Kramer and Nodwell BMC Genomics (2017) 18:912
DOI 10.1186/512864-017-4307-0

BMC Genomics

Chromosome level assembly and secondary ® e
metabolite potential of the parasitic fungus

Cordyceps militaris

Glenna J. Kramer and Justin R. Nodwell”

Abstract

Background: Cordyceps militaris is an insect pathogenic fungus that is prized for its use in traditional medicine. This
and other entomopathogenic fungi are understudied sources for the discovery of new bioactive molecules. In this
study, PacBio SMRT long read sequencing technology was used to sequence the genome of C. militaris with a focus on
the genetic potential for secondary metabolite production in the genome assembly of this fungus.

Results: This is first chromosome level assembly of a species in the Cordyceps genera. In this seven chromosome
assembly of 33.6 Mba there were 9371 genes identified. Cordyceps militaris was determined to have the MAT 1-1-1 and
MAT 1-1-2 mating type genes. Secondary metabolite analysis revealed the potential for at least 36 distinct metabolites
from a variety of classes. Three of these gene clusters had homology with clusters producing desmethylbassianin,
equisetin and emericellamide that had been studied in other fungi.

Conclusion: Our assembly and analysis has revealed that C. militaris has a wealth of gene clusters for secondary
metabolite production distributed among seven chromosomes. The identification of these gene clusters will facilitate
the future study and identification of the secondary metabolites produced by this entomopathogenic fungus.
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Background
Entomopathogenic fungi are a fascinating group of insect
parasitic microbes, which include species from a variety of
different fungal taxa including Beauvaria, Hirsutella,
Metarhizium Cordyceps and Ophiocordyceps (Fig. 1). These
entomopathogenic fungi typically have a lifecycle in which
the host is infected and is killed in the process of fungal
propagation. Two closely related genera of entomopathoge-
mic fungi, Cordyceps and Ophiocordyceps (often times just
referred to as cordyceps in common literature) are charac-
terized by their unique lifecycle and a specific process by
which they parasitize and reproduce using the insect host.
Fungal spores and hyphae are able to penetrate
insect cuticle and then colonize and proliferate within
their body cavity. As the insect’s body is used as a
nutrient reservoir for growth, the insect’s behaviour is
modified, eventually leading the host to die in an
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advantageous location for fungal spore dispersal. The
fungus then emerges as a fruiting body from the corpse of
the insect, which matures and disperses spores of the next
generation. Spread globally, Cordyceps and Ophiocordy-
ceps fungi have been described in climates across Asia, the
Americas, Europe and Australia, with many of these spe-
cies having not been characterized. Although these genera
are believed to contain well over 400 species of fungi,
there are a few standout examples which are revered for
their medicinal potential or unusual host pathogenesis.
Ophiocordyceps sinensis, found in the mountains of
Tibet, infects and kills ghost moth larvae to give the
highly prized herbal remedy “dong chong xia cao,” which
is believed to treat a plethora of disorders [1]. This
prized specimen is identified by the fruiting body
growing from the ground, as the infected ghost moth
larvae dies situated just below the surface of the soil with
its head oriented upward, from which the fruiting body
emerges. Ophiocordyceps unilateralis, also known as the
zombie-ant fungus, is noted for its pathogenic process in
ants, which is characterized by particular behaviour
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Fig. 1 Phylogenetic tree showing evolutionary relationships
between common fungal species and insect pathogenic species,
including Cordyceps militaris, the species of interest in this study.
Insect pathogenic fungi are highlighted by a blue box

modifications in the host, that leaves the host ant
perished with its jaw clamped to a leaf in prime location
for spore dispersal [2]. Cordyceps militaris, which is a
common component of supplements as it is also
believed to have medicinal potential, is often used as a
cheaper and more readily available version of Ophiocor-
dyceps sinensis 3, 4].

The genome of a handful of these fungi have been
sequenced, however, the available assemblies are often
fragmented in over 500 contigs [5—8]. These assemblies
do indicate that these fungi are capable to producing
natural products, possibly over 30 distinct molecules per
species. Only a few of these natural products from ento-
mopathogenic fungi have been isolated and described,
including the immunosuppressant, cyclosporine, from
Tolypocladium inflatum, and fingolimoid, the immuno-
modulatory molecule derived from the Isaria sinclarii
natural product myriosin, signifying that these fungi may
be an underexplored source of novel molecules [9, 10].

Natural products have been established as a source of
bioactive molecules, however, discovery has dwindled
implying the need for new sources. Fungi have been
shown to produce a wealth of diverse molecules [11]
suggesting that Cordyceps and Ophiocordyceps could be
an understudied and relevant avenue for the discovery of
natural products. Furthermore, by studying the second-
ary metabolites in Cordyceps and Ophiocordyceps not
only is there the potential for discovery of new bioac-
tives, but for the identification and study of chemicals
that have a role in the process of host pathogenesis,
from behaviour modifying molecules to insecticides [12].
As genome sequencing becomes cheaper, faster, and
more readily available, the possibility of taking a compu-
tational approach to genome mining for secondary
metabolite discovery in fungi becomes a more realistic
possibility, allowing for the study of secondary metabo-
lites which may be cryptic under typical laboratory
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conditions [13]. Indeed, laboratory culture of these or-
ganisms is a challenge due to their slow growth rates — a
genome-based approach to their natural product genes
is likely essential for this field to progress.

In this study, a new method of long read sequencing,
Pacific Biosciences SMRT sequencing is applied to an
exemplary sample from the Cordyceps genera, Cordyceps
militaris, a strain isolated from butterfly pupa. The over-
arching goal is to provide a chromosome level genome
assembly to serve as a model for the genera. Further-
more, as these fungi have the potential to produce many
understudied natural products, this study is focused on
the genetic potential for secondary metabolite expression
in this organism.

Results

General genome features

Purified genomic DNA isolated from culture of C.
militaris grown up from a single colony was sequenced
using the Pacific Biosciences platform using a sheared
large insert library [14]. Sequence data from 6 SMRT
cells, providing approximately 180x coverage were
assembled using two de novo assemblers, Celera with
the PBcR protocol and the HGAP2 protocol from SMRT
portal [15-17]. Both chosen assemblers were applied to
self-correct the reads, a process in which the shorter
PacBio reads were used to error correct the long PacBio
reads. These corrected reads were then subsequently
assembled into contigs. The PBcR-pipeline gave an
assembly with 32 contigs, four of which had telomeric
repeats (CCCTAA or TTAGGG), on either the 5" or 3’
end of the contig.

The second assembly protocol, the HGAP2 protocol
from the SMRT portal software package, which also
included an additional polishing step using the Quiver
algorithm, yielded an even further improved assembly. This
assembly, which contained 18 contigs, gave five assembled
chromosomes, having telomeric repeats (CCCTAA or
TTAGGG), on both the 5" and 3" ends of the sequence
and four having telomeric repeats on one of the 5" or 3’
end of the sequence. After manually curating the assembly
and submitting the curated assembly to the SMRT
resequencing protocol, the resultant assembly contained 7
contigs, each with telomeres on both ends, indicative of 7
chromosomes. Coverage across these seven chromosomes,
including regions where the assembly was manually curated
is shown in Additional file 1: Figure S1. The coverage
across the chromosomes is generally consistent in the
assembly after manual curation and the SMRT resequen-
cing protocol. The Nso (5.78kba) and Ny, (8.29kba)
remain unchanged when comparing the initial assembly
and the curated and resequenced assembly. However, there
is a spike in coverage in the contig corresponding to
chromosome IV, possibly implying a collapsed repeat
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region within the assembly (Additional file 1: Figure S1D).
When this area of the assembly is further inspected, it is
noted that there are a large number of short low quality
repeated reads, which align on top of >30x coverage of high
quality reads that span this repetitive region. The repetitive
sequence of this region and the overabundance of low
quality reads in this region was noted prior to manual
curation. The initial assembly consisted of 3 contigs
containing these short repetitive reads, each about
30,000 bp in length, which overlapped in this region. With
an overall coverage of approximately 150%, a genome size
of 33.6 Mba, and a GC content of 50.9%. (Table 1), the
BUSCO completeness of this assembly is 98.2% with only
0.4% missing [18]. Furthermore, the assembly is comparable
to the previously sequenced C. militaris CmO1 (though that
sequence is broken into a very large number of contigs)
with a similar genome size of 32.2 Mba and a GC content
of 51.4% [6].

The seven assembled C. militaris chromosomes range
in size from 1.9 to 8.3 Mba. The sequenced haploid
genomes of Aspergillus niger and Neurospora crassa
contain eight and seven chromosomes, respectively [19,
20]. Furthermore, a karyotype analysis of Tolypocladium
inflatum shows that this related species contains seven
chromosomes ranging in size from 1.0 to 6.3 Mba [21],
suggesting that the assembly with seven chromosomes is
reasonable for C. militaris.

The MAKER genome annotation pipeline [22, 23]
predicted 9907 genes for C. militaris. Passing the
MAKER gene predictions through an additional
evidence modeler using Funannotate gave a set of
9371 genes with a BUSCO analysis of the resulting
gene set estimating a completeness of 93.7% with
3.9% of genes missing [18, 24]. Estimates of mean
gene length, mean exon length, mean intron length
and gene density (Table 2) are similar to those of C.
militaris CmO01 and other filamentous ascomycete
fungi (Table 3) [5-7, 12, 25, 26]. An Interpro analysis
of the annotated genes using the Blast2GO suite was
used to assign 8792 genes (93.8%) of genes InterPro
IDs. A Gene Ontology (GO) annotation was assigned
to 6453 of the genes (68.9%).

Mating type loci
The sequence of our isolate revealed the presence of
only a MAT 1-2-1 mating type gene present on

Table 1 Main features of C. militaris genome assembly

Main Features of C. militaris Genome Assembly

Genome size (Mba) 336
Number of chromosomes 7

Fold coverage 149.5%
GC content 509
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Table 2 Features of C. militaris genome annotation

Main Features of C. militaris Genome Annotation

Genome Size (Mba) 336
Number of Chromosomes 7
Number of genes 9371
Number of exons 26,128
Number of introns 16,759
Total gene length (Mba) 16.1
Mean gene length (bases) 1724
Gene density (genes per Mba) 2789
Mean exon length (bases) 548
Mean intron length (bases) 111
Mean introns per gene (bases) 1.8
Genome coding (%) 480

chromosome VII, supporting the notion that this
fungus is indeed heterothalic. Both MAT 1-1, MAT
1-2 and strains with hybrid mating loci have been
reported [6]. The previously sequenced C. militaris
CmO1 strain was determined to have both MAT 1-1-
1 and MAT 1-1-2 mating type genes. The C. mili-
taris Cm06 strain was reported to be a hybrid strain
containing both the MAT 1-1 and MAT 1-2 mating
types, with single spore isolates from this hybrid
strain producing progeny with either the MAT 1-1
(93.3%) or MAT 1-2 (6.7%) loci [6]. Both the MAT
1-1 and MAT 1-2 containing isolates have been
shown to fruit, but only the hybrid strain containing
both the MAT 1-1 and MAT 1-2 loci was able to
produce mature spores [6]. However, fruiting bodies
were not observed under analogous conditions with
the ATCC® 34164 strain. Comparison of the genomic
regions containing the mating type genes in both
our ATCC® 34164 strain and the CmO01 strain reveal
that the genes in these regions are highly similar,
with the exception of the MAT genes (Fig. 2).

Cordycepin

One hallmark molecule of interest in C. militaris is
the nucleoside analogue cordycepin. Although this
biosynthesis is unknown, it is proposed that this
mechanism is dependent upon a reduction step,
believed to be potentially catalyzed by a ribonucleo-
side diphosphate reductase (RNR) [6, 27, 28]. How-
ever, our sequenced C. militaris is similar to the
sequenced CmO1 strain, in that it only seems to
possess two type I RNRs (genes A9K55_000536 and
A9K55_003140), both of which have homologues in
non-cordycepin producing fungus, and have been
identified in C. militaris CmO1, leaving the biosyn-
thesis of cordycepin elusive [6].
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Table 3 General features of ascomycetes related to C. militaris
Cordyceps militaris Cordyceps Tolypocladium Fusarium Ophiocordyceps Ophiocordyceps
ATCC® 34164 militaris CmO1 inflatum graminearum sinensis unilateralis
Genome Size (MBa) 336 322 3035 36.09 11642 26.1
GC Content (%) 509 514 580 483 431 54.8
Predicted Genes 9371 9684 9998 13,321 7939 7831
Gene density (Genes/Mbp) 2789 301 329 369 69 301
Mean gene length 1724 1742 1670 1583 1693 1420°
Mean exon length 548 507 570 508 NR 261°
Mean intron length (AN 98 78 68 103 62°
Mean introns per gene 1.8 20 2.2 2.2 NR 3?

Values presented as a median as opposed to a mean, NR is not reported in original publication

Secondary metabolite potential

Sequenced fungi from the Cordyceps, Ophiocordypces,
and related genera have revealed the potential for
production of over 30 diverse secondary metabolites
per strain [7, 8, 26, 29, 30]. The limited number of
prior systematic studies to identify bioactive second-
ary metabolites from Cordyceps and related fungi have
shown that a number of novel molecules can be pro-
duced by these microbes [31-35]. However, these
studies do not nearly capture the full secondary me-
tabolite potential of these fungi, likely due to the fact
that many of these metabolites may be cryptic and
not expressed under the tested laboratory conditions.
To determine whether this fungus could produce a
wealth of secondary metabolites, the genetic potential
for diverse metabolite production became the focus of

a C. militaris ATCC 34164
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Name in Length Name in Length
ATCC® 34164 (AA) Cmo1 (AA)
A9K55_008810 460 CCM_06517 460
A9K55_008811 190 CCM_06518 190
A9K55_008812 160 CCM_06519 160
A9K55_008813 2106 CCM_06520 2105
A9K55_008814 1051 CCM_06521 1039
A9K55_008815 91 CCM_06522 231

Part of
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mRNA splicing factor

40S Ribosomal S9

60S Ribosomal L21

Ankyrin repeat

Cytoskeleton assembly control Sla2
Hypothetical protein

Hypothetical protein A9K55_008816 83

CCM_06522
MAT 1-1-1 Not present CCM_06523 456
MAT 1-1-2 Not present - CCM_09679 337
MAT 1-2-1 A9K55_008817 239 Not present -
DNA lyase A9K55_008818 624 CCM_06524 613

Cytochrome ¢

Anaphase-promoting complex subunit
Complex | intermediate-associated 30
Hypothetical protein

A9K55_008819 130
A9K55_008820 787
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A9K55_008822 322

CCM_06525 129
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Fig. 2 Comparison of mating type loci and surrounding genes in C.
militaris ATCC® 34164 and C militaris Cm01. MAT 1-1-1 gene is shown
in green, MAT 1-1-2 gene is shown in cyan, MAT 1-2-1 gene is shown
in orange. Select genes are numbered for reference in the figure. Gene
names from left to right are also listed in corresponding table. a C.
militaris ATCC® 34164. b C. militaris Cm01. ¢ Table of potential gene
function and name

the study. Using two gene cluster predictors, Anti-
SMASH and SMURE, all seven C. militaris chromo-
somes were profiled for the presence of genes that
could be responsible for the biosynthesis of secondary
metabolites [36-38]. The fungal version of Anti-
SMASH, predicted 32 secondary metabolites and
SMURF predicted 25. Taken together, the two
algorithms predicted the presence of 36 unique gene
clusters which could be responsible for secondary
metabolite production in C. militaris (Table 4).

Distribution of these secondary metabolite producing
genes were mapped on the 7 chromosomes (Fig. 3a). No
gene clusters for secondary metabolites were noted in
the presumably collapsed area of the genome shown in
chromosome IV. The 36 metabolite producing gene
clusters were from a variety of classes, including eight
nonribosomal peptide synthetases (NRPS), seven type 1
polyketide synthases (T1PKS), six polyketide synthase-
nonribosomal peptide synthetase (PKS-NRPS) hybrids,
four terpenes, one indole and ten falling into other
classes (Fig. 3b).

For comparison with the previously sequenced
strain, the antiSMASH algorithm was also used to
predict the presence of natural product producing

Table 4 Number of natural product clusters predicted by the
AntiSMASH and SMURF gene finding algorithms per chromosome
and the number of unique natural products (NP) predicted in
total by comparing the results of both algorithms

Chromosome AntiSMASH SMURF Unique NP
| 1 1 1
Il 3 1 4
M1l 4 4 5
% 3 1 4
vV 6 6 7
\Yl 8 6 8
Vil 7 6 7

Total 32 25 36
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Fig. 3 Putative natural products in C. militaris. The classes of natural
products are denoted by the following colors NRPS (cyan), T1PKS
(orange), TIPKS-NRPS (red), Indole (indigo), Other (green) Terpene (violet).
a The distribution of natural product producing gene clusters on the
chromosomes of C. militaris. b The number of natural product gene
cluster on each chromosome, grouped by class

\

gene clusters in the in C. militaris CmO0l. In CmO1
there were 28 natural product clusters identified by
AntiSMASH, compared to the 32 in our strain of
study. All of the 28 clusters were present in the
ATCC® 34164 strain and the ATCC°34164 strain had
four additional natural product clusters identified.
These additional clusters are predicted to produce
one indole (V-3), two T1PKS (VI-2, VI-8) and one
T1PKS-NRPS (VII-5). Furthermore, using the Clus-
terFinder algorithm in the fungal version Anti-
SMASH, an additional 41 putative clusters were
predicted, bringing the total to 73 predicted clusters
from AntiSMASH with ClusterFinder, suggesting that
the secondary metabolite potential of this organism
is impressive.
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Discussion

Herein is described the first chromosome level assembly
of a Cordyceps genome. This seven chromosome assem-
bly has revealed that this heterothallic strain, which con-
tains 9371 genes, is capable of producing a wealth of
secondary metabolites. Of the 36 gene clusters identified
in ATCC®34164 by both the antiSMASH and SMURF
algorithms (Additional file 2: Table S1), 3 clusters, III-1,
V-6 and VII-5, are of particular interest as they have
homology with gene clusters from other organisms that
produce characterized natural products [39, 40].

It seems that a logical product of cluster III-1 could be
a 2-pyridone alkaloid molecule. The hybrid NRPS-PKS
central to this cluster (A9K55_001190) is similar to the
NRPS-PKS responsible for the production of desmethyl-
bassianin (70% identity) and tenellin (67% identity) from
Beauveria bassiana and fumosorinone (66% identity)
from Isaria fumosoinone [41-43]. Both the desmethyl-
bassanin and tennellin gene clusters consist of 4 genes:
the NRPS-PKS hybrid, an enoyl reductase and two
cytochrome P450s (Fig. 4). In C. militaris, based on the
sequence of gene A9K55_001191 it seems that the
missing enoyl reductase may be fused with the
cytochrome P450. Interestingly, a structurally related
pigmented derivative, militarinone A, and the variants
militarinone B-D, have been isolated from the pos-
sible C. militaris anamorph, Paecilomyces militaris
[44, 45]. However, militarinone A—D was not identi-
fied by mass in extracts of the C. militaris strain of
interest in this study.

On chromosome V, a cluster (V-6) with homology to
the emercellamide producing cluster is present (Fig. 5).
The emercellamide family molecules produced from the
hybrid NRPS-PKS containing cluster have been described
in the marine fungus Emericella, as well as the fungus
Aspergillus nidulans [46, 47]. Other related molecules,
scopularide A and W493-B have been isolated from
Scopulariopsis brevicaulis and Fusarium pseudogrami-
nearum, respectively [48—50]. The biosynthesis of emeri-
cellamide A in Aspergillus has been described and is
shown to rely on four genes [47]. Comparing this
emercellamide-like cluster in C. militaris to the gene
cluster producing emercellamide in Aspergillus shows a
conservation of 4 genes: an NRPS, a PKS, an acyl-
transferase and a CoA ligase. The NRPS present in C.
militaris (A9K55_005039) has 98% coverage and 43%
identity with the NRPS in Aspergillus nidulans.

A cluster with similarities to the equisitin-producing
cluster (VII-5) is also present in C. militaris on chromo-
some VII. This molecule, equisetin, was described as
having structural similarities to the cholesterol lowering
molecule lovastatin and was first isolated from Fusarium
equiseti with a described bioactivity as a HIV-1 integrase
inhibitor [51-53]. The biosynthesis, studied in Fusarium
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heterosporum, reveals that the gene cluster consists of
seven genes, two NRPS/PKS, two regulators, an oxidase,
a methyltransferase and a transporter [53]. The compar-
able cluster in C. militaris consists of five genes,
homologous to the genes present in the F. heterosporum
minus one of the regulators and the oxidase (Fig. 6). The
NRPS/PKS present in C. militaris (A9K55_008762) has
99% coverage and 50% identity with the NRPS/PKS in
Fusarium heterosporum and seems to be well conserved
among fungi in the Aspergillus and Penicillum genera.
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Fig. 5 Comparison of genes A9K55_005039, A9K55_005040,
A9K55_005043 and A9K55_005044 in C. militaris ATCC® 34164 to an
emericellamide producing gene cluster in Aspergillus nidulans. Genes
are color coded by function. The structure of emericellamide

is displayed

This assembly of a genome from the Cordyceps genera,
Cordyceps militaris, has shown the potential for produc-
tion of an array of potentially novel natural products.
This species is predicted to produce at least 36 second-
ary metabolites, three of which have significant similarity
to characterized gene clusters. As fungal secondary
metabolites can be cryptic under standard laboratory
conditions, this assembled genome will allow for the
application of genome mining techniques to guide the
discovery and identification of new natural products.
This can progress forward through a variety of tech-
niques; one approach is to heterologously express gene
clusters identified in the C. militaris genome. Alterna-
tively, utilizing the genome to extrapolate potential
natural products for expression can give important clues
about the structure and favorable culture conditions of a
secondary metabolite associated with a characterized

Cordyceps militaris ATCC 34164

8762 8763 8764 8766 8767 8768 8769
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Fig. 6 Comparison of genes A9K55_008762 to A9K55_008769 in C.
militaris ATCC® 34164 to an equisetin producing cluster in Fusarium
heterosporum. Genes are color coded by function. The structure of
equisetin is displayed

equisetin
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gene cluster. This knowledge can increase the likelihood
of the production of the correlated molecule and
simplify structural determination. Regardless, this
assembly has shown that there is a great potential for
the production of secondary metabolites in C. militaris
and that this and other fungi from related Cordyceps and
Ophiocordyceps genera could provide a wealth of mo-
lecular structural diversity.

Conclusions

Presented here is the first chromosome level assembly of
a genome from the Cordyceps genera. This assembly and
analysis has revealed that C. militaris has seven chromo-
somes containing a wealth of gene clusters for secondary
metabolite production. Of the 36 gene clusters identified
using the antiSMASH and SMUREF algorithms, three
clusters are found to have a high degree of similarity
with clusters from other organisms that produce a
known molecule. With this genome, further study and
characterization of the secondary metabolites produced
by C. militaris can be aided through genome based
techniques including heterologous expression of gene
clusters. As there is great potential for the production of
secondary metabolites from C. militaris, this is one step
towards discovering and characterizing the wealth of
molecular structural diversity in this genera.

Methods

Phylogenetic tree construction

To compare the fungal species of interest, 18S rRNA
sequences were obtained from the Silva database [54].
Sequence alignment was performed using ClustalW [55].
To construct the phylogenetic tree, The evolutionary
history was inferred using the Neighbor-Joining method
[56]. The optimal tree with the sum of branch length =
0.35499733 is shown. The evolutionary distances were
computed using the Maximum Composite Likelihood
method [57] and are in the units of the number of base
substitutions per site. The analysis involved 12 nucleo-
tide sequences. Codon positions included were 1st + 2nd
+3rd + Noncoding. All ambiguous positions were re-
moved for each sequence pair. There were a total of 988
positions in the final dataset. Evolutionary analyses were
conducted in MEGA?7 [58].

Fungal strain and maintenance

Cordyceps militaris ATCC® 34164 was received from the
American Type Culture Collection (ATCC). This strain,
as described in the ATCC records was isolated from a
butterfly pupa. Fungal cultures were maintained at 23.0 °
C on potato dextrose agar. The nrDNA of extracted gen-
omic DNA was amplified using the ITS4 and ITS5 pri-
mer pairs, sequenced and compared against the BLAST
database to determine sample validity [59-61].
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Genomic DNA extraction and purification

Liquid cultures, containing 5 mL of seed media (10 g
peptone, 40 g maltose, 10 g yeast extract, 1 gagarin 1 L
DI water) in a culture tube were aseptically inoculated
with a 3 mm square agar slab containing mycelial
growth. The fungal mycelia were grown for 5 days at
23.0 °C. The mycelial mat was harvested, rinsed with
sterile TE buffer and then frozen in liquid nitrogen. Fro-
zen mycelia were macerated with a mortar and pestle
with a spatula tip of aluminum oxide to aid in grinding
the sample. The mycelial powder was transferred to a
set of epitubes and 500 pL of CTAB DNA extraction
buffer was added (100 mM Tris pH = 8.0, 10 mM EDTA,
2% CTAB, 2.8 M NaCl). The samples were incubated at
room temperature for 5 min, then 2 pL of RNAse A
(Thermo Scientific, 10 mg/mL) and 10 pL of Proteinase
K were added (Invitrogen, 10 mg/mL) and inverted to
mix. After centrifuging for 5 min, the pellet was ground
in the epitube with a pellet pestle, then incubated for an
additional 5 min before purification with phenol-
chloroform. Each sample was washed twice with phenol-
chloroform (50:50, phenol buffered with Tris pH 8.0,
600 pL) then twice with chloroform (600 uL). The
resulting DNA containing aqueous portions were pooled
and DNA was precipitated using cold ethanol (2.5x
sample volume) and 3 M sodium acetate (0.1x sample
volume). DNA was precipitated for at least 30 min by
storing at —20 °C. The DNA precipitate was collected by
centrifuging for 30 min, the pellet was washed with 70%
ethanol and resuspended in TE buffer. The DNA was
further purified with AMPure XP beads (Agencourt) by
using an equal volume of beads to volume of DNA and
eluting into TE. DNA was quantified using a PicoGreen
assay (ThermoFisher) prior to sequencing.

Genome sequencing

The Cordyceps militaris DNA was sequenced using
Pacific Biosciences RS II sequencing at the Genome
Quebec Innovation Center (McGill University, Montreal,
Canada). The sample was prepared using a large insert
sheared DNA library and was sufficient for sequencing 6
SMRT cells.

Genome assembly

The sequencing reads were assembled using two differ-
ent assemblers. The first assembler chosen was the PBcR
pipeline from the Celera assembler (version 8.3rc2)
using a genome size of 32 Mba [16]. The second assem-
bler was SMRT portal (version 2.3.0) launched from an
Amazon machine image. Assembly was performed on all
6 SMRT cells using the RS_HGAP Assembly.2 applica-
tion with default settings and a genome size of 32 Mba
[62]. The resulting assembly yielded 18 contigs, with five
of these contigs containing characteristic telomeric
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(CCCTAA), or (TTAGGG), repeats on both ends and
four of these contigs containing telomeric repeats on
one end. The 5 contigs with telomeres on both ends
were taken to be fully sequenced chromosomes. The
remaining 13 contigs were evaluated for overlapping re-
gions that could possibly be used to join the contigs.
Two of these 13 contigs were discarded due to low
coverage (<30x), three of these remaining contigs were
found to have overlapping regions that allowed them to
be joined into 1 supercontig and the remaining 8 contigs
were found to also contain overlapping regions that
would allow them to be joined into a second supercon-
tig. These overlapping regions were evaluated by subject-
ing the entire genome of 5 chromosomes initially
assembled by SMRT portal, plus the two manually cu-
rated supercontig chromosomes, to the SMRT portal
resequencing protocol as a reference genome, along with
manually evaluating these overlapping regions by evalu-
ating the reads that spanned the overlapping regions.
The resulting assembly was in 7 contigs, with each end
of the contig terminating in a telomeric repeat sequence.

Gene prediction, functional annotation and protein
classification

Genome annotation was performed using the MAKER
(version 2.31.8) pipeline using three ab inito gene
prediction methods: Augustus trained for Fusarium
graminearum, and GeneMark-ES and SNAP self-
trained on the C. militaris genome [22, 23, 63-65].
Protein data from Cordyceps brongniartii, C. militaris,
Cordyceps confragosa, Ophiocordyceps sinensis, Ophio-
cordyceps unilateralis and Tolypocladium ophioglos-
soides were used as protein evidence in MAKER. EST
from Cordyceps militaris were downloaded from Gen-
eBank and used as EST evidence in MAKER. Repeat
elements were identified using Repeat Masker using
the Repbase Library 20150807 [66]. A final set of
consensus gene predictions was chosen using Exoner-
ate [67]. The final gene set from MAKER was sub-
jected to additional evidence modeling using
Funannotate (0.7.0) [24]. The gene models were func-
tionally annotated using the BLAST component of the
Blast2GO software package and searching against the
NCBI nr protein database (accessed July 2017) with
the best hit being selected [68]. Gene families were
established using the Interpro database using Blas-
tProDOM, HMMPIR, HMMPfam, SuperFamily, Sig-
nalPHMM, HMMPanther [69]. The BLAST hits were
mapped to the Gene Ontology database and KEGG
analysis was carried out [70]. Secondary metabolite
genes and gene clusters were predicted using both
AntiSMASH, fungal version 4.0.0 and SMURF
(accessed September 2016)[36, 38].
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Attempt at fruiting body production

Using the protocol outlined in Zheng et al. fruiting body
production was attempted with C. militaris ATCC®
34164 [6].

Attempt at militarinone production

Using the protocol in Schmidt et al. milititarone A-D
production was attempted [44]. Specifically, precultures
of C. militaris were used to inoculate 150 mL of medium
(2% glucose, 2% neopeptone, 0.5% glycine, 0.2%
K,HPO,4, MgPO,4-7H,0) in still 500 mL Erlenmeyer
flasks at 25 °C. After 20 days the broth was removed and
the mycelia were collected and freeze dried, then
extracted with methanol. This methanol extract was
treated with water (1.5 mL for 10 g of extract) and then
partitioned in a 1:1:1:1 mixture of ethyl acetate/metha-
nol/hexane/1% acetic acid. The lower phase was
collected, concentrated, and then analyzed for militari-
none production via UPLC-MS. No mass peaks corre-
sponding to ionized militarinone A-D or sodium or
acetate adducts of those natural products were apparent.

Coverage and identity

Coverage and identity of C. militaris genes compared to
genes in known biosynthetic clusters was determined
using BLAST [61].

Additional files

Additional file 1: Figure S1. Coverage across chromosomes. Coverage
across chromosomes from SMRT analysis resequencing protocol
assembly. (DOCX 1935 kb)

Additional file 2: Table S1. Predicted gene clusters in C. militaris.
Predicted gene clusters are labeled, putative natural product class and
the predicted length of each enzyme that is part of the putative cluster is
given. (DOCX 106 kb)
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