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A machine learning classifier trained on
cancer transcriptomes detects NF1
inactivation signal in glioblastoma
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Abstract

Background: We have identified molecules that exhibit synthetic lethality in cells with loss of the
neurofibromin 1 (NF1) tumor suppressor gene. However, recognizing tumors that have inactivation of the NF1
tumor suppressor function is challenging because the loss may occur via mechanisms that do not involve
mutation of the genomic locus. Degradation of the NF1 protein, independent of NF1 mutation status,
phenocopies inactivating mutations to drive tumors in human glioma cell lines. NF1 inactivation may alter the
transcriptional landscape of a tumor and allow a machine learning classifier to detect which tumors will
benefit from synthetic lethal molecules.

Results: We developed a strategy to predict tumors with low NF1 activity and hence tumors that may
respond to treatments that target cells lacking NF1. Using RNAseq data from The Cancer Genome Atlas
(TCGA), we trained an ensemble of 500 logistic regression classifiers that integrates mutation status with
whole transcriptomes to predict NF1 inactivation in glioblastoma (GBM). On TCGA data, the classifier detected
NF1 mutated tumors (test set area under the receiver operating characteristic curve (AUROC) mean = 0.77,
95% quantile = 0.53 – 0.95) over 50 random initializations. On RNA-Seq data transformed into the space of
gene expression microarrays, this method produced a classifier with similar performance (test set AUROC
mean = 0.77, 95% quantile = 0.53 – 0.96). We applied our ensemble classifier trained on the transformed TCGA
data to a microarray validation set of 12 samples with matched RNA and NF1 protein-level measurements.
The classifier’s NF1 score was associated with NF1 protein concentration in these samples.

Conclusions: We demonstrate that TCGA can be used to train accurate predictors of NF1 inactivation in
GBM. The ensemble classifier performed well for samples with very high or very low NF1 protein
concentrations but had mixed performance in samples with intermediate NF1 concentrations. Nevertheless,
high-performing and validated predictors have the potential to be paired with targeted therapies and
personalized medicine.
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Background
Genomic tools allow investigators to devise therapies
targeting specific molecular abnormalities in tumors.
One such alteration is the loss of neurofibromin 1
(NF1), an important tumor suppressor that regulates
the activity of RAS GTPases [1, 2]. Heterozygous mu-
tation or deletion of NF1 causes neurofibromatosis
type 1 (NF), one of the most frequently inherited gen-
etic disorders [3]. NF patients often develop plexiform
neurofibromas (PNs), benign nerve tumors for which
the only therapy is surgery. However, resection is often
impossible due to the tumor’s intimate association with
peripheral and cranial nerves [4]. PNs can transform to
malignant peripheral nerve sheath tumors (MPNSTs),
which are chemo- and radiation-resistant sarcomas
with a dismal 20% 5-year survival [5]. In addition, pa-
tients with NF are susceptible to a broad spectrum of
other tumors including low-grade/pilocytic astrocyto-
mas, pheochromocytomas, optic nerve gliomas, and ju-
venile myelomonocytic leukemias [6]. Many aggressive
non-NF associated (sporadic) tumors have recently
been shown to harbor NF1 mutations, including glio-
blastoma (GBM), neuroblastoma, melanoma, thyroid,
ovarian, breast, and lung cancers [7]. Therefore, som-
atic and inherited loss of NF1 function is emerging as
a driver of tumors from different organ sites.
Several groups including our own have been working to

develop therapeutic approaches to target tumors with loss
of NF1. Previously, our lab developed a high throughput
approach using yeast and mammalian screening platforms
to identify tool compounds and drug targets for cancer
cells in which NF1 loss drives tumor formation. Our pipe-
line identified small molecules that selectively kill or stop
the growth of MPNST cells carrying a mutation in NF1 or
yeast lacking the NF1 homolog IRA2 [8]. We also devel-
oped an assay in yeast to identify the targets of our lead
tool compounds and found that one of these compounds
(UC-1) shares a mechanism (phosphorylation of RNA Pol
II CTD Ser2/5) with experimental drugs in clinical trials
[8]. UC-1 impacts CTD phosphorylation, which is regu-
lated by the CTD kinase Ctk1, the yeast homolog of hu-
man Cdk9. We showed that deletion of CTK1 was
synthetic lethal with loss of the yeast NF1 homolog IRA2.
Furthermore, we have found that inhibitors of this process
(dinaciclib, SNS-032) can inhibit other types of RAS-
dysregulated tumor cells [9].
However, relying on genetic data alone to identify tu-

mors that may be susceptible to therapies targeting NF1
loss may leave a proportion of potentially actionable tu-
mors unrecognized. NF1 tumor suppressor activity can
be lost via mutation of the genomic locus, proteasome-
mediated degradation, inhibition by miRNA, de novo in-
sertion of an Alu element, and C→U editing of the NF1
mRNA [10–14]. This complexity presents challenges

when trying to identify tumors that will benefit from
molecules that exert synthetic lethality with dysregula-
tion of NF1/RAS pathways.
The Cancer Genome Atlas (TCGA) has released a large

volume of data on several cancer tissues measured on a
variety of genomic platforms. In the present study, we le-
verage TCGA GBM RNAseq expression data with
matched mutation calls to construct a classifier capable of
identifying an NF1 inactivation signature. This strategy
sidesteps the problem of functional characterization of
mutations by evaluating a regulator’s downstream gene
expression activity. We applied this signature to predict
NF1 inactivation in a cohort of biobanked GBMs. In gen-
eral, this approach can be translatable to any gene produ-
cing measurable downstream transcriptome-wide effects.

Methods
The Cancer Genome Atlas Data used for building the
classifier
We downloaded RNAseq and mutation data from
TCGA Pan Cancer project from the UCSC Xena data
portal [15] and subset each dataset to only the GBMs
[16]. The data consists of 607 GBMs; of which 291
have mutation calls, 172 have RNAseq measurements,
and 149 have both RNAseq and mutation calls. Of
these 149 samples, 15 have inactivating NF1 mutations
(10.1%) and were used as gold standard positives in
building the classifier (Additional file 1: Table S1).
Additionally, to reduce dimensionality while avoiding
unexpressed and invariant genes, we subset to the top
8,000 most variably expressed genes by median abso-
lute deviation. We z-scored all gene expression mea-
surements. This resulted in the final input matrix with
dimension 149 samples by 8,000 genes. For use in
platform independent predictions, we used Training
Distribution Matching (TDM) to transform the TCGA
RNAseq data to match a microarray expression distri-
bution [17].
Since we are also aware of the NF1 mutation status

for each of the samples, we form a supervised learning
task – predicting when a sample has loss of NF1 activ-
ity. Our “X” matrix is formed by the RNAseq measure-
ments for all 149 samples measured by 8,000 genes,
which are the features in the model. Our “y” vector
consist of {0, 1} elements where a 1 corresponds to a
sample with an inactivating NF1 mutation and a 0 is
an NF1 wildtype sample. The machine learning task is
to find the feature weights, or gene coefficients, that
best minimize our objective function. Along with these
feature weights corresponding to the genes’ import-
ance in the learning task, we also output a probability
estimate for each sample that they have loss of NF1
activity.
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Hyperparameter optimization of the logistic regression
classifier
Using the GBM RNAseq data, we trained logistic re-
gression classifiers with an elastic net penalty using
stochastic gradient descent to detect tumors with NF1
inactivation. We chose a penalized regression model
because it is simple to train and has easily interpret-
able outputs including importance scores for each
gene (feature weights) associated with the downstream
consequences of NF1 loss of function and a probabil-
ity for each sample that NF1 is lost. An elastic net lo-
gistic regression model has also been successfully
implemented in similar studies [18–20].
We identified high-performing alpha and L1 mixing

parameters using 5-fold cross validation ensuring bal-
anced membership of NF1 mutations in each fold.
Briefly, alpha controls how weight penalty and the L1
mixing parameter tunes the amount of test set
regularization by controlling the sparsity of the features.
An L1 mixing parameter value of zero corresponds to
the L2 penalty and a value of one corresponds to the L1
penalty, with L1 bringing a sparser solution. We used
python 3.5.1 and Sci-kit Learn for machine learning
implementations [21].

Ensemble classifier construction and application to the
validation set
After selecting optimal hyperparameters, we constructed
500 classifiers that would compose our ensemble model.
Specifically, across 100 different random initializations,
we subset the full TCGA GBM data into five folds and
trained a single classifier for each training fold.
We borrowed terminology from the epidemiology field

to describe data partitioning. We trained our models on a
“training” partition and assessed model performance on a
“test” partition, which refers to the held out cross-
validation fold. The independent “validation set” refers to
the GBM dataset generated in a different lab (see Fig. 1a).
Because of the small number of gold standard positive

training examples, we were concerned about the stability
of our model solutions. Therefore, we constructed an
ensemble classifier from the 500 models. Specifically, we
assigned each classifier a weight using the specific ran-
domization’s “test set” cross-validation AUROC. Lastly,
for the final NF1 inactivation prediction, we used the
mean of the weighted predictions across all iterations as
the NF1 inactivation prediction. We applied this ensem-
ble classifier to the validation set in which NF1 protein
levels were directly measured.

Fig. 1 Logistic regression classifier with elastic net penalty training and testing errors over 100 iterations for Training Distribution Matching (TDM)
transformation of The Cancer Genome Atlas Glioblastoma RNAseq data. a Schematic describing the terms used for training, testing, and
validating our model. We applied 5-fold cross validation to the full dataset which consists of training and testing splits in each fold. The model is
then applied as an ensemble classifier on a set of in-house samples (validation set) (b) Receiver operating characteristic (ROC) curves for all 500
classifiers that make up the ensemble model applied to both training and testing set. Also shown is the aggregate performance of the ensemble
classifier. c The cumulative density of area under the ROC curve (AUROC) for training and testing partitions
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Effect sizes and power analysis
We calculated the decision function of each ensemble
classifier applied to all samples in the training and test-
ing 5-fold cross validation folds to calculate Cohen’s D
effect size between predicted NF1 wildtype and NF1 in-
active samples [22]. The Cohen’s D metric quantifies the
difference between NF1 wildtype and NF1 inactive sam-
ples according to the mean classifier score and directly
demonstrates how different the ensemble model predicts
the two groups to be.
Moreover, we were also concerned that our relatively

small validation set would not provide us with enough
power to observe a detectable effect in the ensemble
model’s final prediction. We performed a one-tailed
Welch’s two-sample t-test comparing the NF1 protein
concentration of our validation samples that were pre-
dicted to be either NF1 wildtype or NF1 deficient. Using
the given sample size, Cohen’s D effect size, and a sig-
nificance threshold of α = 0.05, we calculated the power
of the prediction scores on the validation set. The power
analysis was two-sample, one-tailed and incorporated
unequal sample sizes in each group.

Validation sample acquisition
Thirteen flash-frozen, de-identified GBM samples were
obtained from the Maine Medical Center Biobank. Sam-
ples were received on dry ice and stored at −80 °C until
isolation of DNA/RNA/protein. To isolate DNA, tumor
fragments of approximately 20 mg in mass were harvested
on an aluminum block pre-chilled on dry ice. Samples
were then immediately transferred to a mortar and pestle
containing a small volume of liquid nitrogen. The frag-
ments were pulverized in the mortar and pestle, and the
liquid nitrogen was allowed to evaporate. Next, samples
were immediately processed with a DNA/RNA/Protein
Purification Plus kit (Norgen Biotek) following the stand-
ard operating protocol for animal tissue. DNA concentra-
tion and quality were assessed using an ND-1000
(Nanodrop), a Qubit Fluorometer (Thermo Scientific),
and a Fragment Analyzer (Advanced Analytical Technolo-
gies). To isolate RNA, −80 C tumor fragments were placed
in 5–10 volumes of RNAlater-ICE Frozen Tissue Transi-
tion Solution (Ambion) and placed at −20 °C until RNA
extraction with a mirVana miRNA isolation kit, without
phenol, following the standard operating protocol
(Thermo Scientific). Samples were homogenized using a
manual homogenizer in the presence of mirVana lysis buf-
fer. RNA concentration and quality were determined
using a Qubit Fluorometer (Thermo Scientific) and a
Fragment Analyzer (Advanced Analytical Technologies).
To isolate protein, small tumor fragments were pulverized
and lysed in approximately three volumes of ice-cold
radioimmunoprecipitation assay (RIPA) buffer (150 mM
sodium chloride, 1% v/v nonidet P40, 0.5% w/v sodium

deoxycholate, 0.05% w/v sodium dodecyl sulfate, 50 mM
Tris pH 8.0) containing 1 mM sodium orthovanadate,
1 mM sodium fluoride, 1 mM phenylmethylsulfonyl fluor-
ide, and 1X protease inhibitor cocktail (0.1 μg/mL leupep-
tin, 100 μM benzamidine HCl, 1 μM aprotinin, 0.1 μg/mL
soybean trypsin inhibitor, 0.1 μg/mL pepstatin, 0.1 μg/mL
antipain). Samples were passed through a 25 5/8 g needle
and subsequently sonicated on ice to promote efficient
lysis and DNA shearing. After a 30 min incubation on ice,
lysates were cleared by centrifuging at 16100 × g for
20 min. HEK293T, U87-MG, and U87-MG cells treated
for two hours with one micromolar bortezomib (Selleck-
chem) and ten micromolar MG132 (Selleckchem) were
also prepared in RIPA buffer. Protein samples were stored
at −80 °C until analysis.

Cell culture
U87-MG and HEK293T cells were purchased from
ATCC. Cell lines were regularly passaged and were
cultured in Dulbecco’s Modified Eagle Medium (Corn-
ing) with 10% v/v fetal bovine serum (Gibco) at 37 °C
in 5% CO2.
Recent data regarding the U87MG cell line published

by Allen et al. suggest that the U87MG cell line distrib-
uted by ATCC is not from the same tumor as the cell
line that was originally isolated in Uppsala. Transcrip-
tome analysis comparing ATCC U87MG cell line to
known tumor transcriptomes indicate that the ATCC
U87MG cell line is a central nervous system tumor and
is likely a glioblastoma cell line [23].
In the present study, we employ this cell line as a

control representing an NF1-deficient tumor cell line.
Previous studies have shown that the U87MG cell
line has elevated proteasome-mediated degradation of
NF1 and that this cell line required the loss of NF1
protein to promote tumorigenesis in xenograft tumor
models [10]. Given that the ATCC U87MG cell line
is a well-characterized and broadly-used model of
NF1 deficient tumor cells [10, 24–26], we propose
that the use of the ATCC U87MG cell line is an ap-
propriate control for Fig. 2.

RNA microarray
After RNA isolation and QC, samples were labeled for the
GeneChip Human Transcriptome Array 2.0 (HTA 2.0,
Affymetrix). Labeling was performed with Affymetrix Pro-
prietary DNA Label (biotin-linked) using a WT Plus Kit
(Affymetrix) provided with the HTA 2.0, following the
standard operating protocol for HTA 2.0, including PolyA
controls. Hybridization, washing, and staining were per-
formed with the WT Plus Kit, following the standard oper-
ating protocol for HTA 2.0. Washing and staining were
performed using a GeneChip Fluidics 450. Scanning was
performed with a GeneChip Scanner 3000. These data
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were deposited in the Gene Expression Omnibus under ac-
cession GSE85033.

Validation sample processing
We applied a quality control pipeline [27] to all CEL
files generated by the HTA 2.0. All validation samples
passed processing quality control, which included an in-
spection of spatial artifacts, MA plots, probe distribu-
tions, and sample comparison boxplots. We summarized
transcript intensities using robust multi-array analysis
(RMA) [28]. We determined batch normalization was
unnecessary after a guided principal components ana-
lysis (gPCA) using sample processing date and array
plate ID as potential batch effect confounders [29].
Lastly, we collapsed HTA2.0 transcripts into gene level
measurements using the ‘collapseRows()’ function with
the “maxmean” method from the R package WGCNA
[30]. We used the pd.hta.2.0 platform design file (version
3.12.1) and the Bioconductor package “hta20sttranscript-
cluster.db” (version 8.3.1) to map manufacturer tran-
script IDs to genes. We performed all preprocessing
steps using R version 3.2.3.

Western blotting
Prior to sodium dodecyl sulfate polyacrylamide gel
electrophoresis, protein sample concentration was de-
termined using a Pierce BCA Protein Assay Kit
(Thermo Scientific). Protein samples were prepared
with 1X Laemmli sample buffer (50 mM Tris pH 6.8,
0.02% w/v bromophenol blue, 2% w/v SDS, 10% v/v
glycerol, 1% v/v beta-mercaptoethanol, 12.5 mM
EDTA) and 50 μg of tumor protein. Volumes were
normalized with RIPA buffer including the protease/
phosphatase inhibitors described above. SDS-PAGE
was performed using a 4-15% Mini-PROTEAN TGX
gel (Bio-Rad) for 1 h at 120 V. The samples were then
transferred to a nitrocellulose membrane for 2 h and
45 min at 400 mA in cold transfer buffer (384 mM gly-
cine, 50 mM Tris, 20% methanol, 0.005% w/v sodium
dodecyl sulfate. Following this, the blots were then
blocked in 5% w/v BSA or 5% w/v nonfat dry milk in
Tris-buffered saline (137 mM NaCl, 2.7 mM KCl,
19 mM Tris, 0.05% v/v Tween 20, pH 7.4) for 25 min.
Immunoblotting was performed with the following
antibodies and conditions (vendor, species, diluent, di-
lution, incubation time, incubation temperature): anti-

Fig. 2 Performance of our classifier on a validation set. a Two distinct western blots for each of our twelve samples. The controls are U87-MG, an
NF1 WT glioblastoma cell line that exhibits proteasomal degradation of the NF1 protein. U87 + PI are U87-MG cells are treated with the proteasome
inhibitors (PI) MG-132 and bortezomib to block proteasome-mediated degradation of NF1. We used the NF1/tubulin ratio normalized to U87 + PI as
our NF1 protein level estimate. b Prediction scores for each of the 500 classifiers weighted by cross validation test set AUROC where a negative
number indicates NF1 wildtype and a positive number is indicates NF1 inactivation. Darker shades of blue indicate higher observed NF1
protein concentrations. c We quantify protein against U87 + PI and provide the mean of the weighted predictions. d Based on weighted
predictions, we show the abundance of NF1 protein compared to U87 + PI
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NF1 D7R7D #14624 (Cell Signaling, rabbit, 2% BSA,
1:1000, overnight, 4 °C), anti-tubulin B-1-2-5 (Santa
Cruz, mouse, 2% milk, 1:10000, 1 h, RT), anti-EGFR
D38B1 #4267 (Cell Signaling, rabbit, 2% milk, 1:1000–
1:2000, 1 h, RT), p-ERK ½ (p44/42 MAPK) #9101 (Cell
Signaling, rabbit, 2% BSA, 1:2000, overnight, 4 °C),
SUZ12 D39F6 #3737 (Cell Signaling, rabbit, 2% milk,
1:1000, overnight, 4 °C). Anti-NF1 D7R7D was a kind
gift from Cell Signaling Technologies, Inc.
The binding of the primary antibodies was detected by

incubation with secondary antibodies goat anti-rabbit
HRP 1:20000 or goat anti-mouse HRP 1:10000 (Jackson
Immunoresearch Laboratories Inc.) at room temperature
in 2% milk in TBST and detection of HRP activity using
Pierce ECL Western Blotting substrate (Thermo Scien-
tific), or in the case of NF1, SuperSignal West Femto
Maximum Sensitivity Substrate (Thermo Scientific). The
chemiluminescent signal was captured with MED-B
medical x-ray film (Med X Ray Company Inc.). Between
primary antibodies, the membrane was stripped twice
for 10 min at room temperature using a mild stripping
buffer containing 1.5% w/v glycine, 0.1% w/v SDS, 1% v/
v Tween 20 at pH 2.2 (Abcam). One sample was elimi-
nated due to low yield, and apparent degradation as de-
termined by western blotting (all proteins examined
were undetectable with the exception of tubulin, not
shown). Densitometry was performed using Li-COR
Image Studio Lite 5.0. Briefly, intensity measurements
for NF1 and tubulin were taken using equally-sized re-
gions for all bands. The background was subtracted
using the local median intensity from the left and right
borders (size = 2) of each measurement region. NF1
values were divided by tubulin intensity to adjust for
protein loading. All measurement ratios were then nor-
malized by dividing values by the “U87 + PI” measure-
ment for each blot, respectively.

Reproducibility of computational analyses
We provide software with a permissive open source li-
cense to reproduce all computational analyses [31]. En-
suring a stable compute environment, we performed all
analyses in a Docker image [32]. This image and source
code can be used to freely confirm, modify, and build
upon this work.

Results
Classifier performance
Using 5-fold cross validation across a parameter sweep, we
identified optimal hyperparameters at alpha = 0.15 and L1
mixing = 0.1 (Additional file 2: Figure S1). To assess model
performance, we performed 100 random initializations of
five-fold cross-validation. These models had mean test area
under the receiver operating characteristic curve (AUROC)
of 0.77 (95% Quantiles: 0.53 – 0.95) and a mean train

AUROC of 0.997 (95% Quantile: 0.98 – 1.00) (Additional
file 3: Figure S2). We repeated this procedure after TDM
transformation (Additional file 4: Figure S3) and achieved
comparable results with alpha = 0.15 and l1 mixing = 0.1
(mean test AUROC= 0.77, 95% Quantiles: 0.51 – 0.96;
mean train AUROC= 0.998, 95% Quantiles: 0.99 – 1.00)
(Fig. 1b). Because the validation set was measured by
microarray, we used the classifier trained on TDM trans-
formed data to construct our ensemble classifier. We also
determined the Cohen’s D effect size estimate for all train-
ing and testing partitions across all 5-fold cross validation
iterations of the TDM transformed model (Additional file
5: Figure S4). The classifier consistently and robustly
separated NF1 wildtype and NF1 inactivated GBM samples
with high effect sizes (Training: mean Cohen’s D = 3.07,
95% CI = 2.24 – 4.16; Testing: mean Cohen’s D = 1.27, 95%
CI = 0.19 – 2.67).

Identification and characterization of NF1 deficient
glioblastoma tumor samples
We characterized NF1 protein concentrations as well as
other molecules involved in RAS signaling in the 12
GBM samples (Fig. 2a). Two samples (CB2, 3HQ) had
no apparent NF1 protein. Eight other samples had simi-
lar or less NF1 signal than the U87-MG NF1-low control
(H5M, LNA, YXL, VVN, R7K, TRM, UNY, W31). Two
samples (PBH, RIW) had equal or greater NF1 than the
positive control, U87-MG + proteasome inhibitors (pre-
venting NF1 degradation). We also observed variable
EGFR content in these samples, with non-existent to
low levels (3HQ, YXL, R7K), or medium to large EGFR
signal (CB2, H5M, PBH, LNA, YXL, VVN, RIW, TRM,
UNY, W31). All GBM samples had high concentrations
of phospho-ERK1/2 signal relative to cell line controls.
Samples with increased phospho-ERK1/2 may have
greater Ras pathway activation. This can be attributed to
multiple factors, including increased EGFR expression
and/or NF1 inactivation.
Our ensemble classifier predicted four samples to have

NF1 inactivation (CB2, UNY, R7K, and 3HQ) and eight
samples to be NF1 wildtype (W31, TRM, PBH, VVN,
LNA, RIW, H5M, and YXL) (Fig. 2b). Because two sam-
ples, (CB2 and H5M) were measured on both western
blots (Fig. 2c), we used the mean of their NF1 protein
level across both experiments.
We performed a one-tailed Welch’s t-test to determine

if NF1 protein concentrations were significantly higher
in NF1 wildtype versus NF1 deficient samples based on
our classifier predictions (Fig. 2d). We did not observe a
significant difference across groups (t = −1.38, p = 0.098,
effect size = 0.699). Additionally, while the effect size
was fairly large, a power analysis indicated that 22 sam-
ples per group would be required to achieve a power =
0.8 at that effect size. With a lack of glioblastoma
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samples with quantified NF1 protein available, the trend
of less protein present in samples scored as NF1 inacti-
vated by the classifier nevertheless remains promising.
One of the samples predicted to be NF1 inactive con-

tains detectable NF1 protein (R7K), suggesting that this
sample may have NF1 inactivation not detectable by
assaying protein, have a different alteration that pheno-
copies NF1 loss, or is incorrectly predicted by the classi-
fier. Conversely, there are three samples predicted to be
NF1 wildtype that have low or undetectable protein
(YXL, VVN, W31), which either indicates unknown ele-
ments that confound the detection of some NF1 dysreg-
ulated tumors or a classification error.

Highly contributing genes
We observed several genes that consistently contrib-
uted to the ensemble classifier performance (Fig. 3).
Since we applied several classifiers to the validation
set as an ensemble, we took the sum of all classifier’s
gene weights across all 500 iterations to define these
consistently contributing genes. While the data indi-
cate that these genes have an impact on classifier per-
formance, the data do not indicate whether changes in
the expression of these genes are a direct consequence
in changes in NF1 signaling. Expression of genes such
as TXNIP, ARRDC4, ISPD, C10orf107, and DUSP18
appear to be predictive of intact NF1 signaling. Among
the list of genes that appear to be expressed in tumors
with loss of NF1 function are QPRT, ATF5, HUS1B,
PEG10, HMGA2, RSL1D1, and NRG1. A full list of
positive and negative weight genes that were two
standard deviations beyond the gene weight distribu-
tion is provided in Additional file 6: Table S2.
We also performed over-representation analysis of the

most influential genes in the classifier to identify gene
ontology (GO) sets and pathways that may be predictive of
NF1 status [33–36]. For high-weight genes predictive of

intact NF1 signaling, we observed GO sets involved in
plasma membrane-localized proteins (GO:0005886,
GO:0071944, GO:0016324) and homeostasis (GO:0048871,
GO:0001659, GO:0048873, GO:0031224), among others.
Annotated pathways associated with genes from this data-
set include hematopoietic stem cell differentiation, thyroid
cancer, voltage-gated potassium channels, and RHO
GTPase functional pathways.
For high-weight genes predictive of NF1 loss of func-

tion, we observed GO sets related to cellular adhesion
(GO:0007155, GO:0098742), negative regulation of sig-
naling (GO:0009968, GO:0023507, GO:0010648), and
nervous system development (GO:0051962, GO0007416,
GO: 0050808), among others. These genes were also
enriched for elements of the phototransduction cascade
and thyroxine production pathways.

Discussion
A machine learning classifier, based on gene expres-
sion data, can capture signal associated with the in-
activation of a tumor suppressor. Our classifier is able
to detect subtle downstream changes in gene expres-
sion as a result of the tumor responding to NF1 loss of
function. This finding supports using mRNA as a sum-
mary measurement capable of capturing system-wide
responses to molecular events beyond transcription
factor alterations. Machine learning has been applied
to gene expression in a variety of studies with various
goals [37–41]. In a similar study, Guinney et al.
trained a classifier to model RAS activity in colorectal
cancer and demonstrated its clinical utility by predict-
ing response to MEK inhibitors and anti-EGFR based
treatments [18]. With a wealth of signal embedded in
gene expression and a rapidly growing library of data-
sets, the performance of machine learning models is
likely to rapidly improve. An increase in performance
leads to more reliable clinical applications that would

Fig. 3 Genes that contribute to the classifier performance. Genes are shown ranked by their weighted contribution to the ensemble classifier.
Weights are scaled to unit norm. The top ten positive and top ten negative contributing high weight genes are given on the right

Way et al. BMC Genomics  (2017) 18:127 Page 7 of 11



potentially predict the effectiveness of pathway-
specific targeted therapies.
While our classifier was able to predict NF1 inactiva-

tion status to an extent, its performance is far from be-
ing clinically actionable. A major difficulty in developing
a reliable classifier in this case is contamination in gold
standard positives and negatives. While we aim to detect
NF1 inactivation events, our gold standard positives can
only include samples with known NF1 mutation status.
Conversely, we expect that negative samples (about 90%
of the data) are also contaminated with NF1 inactivated
samples due to protein loss and other mechanisms. We
cannot determine scenarios where NF1 is inactivated be-
yond mutation at scale in the TCGA data. Another chal-
lenge with the construction of classifiers from such data
is overfitting. Even after hyperparameter optimization
we observed substantial overfitting (Fig. 2), which has
also been observed in competitions (see, for example,
supplementary figure S2 of Noren et al. 2016 [42] in
which the best performing algorithms also overfit). Fi-
nally with a small number of positive examples the
model performance is unstable, which demonstrates
high variability in gold standard samples used to train
the model [43]. We employed ensemble classification to
mitigate this issue as averaging over heterogeneous
models would result in a relatively stable classifier (see
Fig. 2b). In summary, our results are promising but these
challenges are substantial and significant work remains
to reach a robust classifier with clinical utility.
The performance of the classifier appears to be im-

pacted by many cancer related genes. For example, genes
such as TXNIP and ARRDC4, which are both indicative
of lactic acidosis, correlate with better clinical outcomes,
and contribute to predicting tumors with intact NF1 sig-
naling [44]. We also observed transcripts that are more
highly expressed in brain tissue than either other normal
tissue (ISPD, C10orf107), or more highly expressed in
normal brain tissue than glioma (EPHA5) [45–47].
DUSP18 contributes to the prediction of NF1 wildtype
status and is a negative regulator of ERK phosphoryl-
ation, possibly by regulating SHP2 phosphorylation [48].
It is unclear whether the expression of these genes is a
direct result of NF1 expression, the result of signaling
downstream of NF1, or a consequence of other phenom-
ena (such as expression of SPRED1, an NF1 binding
partner that is essential for NF1 signaling). Future stud-
ies could elucidate the potential connections between
NF1 and the genes identified as important for the per-
formance of this classifier.
Over-representation analysis of these data highlighted

changes in potassium channel expression. It was previ-
ously demonstrated that NF1 wild-type Schwann cells
have altered K+ channel activity as compared to NF1−/−

Schwann cells suggesting that this may be one factor by

which NF1 mutant and wild-type cells can be distin-
guished [49].
Regarding prediction of NF1 inactivated tumors, we

observed several genes that have been linked to cancer
such as QPRT, which is highly expressed in malignant
pheochromocytomas as compared to benign; RSL1D1
(CSIG), which stabilizes c-myc in hepatocellular carcin-
oma; PPEF, which is highly expressed in astrocytic gli-
omas as compared to normal brain tissue [50–52]; and
PEG10, a poor prognostic marker and regulator of pro-
liferation, migration, and invasion in several tumor types
[53–55]. We also observed ATF5, a gene for which ex-
pression in malignant glioma is correlated with poor sur-
vival [56]. Knockdown of ATF5 in GBM cells causes cell
death in vitro and in vivo [57]. Analysis of genes that
contribute to the prediction of NF1 inactivation yielded
several GO terms related to neural development. It is
well established that loss of NF1 can result in abnormal
neural development and/or tumorigenesis [14, 58, 59].
We also observed genes associated with the mesodermal
commitment pathway, components of which are linked
to the epithelial to mesenchymal transition in human
cancer cells [60–62]. Analysis of this pathway may be in-
formative in identifying tumors with NF1 loss because
mesenchymal GBMs are enriched for tumors with NF1
loss [63].
Our ensemble classifier was able to robustly detect the

samples with the highest and lowest NF1 protein concen-
trations, but it struggled with samples of intermediate
NF1 concentrations. This could be a result of an enrich-
ment of mechanisms causing NF1 inactivation beyond
protein abundance, an overrepresentation of mesenchymal
tumors in NF1 inactivated samples contaminating dataset
splits [63], poor classifier generalizability, or incomplete
data transformation between RNAseq and microarray
data. Because training and testing performance were simi-
lar between transformed and non-transformed data (see
Fig. 1 and Additional file 4: Figure S3) we don’t anticipate
performance to be impacted much by platform differences
or classifier generalizability. Nevertheless, we demon-
strated the ability of system-wide gene expression mea-
surements to capture downstream consequences of a
complex biological mechanism that would otherwise re-
quire several different types of data acquisition to capture.

Conclusions
A machine learning classifier for transcriptomic data
was able to detect signal associated with the inactivation
of NF1, a tumor suppressor gene. The gene is an import-
ant regulator of the oncogene RAS and is inactivated fre-
quently in GBM and in other tumors. The measurement
of NF1 inactivity cannot be comprehensively captured
by any single genomic characterization such as targeted
sequencing or fluorescence in situ hybridization. This
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difficulty arises from diverse and complex biological
mechanisms that inactivate the tumor suppressor in a
variety of ways. However, we demonstrated that measur-
ing system-wide RNA can capture subtle downstream
changes that occur in response to NF1 inactivation. Im-
proving classification performance is required before
transitioning such a model into clinical use, but our
method could be used to characterize cell lines or
patient-derived xenograft (PDX) models with inactive
NF1. Eventually, with more data and improved classifica-
tion, we expect machine-learning models constructed on
system-wide transcriptomics will translate into clinically
relevant predictions that will guide targeted therapy.

Additional files

Additional file 1: Table S1. NF1 mutations in the TCGA GBM dataset
(UCSS Xena, hg19). (XLSX 12 kb)

Additional file 2: Figure S1. Non-transformed RNAseq results of The
Cancer Genome Atlas Glioblastoma parameter sweep for stochastic
gradient descent logistic classifiers with elastic net penalty. (A) Training
and testing area under the receiver operating characteristic curve
(AUROC) is given for each parameter tested. All accuracies are presented
following 5-fold cross validation after 50 random initializations. (B) The l1
mixing parameter with the optimal alpha and (C) the classifier perform-
ance across all random starts for the best hyperparameters. (PNG 711 kb)

Additional file 3: Figure S2. Logistic regression classifier with elastic
net penalty training and testing errors over 100 iterations for non-
transformed The Cancer Genome Atlas Glioblastoma RNAseq data. (A) Re-
ceiver operating characteristic (ROC) curve and shows the average train-
ing and testing performance of 5-fold cross validation over 100 random
initializations as well as each individual classifier in the ensemble model.
(B) The cumulative density of area under the ROC curve (AUROC) for all
training and testing partitions. (PNG 240 kb)

Additional file 4: Figure S3. Training Distribution Matching (TDM)
transformation of RNAseq results of The Cancer Genome Atlas
Glioblastoma parameter sweep for stochastic gradient descent logistic
classifier with elastic net penalty. (A) Training and testing area under the
receiver operating characteristic curve (AUROC) is given for each
parameter tested. All accuracies are presented following 5-fold cross val-
idation after 100 random initializations. (B) The l1 mixing parameter with
the optimal alpha and (C) the classifier performance across all random
starts for the best hyperparameters. (PNG 724 kb)

Additional file 5: Figure S4. Cohen’s D effect size estimates across five
fold cross validation parameters for all 100 iterations of the TDM
transformed ensemble classifier. The effect size for the test set is
consistently lower than the training set (left). Additionally, the training
and testing decision functions for gold standard NF1 deficient vs. NF1
wildtype samples shows a difference in mean estimates (right). The
decision function represents the raw score of all samples as applied to
the respective classifiers through each of the 100 iterations of five fold
cross validation on the TCGA training set. (PNG 580 kb)

Additional file 6: Table S2. Ranked genes contributing greater than
two standard deviations to ensemble classifier. (XLSX 27 kb)
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