses we con-
sider 265 accessions for which we obtained replicated data
in all 3 years.

Phenotyping

Protein, fat, and starch content were measured using
NIRS at Texas A&M University’s sorghum breeding and
genetics lab. Twenty grams of cleaned whole grain were
scanned with a FOSS XDS spectrometer (FOSS North
America, Eden Prairie, MN, USA). The NIR reflectance
spectra were recorded using the ISIscan software (Ver-
sion 3.10.05933) and converted to estimates using in-
house developed models for protein, fat, and starch
concentrations (expressed as a percentage of dry weight).
The total grain weight in grams of 100 grains per acces-
sion was recorded. Analysis was conducted on the mean
trait values across years.

Genomic analysis

Genotypes were available for all of the accessions [53].
GWAS was carried out on 404,627 SNP markers, using
the statistical genetics package Genome Association and
Prediction Integrated Tool (GAPIT) [54]. SNPs with a
minor allele frequency (MAF) less than 0.05 and with
more than 20% missing data were removed from ana-
lysis, leaving 141,310 SNPs. A unified mixed linear
model (MLM) [55] with kinship, which accounts for re-
latedness among the accessions in the panel, was per-
formed [56]. Multiple testing was controlled with a false
discovery rate (FDR) of 5% using the Benjamini and
Hochberg procedure [57] implemented in GAPIT.
Narrow-sense heritability was calculated in GAPIT using
a compressed mixed linear model that uses the genetic
marker-based kinship matrix to estimate additive genetic
effects [54]. Linkage disequilibrium (LD) was calculated
using Tassel 5.2 [58]. Prior to conducting GWAS, we
carried out an extensive literature search to identify poten-
tial candidate genes, and used Sorghum bicolor genome
v1.4 from Phytozome [59] to compile a list of previously
identified candidate genes associated with grain compos-
ition [35, 36, 60], as well as genes known to be involved in
grain maturation and grain filling [9, 11, 61, 62] in
Arabidopsis, rice, and maize, resulting in a list of 430 a
priori gene candidates (Additional file 1). To analyze
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population structure of the SAP, we used previously pub-
lished genetic groupings that were determined through
Bayesian hierarchical clustering analysis [29]. Five genetic
groupings were used and we designated them group A
through E (Additional file 2).

Expression data

To identify candidate genes within a significantly associ-
ated region, we used RNAseq data that was generated as a
community resource for transcriptomic analyses [63].
Genes in a QTL region that were expressed during grain
maturation were considered strong candidates. Expression
levels were reported in fragments per kilobase of exon per
million reads mapped (FPKM). We used the definitions of
Davidson et al [63], as follows: FPKM <1 =“not
expressed”; FPKM <4 = “low-expressed”; FPKM be-
tween 4 and 24 = “intermediate-expressed”; and FPKM
> 24 = “high-expressed”.

Results

Phenotypic variation and heritability of sorghum grain
composition

Opverall, grain composition was similar across years, with
protein, fat, and starch all having a strong correlation
across years. Protein was the most consistent at 73—82%
correlation between the 3 years, whereas fat (57-69%)
and starch (51-65%) had slightly lower year to year cor-
relations (Additional file 3). Similarly, protein had the
highest narrow-sense heritability (H* = 0.90), followed by
fat (H2=0.85) and starch (H?=0.80). Next, we investi-
gated the range of sorghum grain protein, fat, and starch
content and their covariation with each other using the
mean of the 3 years (Additional file 4). The germplasm
showed a wide range of diversity in grain composition.
Protein content ranged from 8.3 to 18.8%, fat content
ranged from 1.0 to 4.4%, and starch content ranged from
61.7 to 70.8% (Fig. 1). Pearson’s correlations were calcu-
lated between protein, fat, and starch (Fig. 1). There was
a strong negative correlation between starch and both
protein (r=-0.90, p < 107'%) and fat (r=-0.70, p < 107°),
and a strong positive correlation between protein and fat
(r=0.77, p <107*). When grain composition concentra-
tions are expressed as percentage by total seed weight,
an increase in one component decreases the percentage
of other components. Therefore, the percent concentra-
tion was multiplied by the seed weight of each accession
to get absolute estimates of the mass of each constituent
per grain, and Pearson’s correlations were recalculated.
Using these estimates, there was a positive correlation
between starch and both protein (r = 0.66, p < 107*¢) and
fat (r=0.56, p < 107'°), and a strong positive correlation
between protein and fat (r=0.85, p <107*¢). In contrast
to correlations when using the percent concentration,
the positive correlations between the mass of the traits
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Fig. 1 Relationship of grain composition traits in a sorghum
germplasm collection averaged over 3 years. The center diagonal
presents histograms of each trait. The scatter plots with regression
lines show the relationships between the traits. (n = 265)

reflect that total amounts of protein, fat, and starch in-
crease with increases in total seed weight.

Next we investigated grain protein, fat, and starch co-
variation with factors that could reduce their biological
availability for human consumption. Since the digest-
ibility of protein and starch can be decreased by
proanthocyanidins, and possibly other polyphenols [64],
it is useful to know if there is a pattern of covariation
between grain composition traits and polyphenol con-
tent. To this end, we used previously generated
polyphenol data that was measured in the same sam-
ples as the current study [45] to calculate Pearson’s cor-
relations with starch, protein, and fat concentrations
(Additional file 5). Starch was negatively correlated
with total polyphenols (r=-0.34, p<10~°), proantho-
cyanidins (r=-0.29, p <107°), and 3-deoxyanthocyanidins
(r=-0.29, p < 107°); protein was positively correlated with
total polyphenols (r=042, p<10~*?), proanthocyanidins
(r=034, p<107®), and 3-deoxyanthocyanidins (r=0.28,
107°); while fat was only positively correlated with total
polyphenols (r=0.25, p<107°) and proanthocyanidins
(r=0.20, p =0.001).

Population structure of grain composition traits

Knowledge of variation in grain composition across genet-
ically similar sorghum groups can be applied to germ-
plasm utilization. Using five genetic groupings, population
differences in grain composition were determined
(Table 1). Group A consisted of 46 accessions that were
primarily durras and bicolor-durras from Ethiopia and
India; group C consisted of 55 accessions that were pri-
marily kafirs from USA, India, and South Africa; group D
consisted of 23 accessions that were primarily caudatums
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Table 1 Population structure of grain composition traits in a global sorghum germplasm collection?

Genetic group Number of accessions Protein (%)° Fat (%)° Starch (%)° Predominant race Predominant country

A 46 126+23° 30+06" 66.1 +16° durra, bicolor-durra Ethiopia, India

B® 2 13.1£34 35£14 659+10 bicolor-guinea Ethiopia

C 55 109+ 20° 27206 676+£12°  kafir USA, India, S. Africa

D 23 116+18° 30+05° 672+13° caudatum, guinea Nigeria, USA

E 17 112+18° 26+06° 67.1+12° caudatum Sudan, USA, Ethiopia, Uganda

“Data represent mean grain composition concentrations across 3 years
PGenetic grouping B was not considered in analysis due to the small sample size

“Values in the same column with different letters are significantly different from each other, based on a post hoc Tukey HSD test

and guineas from Nigeria and USA; and group E consisted
of 117 accessions that were primarily caudatums from
Sudan and USA. Group B consisted of only 2 accessions,
so was not included in analysis. Group A had the highest
protein (12.6%) and fat (3.0%) and the lowest starch
(66.1%), while group C had the lowest protein (10.9%) and
the highest starch (67.6%).

Genome wide association study

To investigate the genetic basis of natural variation of
protein, fat, and starch in sorghum grain, we conducted
a GWAS using 265 accessions from the diverse associ-
ation panel. Control experiments to support the validity
of the GWAS results are described in the supplemental
material (Additional file 6). Using the estimated mass of
protein, fat, and starch, the MLM identified 4, 41, and 0
significant SNPs, respectively, at a genome-wide FDR of
5% and MAF =>0.05 (Fig. 2a-c; Additional file 7). For
both protein and fat, there was an association peak on
chromosome 4 between 57.6 and 57.7 Mb and on
chromosome 2 between 57.6 and 57.7 Mb. All of the sig-
nificant SNPs on chromosome 2 (with the exception of
S2_57592740) are in partial to strong LD with each other
(*=0.5-1.0). Most of the SNPs in the chromosome 2
peak are in partial LD (+* = 0.5) with an a priori candidate
gene that is a putative homolog of alpha-amylase 3
(AMY3, Sb02g023790; 57,701,214-57,703,517 bp). This
gene is expressed in the day 10 seeds (2.1 FPKM) and in
the endosperm (5.8 FPKM; Additional file 8).

Since starch makes up the majority of the grain, it is
possible that some variation in protein and fat content
are driven by variation in starch content. We hypothe-
sized that natural variation in starch pathways might be
affecting protein and fat content in the grain due to a
limited pool of carbon. To determine if starch could be
influencing the values, we ran two linear models in
which we fit either protein or fat as the dependent vari-
able and starch as the independent variable, using their
estimated mass. If we assume that patterns in protein
and fat are driven by starch, then starch could account
for a significant proportion of the variance—45% of the
variance in protein (p<107'°) and 32% of the variance

in fat (p < 107*®)—but there is a large portion of variance
still unexplained. Therefore, we conducted GWAS on
the residuals (the amount of variation in protein and fat
that could not be explained by starch) from the linear
models to determine if accounting for this variation
allowed for more accurate mapping results. The GWAS
for protein and fat residuals identified 40 and 45 signifi-
cant SNPs, respectively, at the FDR adjusted significance
threshold, all within the peak on chromosome 2 at ~57.6
Mb and the peak on chromosome 4 at ~57.6 Mb
(Fig. 3a-b; Additional file 7).

Discussion

QTL for kernel composition

GWAS for protein and fat in the sorghum global diversity
panel identified two major peaks in common, one on
chromosome 2 at 57.7 Mb and the other on chromosome
4 at 57.7 Mb. The peak on chromosome 2 at 57.7 Mb
remained when GWAS was performed on the individual
biological replicates in each year (Additional file 1). The
peak is near a grain fat QTL from a sorghum linkage study
that used a biparental population (Rio X BTx623) grown
in Texas [41]. The previously identified grain fat QTL on
chromosome 2 is near the genetic marker txp298 at ~57
Mb [65]. A promising a priori candidate near this peak is
an AMY3 homolog. AMY3 is an alpha-amylase debranch-
ing enzyme that hydrolyzes the glucosidic bonds that
make up starch. AMY1 was previously identified as a can-
didate gene in a maize grain composition GWAS study
[35]. A recent study using AMY3 overexpression lines
found that the increased levels of AMY3 did not signifi-
cantly affect starch content, but fat content was in-
creased in the mature endosperm where starch had
been partially degraded [66]. The authors suggested
that starch degradation during grain maturation led to
the release of sucrose that was then shunted into the
Kennedy pathway for fat synthesis.

Improvement of sorghum grain composition for human
nutrition

The range of protein, fat, and starch content found in
our diverse association panel may be useful for sorghum
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improvement. Genetic group A, consisting of durra and
bicolor-durra sorghums had significantly higher mean
protein levels than the other groups, and are promising
sources of genetic material for high protein sorghums.
Durra sorghums are genetically similar to bicolor sor-
ghums [29], which is the least derived race (i.e., retains
most similarity to wild ancestors among the races), and
high protein varieties may have been inadvertently
counter-selected during cereal domestication when high
starch varieties were selected. It may be that human se-
lection for different food uses influenced the patterns of
grain composition distribution among genetic groups
(e.g., thick porridge from one region requires a certain
grain composition, whereas flat bread from another re-
gion requires a different grain composition). It could
also be that adaptation to environmental factors is driv-
ing some of the grain composition differences between
genetic groups. Evidence of this adaptation was recently
found for tannins in sorghum grain, when a variant of

the Tanninl gene, which controls the presence of tan-
nins in the grain, was found to be correlated with several
bioclimatic factors [53].

This study provides genetic trait association loci that
can be explored further for their potential use in mo-
lecular breeding to modify the composition of grain sor-
ghum. The high heritability of each trait suggests the
genetic contribution to variation is strong. However, a
GWAS with the SAP grown in Kansas (Additional file 6)
did not identify the same large association peaks identi-
fied in the GWAS in the current study, suggesting a
genotype-by-environment interaction. Several previous
studies have found grain composition variation between
environments, indicating that at least some genes may
only be influential in a particular environment [67]. For
example, in the biparental population (Rio X BTx623)
grown in Texas genotype-by-environment effects ex-
plained a significant proportion of phenotypic variability
in grain protein, fat, and starch [41]. This suggests that a
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more systematic investigation of genotype-by-environment
interaction on grain composition may be needed to guide
breeding efforts.

Genetic correlations among traits can complicate im-
provement of any single trait. The shared QTL for protein
and fat in sorghum grain raises the question of whether
protein and fat levels can be selected independently. Several
other studies have found strong correlations and shared
QTLs between protein, fat, and starch, as well as between
these traits and grain yield [6, 35, 39, 41, 43, 68—71]. Shared
genetic controls or developmental mechanisms of the grain
components may be the cause of the correlations, however,
some of the correlations may be due to evolutionary corre-
lations rather than a shared genetic or developmental basis.
Further studies to identify genes that control each grain
composition trait could be useful. Since biparental mapping
populations break up the evolutionary correlations present
in association panels, they can be used to determine if the
associations are due to a shared genetic basis or to evolu-
tionary history.

Conclusions

Promising sources of genetic material for manipulation
of grain composition traits have been identified, as well
as several loci and candidate genes that may control sor-
ghum grain composition. The starch GWAS did not
identify any significant SNP associations, implying that,
given the high heritability of starch and the lack of sig-
nificant QTL, starch variation is likely controlled by

many small effect genes. Biparental mapping or nested
association mapping may be helpful in identifying
starch gene candidates. Identification of a highly signifi-
cant peak on chromosome 2 associated with protein
and fat provides a good starting point for marker-
assisted breeding of sorghum grain composition traits.
This survey of grain composition in sorghum germ-
plasm and identification of QTL significantly associated
with protein and fat contributes to our understanding
of the genetic basis of natural variation in sorghum
grain composition.
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