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Abstract

Background: The genetic basis of muscle fat deposition in pigs is not well known. So far, we have only identified a
limited number of genes involved in the absorption, transport, storage and catabolism of lipids. Such information is
crucial to interpret, from a biological perspective, the results of genome-wide association analyses for intramuscular

fat content and composition traits. Herewith, we have investigated how the ingestion of food changes gene

expression in the gluteus medius muscle of Duroc pigs.

Results: By comparing the muscle mRNA expression of fasted pigs (T0) with that of pigs sampled 5 h (T1) and 7 h
(T2) after food intake, we have detected differential expression (DE) for 148 (T0-T1), 520 (TO-T2) and 135 (T1-T2)
genes (g-value <0.05 and a |FC| > of 1.5). Many of these DE genes were transcription factors, suggesting that we
have detected the coordinated response of the skeletal muscle to nutrient supply. We also found DE genes with a
dual role in oxidative stress and angiogenesis (THBS1, THBS2 and TXNIP), two biological processes that are probably
activated in the post-prandial state. Finally, we have identified several loci playing a key role in the modulation of
circadian rhythms (ARNTL, PERT, PER2, BHLHE40, NR1D1, SIK1, CIART and CRY2), a result that indicates that the porcine

muscle circadian clock is modulated by nutrition.

Conclusion: We have shown that hundreds of genes change their expression in the porcine skeletal muscle in
response to nutrient intake. Many of these loci do not have a known metabolic role, a result that suggests that our
knowledge about the genetic basis of muscle energy homeostasis is still incomplete.
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Background

Physiological genomics aims to understand the molecu-
lar basis of highly complex biological processes by apply-
ing high-throughput technologies to the large-scale
analysis of genomes, transcriptomes and proteomes [1].
We have a very limited understanding of the physio-
logical genomics of intramuscular fat (IMF) content and
composition traits in pigs. Several RNA-seq studies com-
paring the muscle transcriptomes of pigs with divergent
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lipid profiles have been performed, demonstrating the
differential expression of a number of genes related with
carbohydrate and lipid metabolism [2—4]. Noteworthy,
genome-wide association studies (GWAS) of blood lipid
traits in humans have uncovered the existence of a large
number of genes strongly associated with plasma lipid
concentrations whose involvement in lipoprotein metab-
olism had never been reported before [5]. For instance,
Teslovich et al. [6] performed a GWAS for lipid traits in
100,000 individuals and identified several associated loci
(e.g. GALNT?2, PPPIR3B, and TTC39B) whose participa-
tion in lipid metabolism had not been described previ-
ously. Similarly, the Global Lipids Genetics Consortium
reported 62 novel loci displaying significant associations
with blood lipid levels, and 30 of them had never been
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previously connected to lipid metabolism [7]. In the light
of these results, we can infer that many genes contribut-
ing to muscle fat deposition remain to be identified.

The skeletal muscle compartment encompasses a
substantial fraction of the body weight and accounts for
~75% of total insulin-stimulated glucose uptake [8]. More-
over, adipose and muscle tissues absorb most of the chylo-
microns generated after a meal consumption [9]. Fat
deposition in the porcine muscle may depend, at least in
part, on the activation of genes that regulate the uptake,
transport, storage, synthesis and degradation of fatty acids
(FA) and carbohydrates. As a first step to identify such
genes, we have investigated how the profile of pig muscle
mRNA expression changes in response to nutrient supply.

Methods

Animal material and metabolic profile

A group of 36 female piglets belonging to a commercial
Duroc line were brought, after weaning (age = 3—4 weeks),
to the IRTA-Pig Experimental Farm at Monells (Girona,
Spain). They were fed with a transition feed for 40 days,
and, at an approximate age of 2 months, they entered the
fattening period. Gilts were housed individually and fed ad
libitum with a commercial feeding diet (13% and 5.5% of
crude protein and crude fat respectively) until they
reached an average live weight of 73 + 12 kg
(161 + 1.1 days). The post-prandial time-points at which
muscle gene expression should be analysed were chosen
on the basis of the following experiment (experiment 1):
we selected at random eight Duroc gilts (out of the 36),
with an approximate age of 100 days, and blood samples
were taken with citrate Vacutainer tubes before feeding
and 2, 4, 6 h. after feeding. These 32 samples were submit-
ted to the Veterinary Clinical Biochemistry Service of the
Universitat Autonoma de Barcelona (http://sct.uab.cat/
sbcv). The following metabolites were measured using
standard protocols: plasma glucose, triglycerides, choles-
terol and non-esterified fatty acids.

In experiment 2, we analysed the transcriptomic
changes associated with food intake by sequencing the
muscle transcriptomes of the 36 Duroc gilts mentioned
in the previous paragraph. These gilts were slaughtered
at the IRTA-Experimental slaughterhouse in Monells
(Girona, Spain) in controlled conditions and complying
all national welfare regulations. These 36 sows fasted
12 h prior slaughtering and then 12 of them were
stunned, with high concentrations of CO, to minimize
pain, and bled (TO, fasting). The remaining 24 gilts were
supplied with a standard feed ad libitum, and slaugh-
tered 5 h (T1, N = 12) and 7 h (T2, N = 12) after TO, fol-
lowing the same procedure reported above. Before
slaughter, we took blood samples from these sows and
triglyceride and plasma free FA were measured at the
Veterinary Clinical Biochemistry Service of the
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Universitat Autonoma de Barcelona (http://sct.uab.cat/
sbcv). After slaughtering, samples of the gluteus med-
ius muscle were collected and submerged in RNAlater
(Ambion), being stored at —80 °C until use.

RNA isolation and library construction and sequencing
Each muscle sample was individually submerged in li-
quid nitrogen and pulverized with a mortar and a pestle.
This powder was homogenized with a polytron device in
1 mL of TRI Reagent (Thermo Fisher Scientific,
Barcelona, Spain). Total RNA was extracted from gluteus
medius muscle samples by using the acid phenol method
implemented in the RiboPure kit (Ambion, Austin, TX).
Total RNA concentration and purity were assessed with
a Nanodrop ND-1000 spectrophotometer (Thermo
Fisher Scientific, Barcelona, Spain), while integrity was
checked with a Bioanalyzer-2100 equipment (Agilent
Technologies, Inc., Santa Clara, CA). Total RNA sam-
ples were submitted to the Centre Nacional d’Analisi
Genomica (CNAG, http://www.cnag.cat) for sequencing.
Individual libraries for each one of the analysed pigs
(N = 36) were prepared using the TruSeq Stranded
mRNA Library Preparation Kit (Illumina Inc., CA) ac-
cording to the protocols recommended by the manufac-
turer. This level of replication is 4-fold higher than the
minimum required (3 individuals/group) in standard
RNA-seq studies. Each library was paired-end sequenced
(2 x 75 bp) in a HiSeq 2000 platform (Illumina Inc., CA)
by using the TruSeq SBS Kit v3-HS (Illumina Inc., CA).

Bioinformatic analyses

Quality control of sequence reads was carried out
with the FASTQC software (Babraham Bioinformat-
ics,  http://www.bioinformatics.babraham.ac.uk/pro-
jects/fastqc/). We made per-sequence and per-base
analyses to filter reads according to the following cri-
teria: sequence-read distribution = 75 bp, 100% coverage in
all bases, GC-content ~50%, ~25% of A, T, G and C nucleo-
tide contributions, ambiguous base-content <0.1% and a
Phred score higher than 30 (i.e. base-calling accuracy larger
than 99.9%). Subsequently, sequences were trimmed for
any remaining sequencing adapter by using Trimmomatic
v.0.22 [10]. Raw reads were mapped to the pig reference
genome (version 10.2-) with the STAR Alignment v.2.5.
software [11] by using default parameters and STAR 2-pass
alignment steps. The FeatureCounts tool [12] was used to
summarize counts of unambiguously mapped reads. The
expression of each mRNA was estimated with DESeq2 [13].
This software builds a count matrix Kj; (with one row for
each gene i and one column for each sample j) encompass-
ing the number of sequencing reads that have been unam-
biguously mapped to a gene in a sample [13]. The main
assumption of this method is that read counts follow a
negative binomial distribution with mean p;; and dispersion
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a; [13]. A second important assumption is that genes of
similar average expression levels are expected to have a
similar dispersion «a; value. DeSeq2 calculates final disper-
sion values by using an empirical Bayes approach that
shrinks dispersion estimates towards a set of predicted «;
values. When dealing with genes that are poorly expressed,
log, fold-change (FC) estimates can have a high variance
due to noisiness issues. To avoid this potential problem,
DeSeq?2 shrinks log, fold-change estimates, with an empir-
ical Bayes procedure [13]. Finally, a Wald test is used to
infer if shrunken log, fold-change estimates (and their
standard errors) are significantly different from zero. In the
Wald test, the shrunken estimate of the log, fold-change is
divided by its standard error, generating a z-statistic that
can be compared to a standard normal distribution [13].
Correction for multiple testing is achieved by using a false
discovery rate approach [14]. We considered as differen-
tially expressed (DE) those mRNAs displaying a |[FC| > 1.5
and a g-value <0.05.

Advaita Bio’s iPathwayGuide (http://www.advaitabio.-
com/ipathwayguide) and the Cytoscape software [15]
combined with the ReactomeFIViz app [16] were used to
infer if certain gene ontology terms and pathways are
enriched across the sets of DE genes as well as to build
biological networks. In order to detect the GO categories
that are over- or under-represented in the condition under
study, Advaita Bio’s iPathwayGuide uses an impact ana-
lysis method that relies on classical statistics but also takes
into account other key factors such as the magnitude of
each gene’s expression change, their type and position in
the given pathways, their interactions, etc. [17]. The Reac-
tomeFIViz application can access the Reactome pathways
database in order to do pathway enrichment analysis for a
set of genes and visualize hit pathways with the aid of
Cytoscape [16]. This application can also access the Reac-
tome Functional Interaction (FI) network to construct a FI
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sub-network based on a set of genes [16]. In our study,
the standard ReactomeFIViz “Gene Set/Mutation Ana-
lysis” application was employed to build gene functional
interaction networks on the basis of a list of DE genes (g-
value <0.05 and a |FC| > of 1.5) and curated pathway in-
formation contained in the Reactome database. The func-
tional enrichment analyses for pathways and GO
annotations were based on a binomial test [16].

Results

In Experiment 1, measurement of the concentrations of
plasma glucose, cholesterol, triglycerides and non-esterified
fatty acids revealed that glycaemia and lipidemia peaks took
place 2 and 4 h after the 8 Duroc gilts began to eat, a result
that was very consistent across individuals (Fig. 1). Eating
was also accompanied by a marked decrease of plasma free
FA (Fig. 1), a finding that agrees well with the role of these
metabolites as a source of energy during fasting. We chose
5 and 7 h post-ingestion as time-points to carry out the
analysis of differential expression. Our expectation was that
T1 would reflect the process of lipid absorption, while T2
would correspond to a posterior phase in which lipids are
stored as triglycerides or catabolized in the [-oxidation
pathway to generate ATP. Nevertheless, when we measured
the concentrations of triglycerides and plasma free fatty
acids in the slaughtered sows forming part of Experiment
2 (Additional file 1: Figure S1), we observed that feeding is
associated with an increase in the concentration of triglyc-
erides and a decrease of circulating free FA levels, a result
that matches the metabolic profile observed in Experiment
1. However, the kinetics of these two metabolites were not
identical to those observed in Experiment 1 because 7 h
after feeding triglyceride levels were still peaking. Despite
this circumstance, our main comparison (fasting vs fed
pigs) remains completely valid.

== Cholesterol (mg/dl) —e—Glucose (mg/dl)
Triglycerides (mg/dl) —a—Non-esterified FA (mmol/cl)
140 - —
120 +
100 1
80 o
60 ~
40
20 ~
O 1
Fasting 2 hp.i. 4hp.i. 6 h p.i.
Fig. 1 Kinetics of the average concentrations of plasma glucose, cholesterol, triglycerides and non-esterified fatty acids (FA) in 8 Duroc pigs at
four time points: before eating and 2, 4 and 6 h post-ingestion (p.i)
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The RNA-seq experiment generated an average of 45
million paired-end reads per sample and 69.8% of them
were unambiguously mapped to the pig Sscrofal0.2
genome assembly. Analysis of the data with DESeg2
highlighted 148 (TO0 vs T1), 520 (TO vs T2) and 135 (T1 vs
T2) differentially expressed mRNA-encoding genes (Add-
itional file 2: Table S1). Moreover, 85 genes showed DE
both in the TO-T1 and T0-T2 comparisons, a result that
evidences the high consistency of our results. The analyses
of pathways and signalling networks enriched in DE genes
with Advaita iPathwayGuide (http://www.advaitabio.com/
ipathwayguide) revealed 18 (T0-T1), 18 (T0-T2) and 14
(T1-T2) enriched pathways (Table 1). Similarly, the Reac-
tomeFIViz app identified 34 (T0-T1), 18 (T0-T2) and 15
(T1-T2) pathways (Additional file 3: Table S2). In both
analyses, we identified pathways related with (1) TO-T1:
circadian clock system, muscle contraction and signaling
in cardiomyocytes; (2) TO-T2: circadian rhythm and ribo-
some pathway; and (3) T1-T2: oxidative phosphorylation,
metabolic process and ribosome pathways. Differentially
expressed mRNA-encoding genes were also grouped in
gene regulatory networks with the ReactomeFIViz app.
We found 6 (T0-T1), 20 (T0-T2) and 4 (T1-T2) functional
interaction networks which are displayed in Figs. 2, 3 and
4. Several enriched pathways (g-value <0.05) such as Wnt
signaling pathway (T0-T2), TNF signalling (T0-T1), ATE-
2 transcription factor network (T0-T2) and oxidative
phosphorylation (T0-T2, T1-T2) are tightly linked to me-
tabolism and energy homeostasis. We also found path-
ways related with striated muscle contraction (T0-T1) and
myogenesis (T0-T2), a result that could be anticipated
given the predominance of myofibrilar proteins in the
muscle proteome. Other pathways of interest were circa-
dian clock and rhythm (T0-T1, T0-T2), oxidative stress in-
duced gene expression via Nrf2 (T0-T2) and SRP-
dependent cotranslational protein targeting to membrane
(T1-T2) and eukaryotic translation termination (T1-T2).

Considering gene ontology (GO) cellular component,
biological process and molecular function related to
network functions, the top-scoring networks were (1)
TO-T1: transcription factor complex, circadian regulation
of gene expression and E-box binding; (2) TO-T2: nucleo-
plasm, negative regulation of transcription from RNA
polymerase II promoter and structural constituent of
ribosome and (3) T1-T2: cytosolic small ribosomal
subunit, translation and structural constituent of
ribosome (Additional file 4: Table S3).

Discussion

Post-prandial activation of genes with and without
known roles in muscle energy homeostasis

Several of the genes that show the most significant DE be-
tween fasted and fed animals (Additional file 2: Table S1)
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have an established role in metabolism, while for others evi-
dence reported in the literature is more tenuous or even ab-
sent. For instance, the 6-phosphofructo-2-kinase/fructose-
2,6-biphosphatase 3 (PFKFB3, T0-T1l: FC = -3.01, ¢-
value = 1.91E-07) gene can modulate glucose homeostasis
by regulating the levels of fructose-2,6-biphosphate [18],
and there are substantial evidences that the GO/G1 switch 2
(G0S2, TO-T1: FC = 1.84, g-value = 4.03E-02; TO-T2:
FC = 2.06, g-value = 9.35E-04) protein is involved in the
regulation of the rate-limiting lipolytic enzyme adipose tri-
glyceride lipase [19].

The analysis of Additional file 2: Table S1 also evidences
the existence of DE for several genes with a plausible but
poorly characterized role in metabolism. A good example is
the mitoguardin 2 (MIGA2, TO-T1: FC = 162, ¢-
value = 1.86E-02; TO-T2: FC = 2.22, g-value = 2.10E-05)
gene, which shows a dramatic increase in its expression
after food intake i.e. MIGA2 is 1.62 and 2.22 times more
expressed at 5 and 7 h post-ingestion, respectively. This
gene encodes a protein that regulates mitochondrial fusion
[20]. Noteworthy, mitochondrial dynamics is highly inter-
connected with the energy status of the cell, and it has been
demonstrated that starvation promotes an acute inhibition
of mitochondrial fission [21]. Another gene of interest is
syndecan 4 (SDC4, TO-T1: FC = -1.80, g-value = 3.88E-04;
TO-T2: FC = -1.82, g-value = 9.59E-04), whose expression
levels decreased at 5 h and 7 h after ingestion. In mammals,
this gene has been mostly related with cell-matrix adhesion,
migration, neuronal development, and inflammation, but
studies performed in Drosophila have revealed that it may
also have broad effects on the regulation of energy homeo-
stasis [22]. A third example would be the cysteine- serine-
rich nuclear protein 1 (CSRNPI, TO-T1: FC = -1.67, ¢-
value = 5.37E-03; TO-T2: FC = -1.75, g-value = 1.07E-02), a
molecule that has been mostly related with T-cell immunity
[23] and cephalic neural progenitor proliferation [24]. Inter-
estingly, the expression of this molecule is induced by axin,
which appears to promote glucose uptake by enhancing the
translocation of GLUT4 [25].

Finally, there is a third category of genes, exemplified by
the family with sequence similarity 212, member B
(FAM212B, TO-T1: EC = 2.04, g-value = 3.36E-02; TO-T2:
FC = 2.68, g-value = 1.13E-06), transmembrane protein
169 (TMEM169, TO-T2: FC = 2.83, g-value = 6.81E-07)
and matrix metallopeptidase 25 (MMP25 TO-T2:
FC = -241, g-value = 7.97E-04) loci, that, to the best of
our knowledge, have never been reported to participate in
the regulation of energy homeostasis.

The ingestion of food involves changes in the muscle
expression of many transcription factors

As shown in Additional file 2: Table S1, we did not de-
tect significant changes in the expression of several
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Table 1 Results of the Advaita Bio's iPathwayGuide pathway analysis based on the list of genes that are differentially expressed (g-value <0.05
and [fold-change| > 1.5) in the porcine gluteus medius muscle before (TO) vs 5 h (T1) and 7 h (T2) after eating

TO vs T1 TO vs T2 T1 vs T2

Pathway P-value Pathway P-value Pathway P-value
Circadian rhythm 1.00E-03  Ribosome® 497E-06  Ribosome® 2.84E-13
Circadian entrainment 4.00E-03  Circadian rhythm 848E-04  Huntington’s disease 2.84E-04
Cholinergic synapse 4.00E-03  Huntington'’s disease 1.00E-03  Parkinson's disease 7.33E-04
Adrenergic signaling in 4.00E-03  Legionellosis 5.00E-03  Oxidative phosphorylation® 8.74E-04
cardiomyocytes

Transcriptional misregulation 7.00E-03  Parkinson’s disease 6.00E-03  Alzheimer's disease 1.00E-03
in cancer

TGF- signaling pathway 1.30E-02  Viral myocarditis 7.00E-03  Tight junction 1.30E-02
GABAergic synapse 1.50E-02  Malaria 7.00E-03  Metabolic pathways® 1.80E-02
Malaria 1.60E-02  p53 signaling pathway 1.00E-02  Herpes simplex infection 1.80E-02
Cardiac muscle contraction® 240E-02  Alzheimer's disease 1.10E-02  p53 signaling pathway 2.50E-02
Herpes simplex infection 2.70E-02  Mineral absorption 1.30E-02  Viral myocarditis 2.90E-02
Fructose and mannose metabolism®  3.20E-02  Toxoplasmosis 1.50E-02  Legionellosis 3.20E-02
Neuroactive ligand-receptor 320E-02  PPAR signaling pathway 1.90E-02  Amyotrophic lateral sclerosis (ALS)  3.20E-02
interaction

Dopaminergic synapse 330E-02  Amyotrophic lateral sclerosis (ALS) 220E-02  Sulfur metabolism? 3.60E-02
Alanine, aspartate and 3.50E-02  Sulfur metabolism? 240E-02  Arrhythmogenic right ventricular 5.00E-02
glutamate metabolism? cardiomyopathy (ARVC)

Glutamatergic synapse 3.60E-02  African trypanosomiasis 2.50E-02

Estrogen signaling 3.70E-02  Transcriptional misregulation in cancer ~ 2.90E-02

pathway

Bladder cancer 4.10E-02  Cardiac muscle contraction® 3.30E-02

Dilated cardiomyopathy 4.90E-02  Tight junction 4.90E-02

the P-value corresponding to the pathway was computed using only over-representation analysis

genes with a well-established role in lipid uptake (e.g.
CD36, lipoprotein lipase), synthesis (e.g. acetyl-CoA
carboxylase, fatty acid synthase, diacylglycerol O-acyl-
transferase 1), transportation (e.g. FA binding pro-
teins) and catabolism (e.g. genes of the [-oxidation
pathway). One of the few exceptions to this general
trend was the lipase G locus (LIPG, TO-T1: FC = -1.80,
g-value = 4.10E-02), which encodes and endothelial
lipase modulating lipoprotein metabolism [26]. This
gene shows an important drop in its expression levels
(1.8 times) 5 h after food intake, a feature that would
result in an inhibition of high-density lipoprotein ca-
tabolism [26].

We observed DE for many genes encoding transcription
factors (Figs. 2 and 3, Additional file 2: Table S1) e.g. the
AT-rich interactive domain 5B (ARIDSB, TO-T2: FC = -2.31,
g-value = 5.98E-04) gene, which influences adipogenesis
and also the accumulation of postnatal lipid storage [27];
Kruppel-like factor 5 (KLF5 TO-T2: FC = -1.96, g-
value = 1.25E-02), that regulates the expression of genes in-
volved in the [B-oxidation of FA [28]; NR4A2, (TO-T1:
FC = -2.16, g-value = 8.93E-04), a nuclear orphan receptor
that controls the expression of genes related with glucose

metabolism [29]; CCAAT/Enhancer Binding Protein &
(CEBPD, TO-T1: FC = -2.33, g-value = 6.37E-05; TO-T2:
FC = -1.84, g-value = 1.71E-02) that plays an essential role
in adipogenesis [30]; and forkhead box O1 (FOXOI, TO-T1:
FC = -1.55, g-value = 2.12E-02; TO-T2: FC = -1.66, g-
value = 2.7E-02), which integrates glucose utilization and
lipogenesis [31]. In the TO-T2 comparison we found a simi-
lar pattern, with DE of genes encoding the nuclear receptor
NR4A3 (FC = -2.28, g-value = 1.99E-03), SRY-box 9
(SOX9, FC = -2.28, g-value = 6.84E-05) and BTB and CNC
Homology 1, Basic Leucine Zipper (BACH2, FC = -2.45, ¢-
value = 4.61E-05) transcription factors, to mention a few
(Figs. 2 and 3, Additional file 2: Table S1). In the T0-T2
comparison (Fig. 3, Additional file 2: Table S1), we also de-
tected an increase in the expression levels of the meteorin
(METRNL, FC = 1.77, g-value = 7.33E-03) mRNA that en-
codes an hormone that promotes energy expenditure and
glucose tolerance [32].

Feeding elicits strong changes in the expression of
ribosomal protein genes

Mammalian ribosomes contain 79 different proteins, all of
them being encoded by single-copy genes expressed in all
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regulation of pluripotent stem cells (R)

Fig. 2 Reactome functional interaction network corresponding to 148 genes that show differential expression in the TO (fasting) vs T1 (5 h after
eating) comparison. Nodes in different network modules are displayed in different colors. Letters in parentheses represent the source database as
follows: R — Reactome, K — KEGG, and B — BioCarta. Enriched pathways (g-value <0.05) in each one of the individual network modules are: 1:
Proteoglycans in cancer (K); 2: TNF signaling (R); 3: Circadian clock (R); 4: Bone remodeling (B); 5: Striated muscle contraction (R) and 6: Transcriptional

tissues [33]. Interestingly, we have detected significant
changes in the expression of several ribosomal protein
genes (Additional file 2: Table S1). Ribosomal protein genes
formed part of the Reactome functional networks shown
in Figs. 3 and 4. Moreover, pathways related with riboso-
mal biogenesis appeared as significant in Table 1 and Add-
itional file 3: Table S2. When nutrients are available, cells
tend to activate energy-consuming anabolic pathways
whilst under stress or starvation catabolic processes are
predominant [33]. Ribosomal biogenesis consumes 60% of
cellular energy and this is the key reason why this process
is tightly coupled with nutrient supply [34]. The rapamycin
(TOR) signalling pathway is deeply involved in coupling
ribosome biogenesis with the energy status of the cell by
regulating the expression of ribosomal proteins and RNAs
[35]. The fundamental role of ribosomal proteins in skel-
etal muscle metabolism has been illustrated by generating
mice where the ribosomal protein S6 cannot be phosphor-
ylated ie. these mice are viable and fertile but they show
muscle weakness and energy deficit [36]. According to our
data, these strong changes in the expression of ribosomal
protein genes are observed in the TO-T2 and T1-T2 com-
parisons, but not in TO-T1. Another intriguing observation
of our study is that several of these DE ribosomal protein
genes are consistently downregulated (e.g. RPS6KAIL

RPL35A, RPS23, RPS21, RPL9 and RPL39), a result that is
counterintuitive and hard to explain.

Differential expression of genes related with angiogenesis
and oxidative stress

The thrombospondin 1 (THBSI, TO-T1: FC = -1.99, ¢-
value = 8.00E-03) and 2 (THBS2, TO-T2: FC = 245, g-
value = 5.18E-04) and thioredoxin interacting protein
(TXNIB TO-T1: FC = -1.78, g-value = 1.34E-02; TO-T2:
FC = -1.79, g-value = 1.13E-02) genes showed significant
DE before and after eating (Additional file 2: Table S1).
Moreover, they were integrated in the Reactome functional
networks depicted in Figs. 2 and 3. These loci have a dual
biological role, regulating both angiogenesis and response to
oxidative stress. For instance, THBSI and THBS?2 are nega-
tive regulators of angiogenesis [37, 38] and their expression
is down- and upregulated by oxidative stress, respectively
[39, 40]. This feature agrees well with our study, since we
found a post-prandial (both at T1 and T2) decreased and in-
creased expression of THBSI and THBS2, respectively. The
TXNIP protein is one of the main regulators of redox
homeostasis [41] and also an angiogenic factor [42]. We
have observed a diminished expression of this gene after
food ingestion, a finding that agrees well with its function as
a promoter of oxidative stress and apoptosis [41].
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TNNT2

Fig. 3 Reactome functional interaction network corresponding to 520 genes showing differential expression in the TO (fasting) vs T2 (7 h after eating)
comparisons. Nodes in different network modules are displayed in different colors. Letters in parentheses represent the source database as follows: R —
Reactome, K — KEGG, N = NCI PID, P - Panther, and B — BioCarta. Enriched pathways (g-value <0.05) in each one of the individual network modules are: 1:
Mitotic G1-G1/S phases (R); 2: Nicotinic acetylcholine receptor signaling pathway (P); 3: SRP-dependent co-translational protein targeting to membrane (R);
4: Senescence-associated secretory phenotype (SASP) (R); 5: Signaling events mediated by HDAC Class Il (N); é: Circadian rhythm pathway (N), 7: Oxidative
stress induced gene expression via Nrf2 (B); 8: ABC-family proteins mediated transport (R); 9: TollHlike receptors cascades (R); 11: Proximal tubule bicarbonate
reclamation (K); 12: Wnt signaling pathway (K); 13: Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signaling pathways (R); 14:
ATF-2 transcription factor network (N); 15: ECM-receptor interaction (K); 16: GPCR ligand binding (R); 17: Oxidative phosphorylation (K); 18: Integrin signalling
pathway (P); 19: Myogenesis (R); 20: Transcriptional regulation of white adipocyte differentiation (R)

In the mitochondria, oxidative phosphorylation, by  byproduct [43]. This may promote a state of oxidative
which ATP is synthesized as a source of energy, involves  stress, i.e. an imbalance between oxidants and antioxi-
the generation of reactive oxygen species (e.g. super- dants, resulting in cell and tissue damage. Indeed, a sin-
oxide, hydrogen peroxide, hydroxyl radical) as a gle high-fat meal can temporarily impair endothelial
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Fig. 4 Reactome functional interaction network corresponding to 135 genes showing differential expression in the T1 (5 h after eating) vs T2 (7 h after
eating) comparison. Nodes in different network modules are displayed in different colors. Letters in parentheses represent the source database as follows:
R — Reactome and K — KEGG. Enriched pathways (g-value <0.05) in each one of the individual network modules are: 1: SRP-dependent cotranslational
protein targeting to membrane (R); 2: Eukaryotic Translation Termination (R); 3: Oxidative phosphorylation (K) and 4: Parkinson’s disease (K)

function in healthy individuals and this effect is inhibited
by antioxidants [44]. Moreover, lipid peroxidation by re-
active oxygen species has been suggested as one of the
main mechanisms leading to the development of mito-
chondrial dysfunction and insulin resistance [45]. On the
other hand, it is well known that insulin, which is se-
creted by the pancreas in response to food ingestion,
promotes vasodilation and capillary recruitment in the
skeletal muscle, an effect mediated by nitric oxide [46].
These actions on the muscle vasculature are funda-
mental for the maintenance of glucose homeostasis
[47]. As a matter of fact, oxidative stress and neovas-
cularization are two tightly linked biological processes
i.e. there are evidences that end products of lipid oxi-
dation can bind the Toll-like receptor 2 promoting an
angiogenic response [48]. As a whole, DE of THBSI,
THBS2 and TXNIP between pre- and post-prandial
states probably reflects the combined redox and

vascular response of the porcine skeletal muscle to
nutrient availability.

A close relationship between nutritional status and the
expression of genes integrated in the muscle circadian
clock

One of the main results of our experiment was the
detection of DE for a set of genes that form part of the
peripheral clock that determines the maintenance of
circadian rhythms in the skeletal muscle (Figs. 2 and 3, and
Additional file 2: Tables S1, Additional file 3: Tables S2 and
Additional file 4: Tables S3). Patterns of DE in the two
available comparisons (T0-T1 and TO-T2) were consistent
i.e. there was an upregulation of ARNTL (T0-T1: FC = 1.87,
g-value = 193E-0.4; TO-T2: FC = 243, g-value = 2.99E-13)
and NRIDI (T0-T1: FC = 1.61, g-value = 8.30E-03; TO-T2:
FC = 1.87, g-value = 9.52E-04), and a downregulation of
PERI (TO-T1: FC = -2.85, g-value = 3.95E-11; TO-T2:
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FC = -1.83, g-value = 1.12E-0.2), PER2 (TO-T1: FC = -1.67,
g-value = 4.33E-04, TO-T2: FC = -2.48, g-value = 7.03E-
14), BHLHE40 (T0-T2: FC = -1.77, g-value = 7.87E-0.5),
SIKI (TO-T1: FC = -2.62, g-value = 1.91E-07), CIART (T0-
T1: FC = -2.16, g-value = 5.79E-05; TO-T2: FC = -2.35, ¢-
value = 4.52E-06) and CRY2 (T0-T2: FC = -1.60, g-
value = 1.28E-0.2). In mammals, the circadian clock is regu-
lated by either the CLOCK-ARNTL or the NPAS2-ARNTL
heterodimers depending on the tissue under consideration
[49]. These heterodimers activate the transcription of the
Period (PERI and PER2) and Cryptochrome (CRY1 and
CRY2) genes [49]. In diurnal species, the PER and CRY
complexes accumulate in the cytoplasm during daytime
and they are translocated to the nucleus in the evening,
thus repressing their own expression through the inter-
action with CLOCK/ARNTL [49]. The BHLHE40 molecule
is a negative regulator of the ARNTL-CLOCK complex
[50]. Other clock genes of interest are SIK1, that regulates
the entrainment of the circadian clock [51], CIART, whose
inactivation increases the circadian period of locomotor ac-
tivity in mice [52] and NR1DI, a critical regulator of the cir-
cadian clock with strong effects on lipid homeostasis [53].

Our data indicate that food ingestion modulates the ex-
pression of circadian genes in the porcine skeletal muscle.
It might be argued that this DE is just the obvious conse-
quence of slaughtering pigs at different timepoints
(TO=0h, Tl = +5 h.and T2 = + 7 h.). However, studies
performed in model species have revealed that the feed-
ing/fasting cycle is one of the main zeitgebers (time cues)
synchronizing the skeletal muscle clock [54]. Noteworthy,
this clock plays a key role in muscle physiology by regulat-
ing the expression of more than one thousand genes
mainly involved in metabolic processes [55]. Muscle lipid
deposition in pigs could be affected by the expression of
these genes because their inactivation in mouse has
evidenced numerous metabolic abnormalities including
ectopic fat in the muscle, reduced circulating levels of tri-
glycerides and free fatty acids, obesity, hyperlipidemia and
severe hepatic steatosis [49]. Besides, SNPs in the human
clock genes have been related with abdominal obesity,
increase in carbohydrate intake, higher body mass index
and metabolic syndrome [56].

Conclusions

Our results indicate that the ingestion of food affects
the expression of many transcription factors that are
essential for coordinating the metabolic response trig-
gered by the availability of nutrients. Amongst these,
clock genes could be particularly important due to
their key role in the adequate synchronization of this
response as well as because of their broad effects on
muscle metabolism. We have also shown that several
genes without an evident link with muscle metabol-
ism change their expression in response to nutrient
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inflow, an observation that suggests that our know-
ledge about the genetic basis of energy homeostasis
in the porcine muscle is still quite limited. Given the
close physiological similarity between pigs and
humans, data presented in the current study could be
also of interest to understand the consequences of
food intake on gene expression in this latter species.
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