Jia et al. BMC Genomics (2017) 18:545
DOI 10.1186/512864-017-3938-5

BMC Genomics

@ CrossMark

A permutation-based non-parametric
analysis of CRISPR screen data

Gaoxiang Jia'?, Xinlei Wang'™ and Guanghua Xiao>**"

Abstract

Background: Clustered regularly-interspaced short palindromic repeats (CRISPR) screens are usually implemented in
cultured cells to identify genes with critical functions. Although several methods have been developed or adapted

to analyze CRISPR screening data, no single specific algorithm has gained popularity. Thus, rigorous procedures are

needed to overcome the shortcomings of existing algorithms.

Methods: We developed a Permutation-Based Non-Parametric Analysis (PBNPA) algorithm, which computes p-values
at the gene level by permuting sgRNA labels, and thus it avoids restrictive distributional assumptions. Although
PBNPA is designed to analyze CRISPR data, it can also be applied to analyze genetic screens implemented with
siRNAs or shRNAs and drug screens.

Results: We compared the performance of PBNPA with competing methods on simulated data as well as on
real data. PBNPA outperformed recent methods designed for CRISPR screen analysis, as well as methods used
for analyzing other functional genomics screens, in terms of Receiver Operating Characteristics (ROC) curves and
False Discovery Rate (FDR) control for simulated data under various settings. Remarkably, the PBNPA algorithm
showed better consistency and FDR control on published real data as well.

Conclusions: PBNPA yields more consistent and reliable results than its competitors, especially when the data quality is low.

R package of PBNPA is available at: https//cran.r-projectorg/web/packages/PBNPA/.

Keywords: Functional genomics, False discovery rate, RNA interference, Negative selection, Next generation sequencing,

Positive selection

Background

The CRISPR (clustered regularly-interspaced short palin-
dromic repeats) interference technique is widely used in
biomedical studies to investigate gene functions. Large-scale
screening with this technique has become a powerful tool in
identifying cancer-promoting genes, drug-resistant genes,
and genes that play pivotal roles in various biological pro-
cesses [1-3]. The CRISPR/Cas9 system is composed of
sgRNAs (single guide RNA) and Cas9s (CRISPR associated
protein 9); an sgRNA contains around a 20-bp guide se-
quence that complements a DNA sequence and thus targets
a gene of interest, and a Cas9 is a nuclease that induces
double-strand breaks in the DNA and results in non-
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homologous end joining (NHE]) repair. NHE] is an error-
prone repair mechanism that usually introduces an indel
mutation that is highly likely to cause a coding frameshift,
which leads to a premature stop codon and initiates the
nonsense-mediated decay of the transcribed mRNA [1].
Thus, the CRISPR system abolishes the gene function by
interfering with gene expression from the DNA level. This
is more powerful than siRNA (small interfering RNA) or
shRNA (short hairpin RNA) screens. An siRNA contains
20 ~ 25 bp short synthesized RNAs that function in the
RNA interference pathway, and it cannot be integrated into
a host genome. An shRNA contains synthesized double-
stranded RNA molecules with a tight hairpin turn, which its
plasmid vector can be integrated into a host genome; how-
ever, it inhibits the gene function at the mRNA level [4]. All
three types of screens are usually implemented on cultured
cells: siRNA screens are carried out in multi-well plates with
each well containing one or several siRNAs targeting the
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same gene, and the signal in each well is collected as the
read for that well; by contrast, CRISPR and shRNA screens
are carried out in a pooled manner, where a mixture of
lentivirus that contains RNAi reagents (plasmid vector
for either shRNA or sgRNA) targeting different genes
is transfected into the same plate of cultured cells,
and the microarray or next generation sequencing
(NGS) technique can be used to collect reads. Cas9-
sgRNA screens are performed with pre-designed
sgRNA libraries that contain sgRNA redundancy. Gener-
ally, multiple sgRNAs (usually ranging from 3 to 10) with
different sequences that target distinct locations on the
same gene are utilized to ensure screening accuracy [1].
All genome-wide CRISPR screens use cell growth as a
phenotypic measure. Based on the goal of the screens,
they can be divided into positive selection screens and
negative selection screens [5]. Positive screens aim to
identify genes that inhibit cell growth in certain circum-
stances or that sensitize cells to a drug treatment or toxin.
For example, genes upon ablation protecting cells against
toxins, which are likely to be receptors for the toxins, or
genes involved in downstream signaling pathways [6], may
be targeted by positive screens. Under a strong selective
pressure, cells with sgRNAs that confer resistance against
that pressure would be enriched, and thus their signals
are often strong and easy to detect. Negative selection
screens aim to identify genes that promote cell growth
or housekeeping genes [7]. In this scenario, cells that
carry sgRNAs targeting such genes will be depleted
during selection. Signals from negative screens are typically
not as strong as those from positive screens, because the
depletion level is usually mild and the number of depleted
sgRNAs is large when considering the number of house-
keeping genes (and thus they can be hard to separate
from the background).

There are existing methods that can be used to analyze
genome-wide RNA interfering screening results, includ-
ing RSA [8], RIGER [9], MAGeCK [10], ScreenBEAM
[11], etc. The Redundant siRNA Activity (RSA) method
was originally developed to analyze data generated by
large-scale small interfering RNA (siRNA) screens in
mammalian cells [8]. RSA calculates a p-value for each
gene based on an iterative hypergeometric distribution
formula, where a smaller p-value indicates the gene is
more likely to have higher activity. RNAi Gene Enrich-
ment Ranking (RIGER) was originally designed to iden-
tify essential genes in genome-scale pooled shRNA
screens [9]. It calculates the rank of each sgRNA based
on a signal-to-noise metric and then synthesizes infor-
mation on sgRNAs targeting the same gene in a way
similar to that of Gene Set Enrichment Analysis to rank
genes [12]. Model-based Analysis of Genome-wide
CRISPR/Cas9 Knockout (MAGeCK) and Screening
Bayesian Evaluation and Analysis Method (ScreenBEAM)
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were both designed to analyze CRISPR screen data.
MAGeCK evaluates sgRNAs based on p-values calculated
from fitting a negative binomial model [10], and then the
ranks of sgRNAs targeting the same gene are combined
with a modified version of robust ranking aggregation
(RRA) called a-RRA. ScreenBEAM assesses the gene
level activity with Bayesian hierarchical models [11], in
which within-gene variances were modeled as random
effects. Among the above methods, RIGER, MAGeCK
and ScreenBEAM can perform both positive and nega-
tive selection. In addition, several algorithms used for
analysis of Next Generation Sequencing (NGS) data,
such as edgeR [13], DESeq [14] baySeq [15], NOISeq
[16] and SAMseq [17], can also be used to analyze
RNAIi screening data. Although such methods can only
assign ranks at the sgRNA level, they can be used to
conduct gene-level inference [10] when combined with
existing methods of integrating group information. It
is worth noting that NOISeq and SAMseq both take
nonparametric approaches. Unlike our method that is
based on permutation, SAMseq mainly relies on the
two-sample Wilcoxon statistic to estimate the signifi-
cance; and NOISeq assesses the significance of the treat-
ment effect with the reference distribution generated by
comparing reads of each gene in samples under the same
condition.

Although many CRISPR screen analysis methods are
available, no single specific algorithm has gained popu-
larity from researchers, mainly due to one or more of
the drawbacks listed below: (1) Distributions assumed
are doubtful or incorrect and thus incapable of modeling
data variability from different sources. Researchers gen-
erally use negative binomial or Poisson distributions to
model read counts from NGS [18]. However, these dis-
tributions do not reflect certain characteristics of NGS
data generating processes and are weak in handling
over-dispersion. (2) Most studies compared their model
performance using some ‘oracle’ datasets. However, the
performance may be compromised when generalizing
these methods to datasets from different conditions or
platforms. This is reflected by the fact that the number
of consistently identified genes across different algo-
rithms is often small [19]. (3) Published methods usually
have loose or no false discovery rate (FDR) control. FDR
reflects the rate of type I errors when performing mul-
tiple hypothesis tests and influences the credibility of the
tests if not carefully controlled. False discovery is a big
concern for functional genomic studies when a large
number of statistical tests are performed [20]. The
above-mentioned methods tend to overlook FDR or be
ineffective in controlling it, as will be shown in detail in
the Results section. Without stringent FDR controlled
p-values, it is difficult to evaluate the statistical signifi-
cance of selected genes.
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Our proposed method, Permutation-Based Non-Parametric
Analysis (PBNPA) of CRISPR screen data, mitigates
the three major drawbacks of existing CRISPR methods.
First, PBNPA computes p-values at the gene level by
permuting sgRNA labels, and thus it avoids restrictive
distributional assumptions. Second, PBNPA shows su-
perior performance to other algorithms in simulation
using data generated to mimic the NGS sequencing
process, which avoids overfitting based on specific
datasets. Application to real data confirms better
consistency of PBNPA. Last, our data application reveals
that PBNPA outperformed its competitors in terms of
FDR control.

Methods

A permutation procedure

In a CRISPR screen dataset, assume Yj; is the read count
for the jth sgRNA in the library under condition i, where
j=1,2, ... ,] indexes sgRNAs in the library; and i=0,1
indexes two experimental conditions, with i=0 for the
control and i =1 for the treatment. We use I, to denote
the index set of the sgRNAs that target the same gene g
and ungllg:{l,Z...,]}, where g=1,2, ... ,G and G is
the total number of genes in the library. Raw read
counts in each condition i were normalized by multiply-

ing a factor of mean (Z/]':I Yo, Z;J‘:IYU) / E,]':1Yz’j~ This
makes total read counts in each condition equal without
losing any useful information. Our PBNPA algorithm is
outlined below.

1. For each sgRNA j (j=1,2,...)), calculate the natural
logarithm fold change of normalized read counts:

= log ( > Then for each gene g, use the median

of 1i's (j € Ip) as the R score, denoted by R,.

2. Randomly permute gene labels while holding (Yq;
Y3)) pairs unchanged to get permutated R scores for
each gene, denoted by Ry;’s, where g=1,2, ..., G.

3. Repeat step 2 for T times and pool all R,’s over the
T permutations and all genes to form a null
distribution of R.

4. Calculate the p value for gene g if it is a positively
selected gene as:

__ # of permuted R scores >R, .
P = total # of permuted R scores’

and the p value for gene g if it is a negatively selected
gene as:

__ # of permuted R scores <R,
P = Yotal # of permuted R scores’

5. After getting p values for all genes, remove genes
with p values smaller than a threshold, which are
considered to be significant genes. Then repeat step
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2 and 3 to get the null distribution with significant
genes removed. Get updated p values for each gene
as described in step 4.

6. Use the Benjamini-Hochberg procedure to control
FDR [21].

In this algorithm, the median log fold change of
sgRNAs targeting a gene is used as the R score of that
gene, which makes it more robust against any outliers
and influences from potential off-target effects. In step
5, we remove a small portion of genes with the purpose
of removing any significant genes to get a more accurate
estimate of the null distribution [22], as the null distri-
bution is likely to be distorted if these significant genes
are kept in the permutation process.

Simulation strategy

To mimic the nature of RNA-seq experiments, the read
counts of all sgRNAs under a given condition were gen-
erated from a Dirichlet-multinomial (DM) distribution.
Considering the experimental setup of CRISPR screening
with RNA-seq, each sgRNA in a library can be viewed as
an outcome category in a multinomial distribution when
the total read count (sequencing depth) is fixed. How-
ever, the literature indicates that multinomial distribu-
tions are inadequate to model the extra variability that is
usually observed in NGS data [23, 24]. To account for
over-dispersion, the probability vector of an NGS read
falling into the different sgRNA categories is modeled
as random variables from a Dirichlet distribution.
After combining the multinomial model with the
Dirichlet model, the mixture model is a Dirichlet-
multinomial model with the probability mass function
(PMF) shown below:

£7) I(Yy +1)r yl+ IL[ (Y17+YI7')
i) =

( l++}/l+ ]:1f Y,]—i- ) (Yij)
where Y;=[Yj,Yp, ..., Yyl Yi+:Zle,-, Yi+:Z;sz

with y,’s being the parameters of the DM distribution;
and E( L,) = YH y” and Var(Yij) = Y”}Z_i (l—yyt—i>

(Yli—jy’*) [23, 25]. Compared to the variance of the
it

multinomial model, the variance of the DM model is in-

creased by a factor of ( ﬂth) When the total read

count Y, is fixed, y;, controls the degree of overdispersion
with a smaller value indicating larger overdispersion.

To simulate read counts for a screen experiment, we
first generated yo;’s for a control sample from a negative
binomial distribution NB (g, p) where ¢ is the number of
successful trials to be reached and p is the probability of
success in each trial. We set ¢ =3 and p =0.08 so that
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the generated DM read counts are right skewed, which
approximately mimics real data. We link y;; to the effect
of sgRNA j through the relationship y; = exp (a; + f; x i),
where a; loosely reflects the log mean read count under
the control and f; represents the jth sgRNA effect (ie.,
the log difference in mean read count between the treat-
ment and control). The total number of genes G was set
to be 10,000. For genes that have effects during the
screen processes under different conditions (which
are referred to as true hits), we first generated the
sgRNA effects targeting gene g from a normal distribution,
Bi~N (g, o) forjel,,g=1,2, ... ,G, with gene-specific
mean /4, and constant standard deviation o= 0.4 (0.4 was
chosen to be close to the standard deviation estimated
from real data); and then we forced all /s for gene g to
have the same sign as p, The vector, which contains
different levels of p, in our simulation, was set to be
[1.5,1, 0.5, -1, -2, -3], where a positive number indicates
that a gene’s ablation promotes cell growth while a
negative number indicates a gene is necessary for cell
growth. The three levels of y, for each sign represent
the high/medium/low effects of positively/negatively
selected genes, respectively. There are 50 genes simulated
from each level of y, Thus, among the 10,000 genes,
there are 150 positively selected genes and 150 negatively
selected genes. For those genes with no effects, 8/s were
set to be 0.

Off-target effects of CRISPR are often caused by unin-
tended DNA cleavage at non-targeting sites as a result
of mismatch between DNA and sgRNA [26]. If an
sgRNA is an off-target effect, its read count may either
decrease, increase, or remain the same since most DNA
sequences in the human genome have no known func-
tion. In our simulation, off-target /s were simulated
from N(0, 0*) and then used to replace a certain propor-
tion of randomly-selected on-target sgRNAs. The off-
target rate of a library can be considered an important
characteristic reflecting the quality of the library, which
is determined by the algorithm used to design the
sgRNAs [27]. Although several experimental approaches
exist, it is still challenging to get accurate estimates of
sgRNA off-target rates [28, 29]. Reported off-target rates
vary greatly in the literature [30, 31] and can range
between 1% and 20% in most sgRNA libraries. Thus, we
tested 4 off-target proportion values: 1%, 5%, 10% and
20%, to represent sgRNA libraries of different quality.

Besides the library quality, the number of sgRNAs per
gene is another factor that is known to influence the
screen performance dramatically. Thus, we varied the
number of sgRNAs per gene from 2 to 6 as well.

With s simulated for all sgRNAs, we obtained y;; = yo;
exp (B;). Then we simulated Y;; from the DM distribution
with y;/s from statistical packages ‘multinomRob’ [32] and
‘dirmult’ [33].
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Combining p-values to handle replicates

A CRISPR screen experiment may contain several repli-
cates. We analyzed each replicate using the proposed al-
gorithm and then employed Fisher’s method to combine
p-values from replicates for each gene [34, 35]. According
to Fisher’s method, the statistic —225521 Inp,, , with pg
representing gene g’s p value from the sth replicate, fol-
lows an y* distribution with 25 degrees of freedom under
the null hypothesis Hy: gene g has no effect, from which a
combined p value for each gene g is obtained [34].

Results
Positive selection performance
We compared the performance of PBNPA, RSA, Screen-
BEAM and MAGeCK for the four different off-target
rates (1%, 5%, 10%, 20%), as mentioned in the simulation
strategy section, when there are 3 sgRNAs targeting each
gene. A receiver operating characteristic (ROC) curve
plots the true positive rate against the false positive rate
of a binary classifier for different possible cut-off points
and visualizes the performance of the classifier. As
shown in Fig. 1, PBNPA works better for positive screen-
ing than RSA, MAGeCK and ScreenBEAM in terms of
the ROC curve and area under the curve (AUC), regard-
less of the off-target proportion. Also, all the algorithms
show worse performance with an increasing off-target
rate except for RSA, whose AUC increases from 0.592 to
0.637. Figure 2 indicates that PBNPA outperforms the
other algorithms with varying numbers of sgRNAs per
gene from 2 to 5. As expected, the AUC of each method
increases with an increasing number of sgRNAs per gene,
as more sgRNAs enable better estimation of gene effects.
As we have discussed previously, y;, controls the degree
of overdispersion. To check the performance of the algo-
rithms with an increased overdispersion level, we divided
every y;; by 10 and report the results in Figures S1 and S2
of Additional file 1: the performance of nearly all algo-
rithms decreases compared with the low overdispersion
setting, but the performance of PBNPA and ScreenBEAM
is comparable, and it is better than RSA and MAGeCK.

Negative selection performance

For negative selection, PBNPA and RSA have similar
AUCs and perform better than MAGeCK and Screen-
BEAM when the proportion of off-target sgRNAs is low,
as shown in Fig. 3. When the proportion of off-target
sgRNAs increases, RSA shows some advantage over
PBNPA and is robust against this increase. Figure 4
shows that when we fix the off-target proportion at 10%
and vary the number of sgRNAs per gene, PBNPA and
RSA have comparable performance, and they are signifi-
cantly better than MAGeCK and ScreenBEAM when the
number of sgRNAs per gene is low.
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In the setting of high overdispersion, RSA is the best
among all and PBNPA is only second to RSA with in-
creasing off-target proportion in the simulated datasets,
as shown in Figure S3 (Additional file 1). Figure S4
(Additional file 1) shows that when we fix the off-target
proportion and vary the number of sgRNAs per gene,
RSA is slightly better than PBNPA, and they are better
than the other two algorithms across different numbers
of sgRNAs per gene. Overall, for negative selection, RSA
seems to be the winner; but PBNPA provides quite close
or comparable performance to RSA, which is much bet-
ter than MAGeCK and ScreenBEAM.

Comparison of recall, precision and estimation of p values
When multiple statistical tests are performed simultan-
eously in the analysis of a dataset, adjustment of p values
is needed. Among the four algorithms, RSA does not
provide a method to adjust for multiple comparison.
We applied the Benjamini-Hochberg (BH) procedure
[21] to the results from RSA and obtained FDR-
adjusted p values. The other three methods use the
BH procedure by default. Then we controlled FDR at
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5% and compared recall (percent of identified true hits
among all true hits), precision (percent of identified true
hits among all selected genes) and F; of the four algo-

rithms, where F; is a metric that balances recall and preci-

recall X precision
recall+precision *

surprise, when FDR was controlled at 5%, neither RSA
nor ScreenBEAM was able to identify any significant
genes. Actually, under most settings, all genes in the RSA
results had an adjusted p-value of 1. This suggests that
RSA and ScreenBEAM cannot accurately estimate the
statistical significance of the genes. Thus, we compared
the recall, precision and F; of PBNPA and MAGeCK.
Figure 5 shows the recall, precision and F; of PBNPA and
MAGeCK for different combinations of sgRNA number
per gene (2, 3, 4, 5, 6) and off-target rates (1%, 5%, 10%,
20%) for positive screens. From the bottom panel of Fig. 5,
it is clear that under most settings, F; of PBNPA is the
same as or slightly better than that of MAGeCK. However,
the recall of PBNPA is significantly better than that of
MAGeCK, especially when the number of sgRNAs per
gene is small. In the middle panel, MAGeCK consistently

sion and is defined as F; = 2 X To our
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gene (2 ~ 6) and off target ratio. Each bar represents the average of 50 simulated datasets and the standard error is indicated on the bar
.
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maintains very high precision across all the settings. How-
ever, MAGeCK tends to be too conservative in identifying
true hits and may show a lack of power. Note that when
the off-target rate is high (20%) with 2 sgRNAs per gene,
MAGeCK has a recall rate of less than 10%, where it can-
not identify any true hits at all in some simulated datasets.
In screening experiments, after the genome-wide screen-
ing, a secondary screening will typically be used to validate
hits from the first round [36]. This highlights the import-
ance of the recall rate: those false positives are likely to be
removed in the secondary screening, while those false neg-
atives can be crucial genes that will be missed perman-
ently. Nearly the same pattern can be observed for
negative screens, as shown in Figure S5 (Additional file 1).
Thus, PBNPA provides the most accurate estimation of
adjusted p values among the four algorithms and also
offers optimal recall rates.

Handling replicates

The comparisons we have discussed above are based on
simulated data with no replicates. For low-quality
screens, replicates are typically used to increase the
power of identification. To handle screens with repli-
cates, we propose to use Fisher’s method to combine p
values, as mentioned in the Methods section, followed
by FDR adjustment. We simulated replicate datasets
with parameters of the DM distribution set as %, which
has higher overdispersion than the DM distribution with
v and so may represent data of low quality. We evalu-
ated 3 simulated replicates independently. Among the
150 positively selected genes, the analysis of individual
replicates gives the following results (i.e., number of true
hits identified/number of genes identified by PBNPA)
with FDR controlled at 5%: 6/7, 9/11, and 8/9, respect-
ively. After combining p values for the first two repli-
cates, the result is 72/86. After combining p values for
all three replicates, the result is 96/111. It is evident that
PBNPA shows dramatically improved performance when
even a small number of replicates are present.

Comparison using real data

Although the performance of various algorithms usually
does not differ greatly in simulation studies, they tend to
give quite different inferences on real data. This can be

Table 1 Comparison of FDR control between MAGeCK and PBNPA
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due to the fact that a simulation is not an exact
reproduction of the complex data generation process in
the real world. This phenomenon is also observed in al-
gorithms analyzing CRISPR data [19]. From the simula-
tion study, we have found that PBNPA and MAGeCK
are handy to use and give better overall performance
than the other two algorithms. Thus, we used datasets
from two recently published articles to evaluate the
consistency between these two algorithms as well as the
consistency of the same algorithm on different replicates
from the same experiment, since a good algorithm
should give highly similar results on replicates of the
same experiment. Control of FDR is also studied by
comparing control vs control or treatment vs treatment
read counts between replicates, as no genes should be
identified in this comparison.

The KBM7 dataset is from a study with two replicates
and 10 sgRNAs per gene, which aims to identify essen-
tial genes in the human genome to reveal genes that are
oncogenic drivers or lineage specifiers [37]. We analyzed
controls vs controls or treatment vs treatment with the
two algorithms and found that PBNPA has fewer falsely
identified genes compared with MAGeCK, as shown in
Table 1. As shown in the upper panel of Fig. 6, the iden-
tified hits are highly overlapped between the two algo-
rithms for the same replicate, as well as between the two
replicates with the same algorithm. This indicates both
algorithms perform well on this dataset with high
consistency.

The Toxoplasma dataset is from a study with four rep-
licates, which aims to identify essential genes of parasites
for infection of human fibroblasts [38]. The library was
designed to target more than 8000 protein coding genes
in T. gondii with 10 sgRNAs per gene. The analysis with
the two algorithms shows that PBNPA has fewer falsely
identified genes than MAGeCK, as shown in Table 1.
Furthermore, the number of consistently identified genes
for PBNPA is significantly higher than that identified by
MAGeCK among the 4 replicates, as is shown in the
middle and bottom panels of Fig. 6. For PBNPA, there
are 19 genes consistently identified in all four replicates
and 80 genes consistently identified in at least three rep-
licates. However, for MAGeCK there is no gene identi-
fied in all four replicates and only 11 genes consistently
identified in at least three replicates. This is strong

Dataset KBM7 Toxoplasma
Selection direction Algorithm Ctrl1 vs ctrl2 Treat1 vs treat2 Ctrl1 vs ctrl2 Ctrl1 vs ctrl3 Treat1 vs treat2 Treat1 vs treat3
Positive MAGeCK 50 18 0 1 0 1
PBNPA 38 10 0 1 1 0
Negative MAGeCK 0 3 4 2 [§ 28
PBNPA 0 6 0 2 0 0
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MAGeCK(replicate 2)

NPA(replicate 2

85

Replicate 4

PBNPA

Replicate 4

MAGeCK

Fig. 6 Comparing consistency of MAGeCK and PBNPA on replicates
using real data. Upper panel: overlap of PBNPA and MAGeCK results
on replicates 1 and 2 of the KBM7 dataset. Middle panel: overlap of
PBNPA results on the four replicates of Toxoplasma. Bottom panel:
overlap of MAGeCK results on the four replicates of Toxoplasma

evidence that PBNPA has superior consistency and bet-
ter FDR control than MAGeCK.

The similarities and differences in performance of the
two algorithms on these two datasets can be explained
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below. In the KBM7 dataset, each gene is targeted by 10
sgRNAs. From our simulation study, 10 sgRNAs per
gene should be sufficient to give reliable inference on
the hits. Thus, these two algorithms give highly similar
results. For the Toxoplasma dataset, although there are
10 sgRNAs designed for each gene, the algorithm used
to design sgRNAs is optimized for human genes not for
Toxoplasma, which, we conjecture, would deteriorate
the efficiency of sgRNAs in the screen. In addition, the
screening pipeline for Toxoplasma differs from that for
cultured human cells, which may induce unknown vari-
ability in the data. Based on the above rationale, we con-
clude that PBNPA is more robust to data variability than
MAGeCK.

Finally, we note that the other two methods did not
perform well on these real data, which agrees with our
findings from simulation. In particular, RSA showed
poor performance in controlling FDR; for example, in
the KBM7 dataset, when we compared ctrll vs. ctrl2,
RSA claimed more than 90% of the genes are significant
when controlling FDR at 5% for positive selection. This
is also consistent with an observation in the MAGeCK
paper [10] that RSA has a high FDR.

Discussion

While researchers typically use gene-specific null distri-
butions in their permutation procedures, we employed a
common null probability distribution for all genes in
PBNPA. We find that this gives similar or even slightly
better performance than using gene-specific null distri-
butions. However, building a common null distribution
for all genes substantially saves computation time over
building gene specific null distributions. For example: if
there are 10,000 genes and we permute 10 times, we can
get a common null distribution for all genes based on
10,000 x 10 = 100,000 replicates; but we need to per-
mute 100,000 times if we want an individual null distri-
bution for each gene based on the same number of
replicates. Here, using a common null distribution saves
10,000 times as much computation time as using gene-
specific null distributions.

Although our algorithm is designed to analyze CRISPR
data, it can also be applied to analyze genetic screens
implemented with siRNAs or shRNAs and drug screens,
which all generate data with structures similar to those
in CRISPR screens. The idea of doing permutation twice,
with significant genes from the first round removed to
get a more accurate null distribution, could be used by
other studies where p values are mainly generated from
a permutation process. We note that there are super-
vised methods of analyzing CRISPR data, which need
previous knowledge to estimate the background noise in
the platform and variability in the data [39]. Such
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methods are suitable in situations when reliable previous
screening results are available.

Conclusions
To the best of our knowledge, our paper is the first
study to compare the performance of several algorithms
with simulated datasets. With the known ground truth,
we showed the overall superiority of our PBNPA algo-
rithm compared to several existing methods in analyzing
CRISPR data, which is also verified by the real data stud-
ies. The behaviors of each algorithm are revealed from
simulation studies, which could help researchers select
the most appropriate algorithm to analyze CRISPR data.
Although there are many existing algorithms available
for analyzing CRISPR data, researchers are particularly
interested in new algorithms that can give consistent
and reliable results with a small number of sgRNAs per
gene and a low sequencing depth and that are not sensi-
tive to platforms, which will facilitate genome-scale
screens while lowering the cost. Our PBNPA algorithm
is a step toward achieving this goal.

Additional file

Additional file 1: Figure S1. Simulation evaluation of positive selection
performance using datasets with an increased overdispersion level. ROC
curves and AUCs are shown for different algorithms with an increasing
off target proportion while fixing the number of sgRNAs per gene at 3.
Each curve represents the average of ROC curves for 50 simulated datasets and
hereafter. Figure S2. Simulation evaluation of positive selection performance
using datasets with an increased overdispersion level. ROC curves and AUCs are
shown for different algorithms with an increasing number of sgRNAs per gene
while fixing the off target proportion at 10%. Figure S3. Simulation evaluation
of negative selection performance using datasets with an increased
overdispersion level. ROC curves and AUCs are shown for different algorithms
with an increasing off target proportion while fixing the number of sgRNAs
per gene at 3. Figure S4. Simulation evaluation of negative selection
performance using datasets with an increased overdispersion level.
ROC curves and AUCs are shown for different algorithms with an
increasing number of sgRNAs per gene while fixing the off target
proportion at 10%. Figure S5. Simulation evaluation of negative selection
performance based on recall, precision and F; for different combinations of
sgRNA number per gene (2 ~ 6) and off target ratio. Each bar represents the
average of 50 simulated datasets and standard error is indicated on the bar.
(DOCX 925 kb)
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