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Abstract

Background: Molecular signatures are collections of genes characteristic of a particular cell type, tissue, disease, or
perturbation. Signatures can also be used to interpret expression profiles generated from heterogeneous samples.
Large collections of gene signatures have been previously developed and catalogued in the MSigDB database. In
addition, several consortia and large-scale projects have systematically profiled broad collections of purified primary
cells, molecular perturbations of cell types, and tissues from specific diseases, and the specificity and breadth of
these datasets can be leveraged to create additional molecular signatures. However, to date there are few tools
that allow the visualization of individual signatures across large numbers of expression profiles. Signature
visualization of individual samples allows, for example, the identification of patient subcategories a priori on the
basis of well-defined molecular signatures.

Result: Here, we generate and compile 10,985 signatures (636 newly-generated and 10,349 previously available
from MSigDB) and provide a web-based Signature Visualization Tool (SaVanT; http://newpathways.mcdb.ucla.edu/
savant), to visualize these signatures in user-generated expression data. We show that using SaVanT, immune
activation signatures can distinguish patients with different types of acute infections (influenza A and bacterial
pneumonia). Furthermore, SaVanT is able to identify the prominent signatures within each patient group, and
identify the primary cell types underlying different leukemias (acute myeloid and acute lymphoblastic) and skin
disorders.

Conclusions: The development of SaVanT facilitates large-scale analysis of gene expression profiles on a
patient-level basis to identify patient subphenotypes, or potential therapeutic target pathways.

Keywords: Molecular signatures, Transcriptomic analysis, Tissue-specific expression, Heterogeneous samples,
Visualization tools

Background
Molecular signatures are collections of genes with an
associated biological interpretation. For example, signa-
tures can be generated from genes associated with
specific cell types, diseases, or perturbations of cells by
stimulatory signals. Signatures are typically generated
from expression experiments that identify genes upregu-
lated in a specific subset of samples when compared to a

much broader group. Once generated, these signatures
can be used to provide insights into the composition of
heterogeneous samples. Signatures can also be com-
posed of genes specifically associated with a disease. For
example, molecular signatures from breast cancer sam-
ples have identified subphenotypes indistinguishable by
traditional histological analyses [1], which can in turn be
used to predict tumor invasiveness and inform patient
treatment options.
Generally, the generation of molecular signatures

involves the identification of a set of genes that are
overexpressed in a subgroup of samples compared to
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the entire dataset. Several methods have been used to
identify these genes, such as hierarchical clustering
[2], machine learning [3], and neural networks [4]. In
combination, these methods have led to the creation
of thousands of molecular signatures and gene sets,
which are compiled in established repositories such as
MSigDB [5]. Furthermore, some signatures are manually
curated for certain biochemically-determined pathways,
such as REACTOME [6] and KEGG [7]. In general, the
most popular current pathway enrichment tools, Ingenuity
[8], GSEA [5], and DAVID [9], calculate enrichment of mo-
lecular signatures that have the highest statistical overlap
with a gene list that the user has filtered by analysis of their
expression study. By limiting the analysis to a single gene
list, all of the individual variation of each expression profile
is lost and further subcategorization of patient groups based
upon these signatures is not immediately possible.
Therefore the utility of signatures is limited by a lack of
tools that are able to visualize the actual expression level of
the signature genes within each user-supplied individual ex-
pression profile.
Furthermore, the current repositories of signatures are

not exhaustive, and their signatures can be supplemented
by additional signatures generated from large studies. For
example, several consortia and large-scale projects have
collected expression data with the aim of systematically
profiling, and in some cases generating molecular signa-
tures for a diverse group of cells, tissues, and diseases.
These include collections of immune cell subsets [10–13],
other primary and cultured cells [14, 15], tissue types [16,
17], cytokine-activated immune cells [18, 19], and skin
diseases [20–22]. Collectively, these projects have pro-
duced over 3000 expression profiles for more than 600 cell
and tissue types. The specificity and breadth of these ex-
pression experiments can be leveraged to create molecular
signatures that are not currently represented in MSigDB
that can then be used to interpret new datasets.
To overcome the limitations of existing tools, we

have generated 636 new signatures from expression
dataset collections and supplemented them with
10,349 signatures from MSigDB for a total of 10,985
signatures and have developed a web-based Signature
Visualization Tool (SaVanT), to visualize these signa-
tures in user-generated expression profiles. SaVanT is
able to analyze user-supplied expression studies and
visualize the average gene expression of molecular
signatures across each individual expression profile.
Through several examples, we show that SaVanT can
be used to distinguish inflammatory patterns found
between patients with different acute infections, iden-
tify the neoplastic cell type in leukemia samples, and
provide insights into the immune response of several
skin diseases. Through the visualization of molecular
signatures, SaVanT allows users to efficiently leverage

existing biological knowledge to interpret transcrip-
tomic experiments.

Implementation
SaVanT is a web-based tool that combines scripts imple-
mented in Python and R. Python scripts process the
user-submitted expression matrix and compute signa-
ture scores. R scripts perform ANOVA analyses and
cluster the signature-sample matrix. After computation
of the signature-sample matrix and clustering, Python
scripts generate the HTML output and render the inter-
active heatmap. Visualization of the heatmap is provided
by the HighCharts library (http://www.highcharts.com).

Results
Generation of new signatures
To leverage the vast number of reference expression
profile repositories and add to MSigDB, we generated
new molecular signatures using publicly-available ex-
pression data retrieved from a collection of repositories
and sources (Table 1). Normalized data was used where
available from the original study, but in lieu of prepro-
cessed data, frozen robust multiarray analysis (fRMA)
[23] normalization was used. Samples corresponding to
biological replicates were averaged at the probe level,
and genes with multiple probes were represented by the
probe with the highest average intensity across all sam-
ples. In total, 4677 microarray profiles were retrieved to
generate molecular signatures.
Molecular signatures were generated from expression

data by computing genome-wide ‘proportional median’
(PM) values. PM values are calculated by dividing the in-
tensity of a microarray probe in a particular sample by
the median intensity of the same probe across all sam-
ples in the corresponding data series. Therefore, high
PM values are assigned to genes that are highly
expressed in a certain sample relative to the others. A
molecular signature consists of the top genes ranked in
order of descending PM values. PM values have been
previously used to generate signatures for a variety of
skin diseases and conditions [20]. During the signature
generation step, multiple samples for the same tissue/
cell/disease are aggregated before PM computation. An
average across these samples is computed for all genes,
and from those averages, PMs values are computed by
comparing to averaged samples of other tissues/cells/di-
seases. We note that the signatures we generated are
ranked lists, while the signatures of MSigDB are un-
ranked collections of genes. By default, we retain the top
50 PM-ranked genes to generate each molecular signa-
ture, but since we produce a value for all genes, the
signatures can also be generated using a variable number
of genes. Using this PM metric, 636 ranked molecular
signatures were created. The signatures represent a
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diverse set of biological states, as a consequence of the
variety of sources used: we generated signatures for 158
tissue types, 277 cell types, 70 primary cells, 114 mo-
lecular perturbations, and 17 skin diseases.
To assess and validate the use of proportional median

values to create molecular signatures, we have annotated
the genes from two representative signatures generated
from the Human Primary Cell Atlas: an adipocyte-specific
signature and a keratinocyte-specific signature (Additional
file 1: Table S1 and Additional file 2: Table S2). The
annotations assigned to the top genes (by PM rank) are
characteristic of the distinct biology underlying the sam-
ples. For example, the adipocyte signature contains genes
required for fatty acid processing and metabolism (fatty
acid binding protein 4 [FABP4]), lipogenic proteins (lipo-
genic protein 1/THRSP), regulatory genes (adipogenesis
regulatory factor/C10orf116), as well as genes known to
be uniquely expressed in adipocytes, such as adiponectin
(ADIPOQ). Similarly, the keratinocyte signature con-
tains several keratin genes (keratin 6AII, keratin 14I,
keratin 2II), envelope proteins (small proline-rich pro-
tein 1A [SPRR1A]), and regulatory genes involved in
keratinocyte differentiation and maintenance (kera-
tinocyte differentiation-associated protein [KRTDAP]).
The enrichment of adipocyte- and keratinocyte-related
annotations for the top genes (by PM rank) in each
respective signature suggests that our PM values
capture genes that are specifically representative of
the cell type or state of interest.

Visualization of molecular signatures
In order to visualize molecular signatures across any
expression data of interest, we have developed the
Signature Visualization Tool (SaVanT). SaVanT is a
web-accessible tool that accepts matrices of gene
expression data (i.e., from RNA-seq or microarray
experiments) and produces a visual representation of
the signatures across the submitted samples as an
interactive heatmap. The key step in the SaVanT pipe-
line is to create a ‘sample-signature’ matrix whose

columns are the input samples and the rows are the
user-selected molecular signatures (Fig. 1). In order to
create this matrix, SaVanT accepts as input a matrix
of gene expression values (gene symbols as rows and
sample names as columns). A specification and ex-
ample of expected input are provided on the main
page of SaVanT. Using the default settings, every cell
in this matrix contains the average value of signature
genes for a particular signature-sample combination.
This average value is computed by looking up the top
genes for the user-selected signature in the SaVanT
database and subsequently averaging the values of
these genes in a particular sample in the user-
submitted data. The default in SaVanT is to use the
top 50 genes (by PM value) in each signature, but we
also allow the size of signatures to be changed to in-
clude the top 10, 25, 100, 250, 500 or 1000 genes.
The sample-signature matrix is displayed by SaVanT
as an interactive heatmap that can be optionally clus-
tered along its axes. Alternatively, the ‘sample-signa-
ture’ matrix can consist of sums instead of mean
values, and can be converted to z-scores or filtered
by minimum values.
In order to enhance the visualization of the ‘sample-

signature’ matrix, several optional steps can be used to
transform the user-uploaded data or the ‘sample-signa-
ture’ matrix (Fig. 2). For example, to dampen the effects
of the large dynamic ranges characteristic of RNA-seq
data, expression values can be log-transformed, con-
verted to ranks, as well as shown as the difference from
the mean value of all the samples. For optimal results,
uploaded datasets should be also preprocessed to filter
out transcripts or probes near technical detection limits
(e.g., probes with low intensities or transcripts with low
RPKMs). Once the sample-signature matrix is com-
puted, its values can be converted to z-scores. On the
submission page, an interactive description of the steps
to create the matrix is shown, reflecting the chosen pa-
rameters. Clustering of the sample-signature matrix can
be performed using several distance metrics (Euclidean

Table 1

Expression Data Source Reference Platform Normalization # Signatures
Generated

Human U133A/GNF1H Gene Atlas
(BioGPS)

Su AI et al. (2004) PNAS Affymetrix U133A/GNF1H fRMA 84

Mouse MOE430 Gene Atlas (BioGPS) Lattin JE et al. (2008) Immunome Res. Affymetrix 430 2.0 Array fRMA 94

Immunological Genome Project (ImmGen) Heng TS et al. (2008) Nature Immunology Affymetrix Gene 1.0 ST Pre-processed 214

Human Cell Types (Swindell) Swindell WR et al. (2013) BMC Genomics Affymetrix Genome Plus 2.0 fRMA 24

Macrophage Activation Xue J et al. (2014) Immunity Illumina HumanHT-12 V3.0 Pre-processed 80

Primary Cell Atlas Mabbott NA (2013) BMC Genomics Affymetrix U133 Plus 2.0 fRMA 26

Skin Diseases (“DermDB”) Inkeles MS et al. (2015) J. Invest. Dermatol. Mixed fRMA 23

Data sources for SaVanT signatures
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distance or Pearson correlation) as well as different link-
age parameters. The heatmap produced by SaVanT is
interactive, and additional information (such as the
sample-signature combination, p-values, and the matrix
value) are shown as hover-over boxes.
Statistical significance of a signature score can be

shown within SaVanT by selecting the option to

compute a null distribution under “Statistical Options”.
This feature computes p-values by permuting the gene
expression data and analyzing the distribution of genes
in signatures relative to the distribution of randomly
selected genes. By default, 10,000 permutations are per-
formed, although the user can select a different number.
The p-values are shown for each score when the mouse

Fig. 1 Constructing ‘Signature-Sample’ Matrix From Expression Data. The SaVanT pipeline converts user-submitted expression data into a
signature-sample matrix whose columns are the submitted samples and rows are the user-selected molecular signatures. By default (shown
above), every cell in this matrix contains the average value of signature genes for a particular signature-sample combination. The breakdown for
an example cell in the signature-sample matrix is shown in red. The matrix value is computed by looking up the genes in any given user-selected
signature in the SaVanT database (middle panel) and subsequently averaging the values of these genes in a particular sample in the user-submitted
data (left and right panels). Above, samples are designated with numbers, genes with letters, and signatures with Roman numerals

Fig. 2 SaVanT Pipeline. In the first step, an expression matrix containing values for genes in several samples is optionally converted to ranked lists
of genes in samples or log-transformed. The expression matrix is then converted into a signature-sample matrix as described in Fig. 1 using the
selected signatures. Optionally, the signature-sample matrix is converted to differences from mean values, converted to z-scores, and/or clustered
to produce a final heatmap
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hovers over the heatmap, but the p-values themselves
can be visualized on the heatmap by selecting the option
under “Statistical Options”. In order to account for
signature size, signature scores can also be scaled by the
square root of the number of signature genes by
selecting “scale signature values by the square root of
signature genes” under “Display Options”. Finally, there
is also an option to remove signatures with less than a
user-selectable minimum number of genes.

Analyses of example datasets
To demonstrate the capabilities of SaVanT, we provide
biologically-motivated examples using publicly-available
datasets retrieved from GEO [24].

Cell type identification within tissue samples
SaVanT can be used to identify the relative abundance of
cell types found within tissue samples. To demonstrate
this capability, we retrieved samples from patients with
acute myeloid leukemia (AML) (GEO accession
GSE29883) and acute lymphoblastic leukemia (ALL)
(GEO accession GSE32962) (Fig. 3A). Using a panel of
signatures representing different hematopoietic cells,
SaVanT produced heatmaps identifying the principal cell
type in AML samples (monocytes) and ALL samples (B
cells). Furthermore, the heatmap identifies one ALL
sample that may be misclassified (the first sample in the
heatmap), although we could not find metadata to
support this.

Discrimination of disease phenotypes
Often the main goals of expression studies of clinical
samples are to distinguish between clinical phenotypes
and to identify the molecular signatures that differ
between phenotypes to provide insight on disease
pathogenesis. If the group structure of the submitted
samples is known, the tag ‘SAVANT_GROUP’ can be
included in the submitted expression matrix with in-
tegers designating group membership of the samples,
which automatically runs an ANOVA analysis on the
signature-sample matrix (Additional file 3: Figure S1).
A detailed description of the necessary tags required
to enable ANOVA analysis is described in the input
specification accessible from the main page of SaV-
anT. To demonstrate this feature of SaVanT, expres-
sion data was retrieved from a study profiling
expression of whole blood samples collected daily
from 17 patients with either influenza A or bacterial
pneumonia [26]. The study found enrichment of
interferon, cell cycle genes, apoptosis, DNA damage,
B cell, CD4+ T helper cells, and neutrophils in
influenza-induced versus bacterial pneumonia (i.e.,
upregulation in viral samples). We used SaVanT to
visualize equivalent gene signatures from MSigDB or

cell type-specific expression profiles on a per-patient
basis, filtering for those signatures that are statistically
different between bacterial pneumonia and influenza.
To accomplish this, we provided the type of sample
(pneumonia or influenza) as the ‘SAVANT_GROUP’
to trigger an ANOVA analysis, and retained the sig-
natures with the lowest p-values. Additionally, other
signatures such as apoptosis and DNA damage were
included as negative controls. The clustered heatmap
produced by SaVanT separates the acute infection
samples into two groups: the predominantly influenza
cluster was characterized by higher signature values
for type I interferon pathways, B cells, cell-cycle,
DNA damage, and apoptosis (Fig. 3B). The bacterial
pneumonia cluster was composed of 92% bacterial
pneumonia samples, characterized by higher neutro-
phil signature values relative to influenza. Five other
samples were clustered as outliers. In addition to
identifying the main clusters between disease groups,
the SaVanT analysis displays intra-disease differences
in molecular and cellular pathways. For example,
there are two different bacterial subclusters in which
one group has a higher B cell signature while the
other has a higher neutrophil signature. Furthermore,
upon examination of the influenza group we can see
that the misclassified bacterial pneumonia samples
still have higher neutrophil signatures, but also have
high type 1 interferon signatures, potentially identify-
ing the reason for misclassification and targeting for
further investigation.

Dermatoses
Lastly, in order to illustrate the analyses of heterogenous
tissue samples, we used expression data from a collec-
tion of skin diseases [20] and analyzed these using signa-
tures for specific cell types found in the skin (Fig. 3C).
The predominant signature for most samples is that of
keratinocytes, which illustrates that while our signature
values cannot be interpreted as quantitative estimates of
cell type fractions, a higher relative value does reflect
that the underlying cell type is more abundant than
those associated with other lower scoring signatures.
Within these dermatoses we also find several samples
that have weaker keratinocyte signatures, but higher
values for other signatures (designated by blue boxes).
For example, the macrophage signature is elevated in
leprosy lesions (erythema nodosum leprosum, leproma-
tous leprosy, and reversal reaction), as would be ex-
pected from the presence of macrophages within the
granulomas in these biopsies. Furthermore, signatures
derived from hematopoietic cells are elevated in tissue
samples from patients with Stevens Johnsons disease,
which are collected from blister fluid, along with muco-
sis fungoides, a T cell neoplasm, and sarcoidosis, which
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also typically has abundant granulomas. Overall, these
signatures help interpret the components of these skin
biopsies, which may in large part underlie the differences
in gene expression between them.

Discussion
SaVanT provides an interactive platform for compiling
and visualizing molecular signatures in order to

interpret user-submitted data. The newly-generated
signatures that supplement MSigDB, leverage the
specificity and depth of large expression studies to
capture the biology pertaining to specific diseases, cell
types, and immune states. The functions of the top
genes in our signatures often reflect signature-specific
characteristics. The adipocyte and keratinocyte signa-
tures serve as representative examples, with each of

A

B

C

Fig. 3 SaVanT Distinguishes Between Patients, Cell Types, and Underlying Biology. a SaVanT output for expression data from acute myeloid
leukemia (AML) and acute lymphoblastic leukemia (ALL) patients. ‘Signature value’ refers to the average of gene expression values in a signature.
Z-scores (across the entire signature value matrix) are shown for both heatmaps. b SaVanT output for expression data from 99 patients with acute
infections (either Influenza A or bacterial pneumonia). The infection type for each patient is represented by a hatched circle (Influenza A) or filled
triangle (bacterial pneumonia). The numbers below each cluster quantify the proportion of infection types. The difference between the signature
values and the average signature value per signature is shown. c SaVanT output for expression data from different skin diseases
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their top 10 genes reflecting specific association to
the differentiated cell lineages.
Moreover, in addition to compiling a large database of

signatures, we also provide a framework that enables
their mining and visualization to help interpret user-
supplied expression data. To this end, we provide very
flexible options to enable different analyses. For ex-
ample, signature values can be filtered to only display
those above a certain threshold or clustered using a
number of different options. Furthermore, SaVanT has
been optimized to quickly scan more than 10,000 signa-
tures in seconds, thus allowing all signatures to be com-
puted against user-uploaded expression matrices.
The power of SaVanT is illustrated in the examples

shown in Fig. 3. The fundamental objectives of each ana-
lysis are distinct: identification of inflammatory states that
differentiate two clinical presentations (Fig. 3A), identifica-
tion of the neoplastic cell types in a liquid tumor (Fig. 3B),
and gaining insights into the compositions of heteroge-
neous biopsies (Fig. 3C). Viral infection, including influ-
enza is characterized by a strong induction of a type I
interferon antiviral response, composed of genes induced
by interferon alpha and beta [25, 26], and this is reflected
in the signature-sample heatmap. The neoplastic cell
types present in a leukemia can be seen using the
signature-sample heatmap, and misclassified patients
identified. Lastly, the cell type compositions of skin

biopsies from a number of dermatoses can be determined
from expression data. In the future we plan to continue to
develop SaVanT by adding more signatures, along with
additional features that facilitate the interpretation of
complex expression patterns.
SaVanT complements existing tools that analyze tran-

scriptomic datasets using gene signatures, such as those
inferring cellular composition [27]. Although several tools
exist to identify or analyze enrichment of gene sets and
signatures within gene expression data, we believe SaVanT
distinguishes itself by its comprehensive set of signatures,
an intuitive web-accessible interface, interactive output,
and rapid runtime. Table 2 provides a comparison to other
tools (GSEA [5], BubbleGUM [28], GSVA [29], PLAGE
[30], and ssGSEA [31]). Although many of these tools use
the MSigDB repository as the source of their gene sets, we
also provide an additional 636 newly-generated signatures
that describe cell types, tissue-specific expression, and dis-
ease states. Furthermore, many other tools require pro-
cessing an expression matrix into a specific format, as well
as downloading and running an R package or Java archive
that requires heavier bioinformatics expertise and experi-
ence. Our tool is especially useful even when phenotype
data is not readily available or when the objective is a glo-
bal (i.e., not pairwise) comparison between samples. We
believe the combination of these differences distinguishes
SaVanT from other existing tools.

Table 2

Tool/
Resource

Analysis Objective Number of
Signatures
or Datasets

Number
of Samples
Analyzed

Input Output Interface and
Requirements

Runtime

SaVanT Visualization of
molecular signatures
across samples

10,985 signatures 1–150
samples

Gene expression
matrix
(gene symbols
and values)

Interactive
heatmap

Website/
Browser

75 s (50 samples,
25,219 genes,
4729 signatures,
with ANOVA)

GSEA Identification of
significant or
differential gene
sets and signatures

User-defined;
MSigDB supported
(up to 18,026
gene sets)

Two or more
biological
states (with
replicates)

Expression
dataset and
phenotype
data

Enrichment
plots and
lists

Java Archive
Download

4 min (50 samples,
4729 signatures,
9096 genes, 1000
permutations)

BubbleGUM Extraction and
visualization of
molecular signatures
and gene sets

User-defined; MSigDB
supported (up to
18,026 gene sets)

2+ samples GCT file
(expression
dataset) and
phenotype
data

Graphical
plots

Java Archive
Download

5 min (13 samples,
75 signatures, 1000
permutations)

GSVA Estimation of
variation in pathway
and signature genes
across samples

User-defined;
MSigDB supported
(up to 18,026
gene sets)

2+ samples Gene expression
matrix and gene
set data

Score
matrix of
enrichment
scores

R package
(Bioconductor)

3 min (30 samples,
100 gene sets,
20,000 genes)

PLAGE Quantification of
pathway activity
across samples

400 pathways
from KEGG

2+ samples Gene expression
matrix

Heatmap
of pathway
activity
levels

Website/
Browser

N/A (Could not
access website)

ssGSEA Determine
enrichment of a
gene set within
dataset

User-defined;
MSigDB supported
(up to 18,026
gene sets)

2+ samples GCT file with
expression
estimates

Matrix of
enrichment
projections

R package
(or via browser
using GenePattern)

2 min (50 samples,
326 gene sets,
10,100 genes)

Previously published tools for the analysis of gene signatures
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Conclusions
Together with the generation of 636 new molecular sig-
natures, we have compiled them with 10,349 previously
available from MSigDB. These signatures capture cell-
specific, tissue-specific, and perturbation-derived infor-
mation that can be leveraged to extract biological inter-
pretation from newly-generated expression profiles. In
order to leverage these signatures and to facilitate the
large-scale analysis of gene expression profiles on a
patient-level basis, we have developed a web-based
visualization tool, SaVanT, and demonstrated its ability
to distinguishes between patients, cell types, and under-
lying biology in a variety of publicly-available datasets.

Availability and requirements
SaVanT is implemented as a web-accessible resource,
available at http://newpathways.mcdb.ucla.edu/savant-
dev/.
Project Name: Signature Visualization Tool (SaVanT).
Project Home Page: http://newpathways.mcdb.ucla.edu/

savant-dev/
Operating system(s): Platform independent.
License: GNU General Public License.

Methods
Expression data retrieval and processing
Microarray data was retrieved from Gene Expression
Omnibus (GEO) for samples and series listed in Supple-
mentary Table 2. Raw CEL files were processed using
the ‘affy’ R package and were normalized using the ‘frma’
R package in conjunction with the respective ‘frmavecs’
package for the platform used. Intensities for multiprobe
genes were taken from the probe with the highest mean
expression across all samples. Samples annotated as
biological replicates in the GEO series description were
combined by taking the average value of probes in the
replicates.

Signature generation
‘Proportional median’ (PM) values were calculated by
dividing the intensity of a probe in a particular sample
by its median value across all samples. For PM calcula-
tions, datasets from different sources were considered
independently (i.e., the denominator was composed of
only samples within a certain series when calculating
PMs for a sample within that series). PMs were calcu-
lated at the probe level, and PM values were subse-
quently associated with gene symbols using the
platform-specific annotation tables from GEO.

Signature visualization
In order to produce the sample-signature heatmap with
SaVanT, the user-submitted expression matrix is proc-
essed by a series of scripts. Ambiguous values, such as

those for gene symbols appearing multiple times in the
user input, are resolved by taking the average value of all
instances. Optional transformations (log-transformation
and/or conversion to ranks, in that order) are performed
on the input expression matrix, and the ‘sample-signature
matrix’ is created by taking the average (or sum, option-
ally) of expression values for genes in every signature-
sample pair. If conversion to z-scores is selected, the mean
and standard deviation is computed for the entire ‘sample-
signature’ matrix, which are used to convert the values to
z-scores. Clustering is optionally performed by the R ‘heat-
maps.2’ function of the ‘gplots’ package. The signature-
sample matrix is displayed interactively using a modified
version of the HighCharts JavaScript library.

Example datasets
The example datasets use publicly available data of AML
samples (GEO accession GSE29883), ALL samples (GEO
accession GSE32962), and acute infection patients ([26]).
Default settings were used, except as follows: for the
analysis of AML and ALL samples, samples were log-
transformed and normalizated to z-scores; and for the
analysis of acute infections, values were transformed to
an average difference from mean.

Additional files

Additional file 1: Signature genes for adipocytes. (DOCX 14 kb)

Additional file 2: Signature genes for keratinocytes. (DOCX 13 kb)

Additional file 3: Figure S1. SaVanT performs ANOVA analysis on
samples with known group memberships. For samples where group
memberships are known a priori, a ‘SAVANT_GROUP’ row can be added
to the gene expression matrix to perform an ANOVA analysis within
SaVanT. An example result of an ANOVA analysis is shown. Signatures
were filtered for those that are significant (p-value <0.0001). The asterisks
in the rightmost column indicate the significance level for each
signature: * < = 0.01; ** < = 0.001; *** < = 0.0001 (PDF 693 kb)
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ADIPOQ: Adiponectin; ALL: Acute lymphoblastic leukemia; AML: Acute
myeloid leukemia; FABP4: Fatty acid binding protein 4; fRMA: Frozen robust
multiarray analysis; GEO: Gene Expression Omnibus; KEGG: Kyoto
Encyclopedia of Genes and Genomes; KRTDAP: Keratinocyte differentiation-
associated protein; PM: Proportional median; SPRR1A: small proline-rich pro-
tein 1A
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