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Chronic wounds alter the proteome profile ®
in skin mucus of farmed gilthead seabream
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Abstract

Background: Skin and its mucus are known to be the first barrier of defence against any external stressors. In fish,
skin wounds frequently appear as a result of intensive culture and also some diseases have skin ulcers as external
clinical signs. However, there is no information about the changes produced by the wounds in the mucosae. In the
present paper, we have studied the alterations in the proteome map of skin mucus of gilthead seabream during
healing of experimentally produced chronic wounds by 2-DE followed by LC-MS/MS. The corresponding gene
expression changes of some identified skin proteins were also investigated through gPCR.

Results: Our study has successfully identified 21 differentially expressed proteins involved in immunity and stress
processes as well as other metabolic and structural proteins and revealed, for the first time, that all are
downregulated in the skin mucus of wounded seabream specimens. At transcript level, we found that four of nine
markers (ighm, gst3, actb and krt1) were downregulated after causing the wounds while the rest of them remained
unaltered in the wounded fish. Finally, ELISA analysis revealed that IgM levels were significantly lower in wounded

fish compared to the control fish.

Conclusions: Our study revealed a decreased-expression at protein and for some transcripts at mRNA levels in
wounded fish, which could affect the functionality of these molecules, and therefore, delay the wound healing
process and increase the susceptibility to any infection after wounds in the skin of gilthead seabream.
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Background

Teleost is the largest and most variable vertebrate taxon
and most importantly, the earliest group of vertebrates
possessing both an innate and adaptive immune system.
Gilthead seabream (Sparus aurata; Sparidae; Perci-
formes; Teleostei) is a hermaphroditic protandrous mar-
ine species and one of the most farmed fish not only in
Europe, but also worldwide with a global production of
around 160,000 t in 2014 [1]. Intensive fish farming
increases the occurrence of injuries and diseases, com-
monly associated with the appearance of wounds or
ulcers in the skin, causing major economic losses [2, 3].
These injuries and diseases in the skin such as the white
nodules from lymphocystis disease [4—6] or the physical
wounds that increase the susceptibility of bacterial vibri-
osis [7] are devastating to farmed fish populations.
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Skin mucus is mainly secreted by goblet cells in the
skin of fish, protecting as a mechanical, physical, chem-
ical, biological and immunological barrier against any
external stressors [3, 8]. In recent years, skin mucus has
become a hot topic as a faithful mirror of the immune
status of fish [9]. Thus, many humoral immune activities
such as proteases, antiproteases, peroxidases, esterases,
alkaline phosphatase, lysozyme or immunoglobulins
have been evaluated in skin mucus [10-12]. Apart from
the individual characterization of antimicrobial peptides
[13], immunoglobulins [14] or lectins [15], the recent
advances in high throughput proteomics research
methods have been used for identification and quantifi-
cation of proteins [16]. Homology-driven proteomics is a
major approach for identification of proteins in species
where the sequences are not available [17]; however,
identification of unknown proteins often relies on the
similarity (rather than identity) when comparing with
homologous protein sequences from phylogenetically
related species [18], especially for the gilthead seabream,
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when the specific genome is not publically available and/
or the transcriptome data are scarce.

Through this approach, the proteomic map of skin
mucus has recently been studied in several fish species
such as Atlantic cod [19], lumpsucker [20], European
sea bass [21], and gilthead seabream [22, 23]. These
studies have allowed the discovery of new molecules in-
volved in protection and immunity of this mucosal sur-
face. Besides changes in the skin mucus proteome, i.e.
differentially expressed proteins have been studied after
infection [24—27], from handling or crowding stress [28,
29], after parental care [30] and more recently after
administration of different dietary supplements [29, 31].
However, despite the relevancy to fish health, there are
no studies regarding the changes on the skin mucosae
following injury so far.

The aim of this work was to study the alteration of the
skin mucus proteome after inducing chronic wounds in
gilthead seabream. This study was done using 2-DE
followed by LC-MS/MS and provides a first idea about the
changes of specific proteins involved in immunity, stress
and metabolism, as well as structural proteins related to
regeneration and healing processes present in skin mucus
of gilthead seabream. Finally, we hypothesize that the prote-
omic levels in mucus and transcriptomic levels in skin are
correlated as indicated by these markers as well as concen-
trations of IgM, which was the main systemic adaptive
immune molecule found in skin mucus in our study.
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Results

The differential proteome of skin mucus of gilthead
seabream after causing chronic wounds was studied
through 2-DE (Fig. 1) followed by LC-MS/MS approach
(Tables 1 and 2). The total differentially expressed
proteins were clustered in four groups: immune-related
(I), stress-related (II), structural (III) and metabolic (IV)
proteins as described below.

Immune-related molecules

The differential skin mucus proteome of gilthead seab-
ream showed a general decrease of some proteins involved
in several immune routes (Tables 1 and 2). One of the
most important components of both innate and adaptive
immunity, the complement molecule C3 (spot H26), was
identified and down-regulated after chronic wounding.
Similarly, APOA1 was identified in different parts of the
gels (spots H2, H7 and H9) and also showed down-
regulated expression in all the analysed protein spots.

It is well-known that some histones may act as anti-
microbial peptides [32]. We have identified H2A (spot
H5), H2B (spot H3) and H4 (spot H1) to be differentially
down-regulated in the skin mucus from wounds of
gilthead seabream. Finally, the main component of the
adaptive immunity, IgM (spot 28), identified for the first
time in skin mucus after 2-DE methodology, showed an
interesting down-regulation after chronic wounding in
skin mucus compared to control fish.

MW (kDa)

identities mentioned in Table 2

Fig. 1 Representative 2-DE gels of skin mucus of control (a) and wounded (b) S. aurata specimens. Skin mucus proteins were isoelectrically
focused on 17 cm IPG strips (p/ 3-10) and subjected to 12.5% SDS-PAGE. The 2-DE gels were stained with SYPRO" Ruby protein gel stain and the
spots identified in (a-b) were annotated using the data from LC-MS/MS. The spot numbers represented in gels correspond to the protein
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Table 1 Details of the differentially expressed protein spots in skin mucus of S. aurata after chronic wounds

SN*  Protein name Organism AN® pl/MW*© s/cd M/US  Peptide sequence and e-value'

H1 Histone H4 Oncorhynchus mykiss 114/114 76/19 2/2 VELENVIR (29%107°)
pP62797 TVTAMDVVYALK (0.002)

H2 Apolipoprotein Al Sparus aurata 53/159 151/39  3/3 LLNLLSQAQTASGPMVEQASQDGR (0.0068)
AAT45246 EYAETLQAKPEFQAFVK (0.025)

VATALGEEASPLVDK (0.016)

H3 Histone H2B Danio rerio 104/13.6 28/7 1/1 LLLPGELAK (0.0016)
Q5BJAS

H4 Cu/Zn Superoxide dismutase S. aurata 54/7.0 66/44 2/2 HVGDLGNVTAGADNVAK (4)
CAI79044 MLTLSGPLSIIGR (0.14)

H5 Histone H2A D. rerio 10.6/13.5 49/7 1/1 AGLQFPVGR (0.00014)

H6 14-3-3 protein beta/alpha-1 O. mykiss 4.6/27.7 143/15  2/5 YLSEVASGDSK (2.6*10°°)
Q6UFZ9 YLSEVASGDSKK (0.35)

NLLSVAYK (8.3/107°)
VISSIEQK (1.3)
DSTLIMQLLR (1.5¥107°)

H7 Apolipoprotein Al S. aurata 52/296 232/29  5/5 AVLDVYLTQVK (0.02)
042175 AVNQLDDPQYAEFK (0.0032)
IEEMYTQIK (0.00025)
SSLAPQNEQLK (0.00099)
TLLTPIYNDYK (0.0014)
EVVQPYVQEYK (0.092)
ITPLVEEIK (0.0024)

H8 Phosphatidylethanolamine- S. aurata 9.1/29.7 174/13 3/2 LYDQLAGK (28)
binding protein 1 FM145015 LYTLALTDPDAPSR (0.0019)
YGSVEIDELGK (0.00074)
H9 Apolipoprotein Al S. aurata 5.2/296 183/19  5/5 IEEMYTQIK (1.2)
042175 SSLAPQNEQLK (3.5)

TLLTPIYNDYK (0.14)
EVVQPYVQEYK (0.42)
ITPLVEEIK (0.87)

H10  Actin cytoplasmic 1 Ctenopharyngodon idella 5.3/42.1 53/7 3/3 AGFAGDDAPR (0.085)
P83751 DLTDYLMK (0.089)
GYSFTTTAER (6¥107)
H11 Natural killer enhancing Larimichthys crocea 59/218 278/26 6/2 DYGVLKEDDGIAYR (0.22)
factor 2 XP_010732927 EDDGIAYR (21)
IPLVADLTK (1.3*107%)
GLFVIDDK (0.41)
QITINDLPVGR (0.00085)
LVQAFQHTDK (0.34)
H12  ADP-ribosylation factor 3 Takifugu rubripes 6.8/20.7 106/24  4/4 ILMVGLDAAGK (4*107)
P61207 MLAEDELR (3*107)

DAVLLVFANK (0.056)
QDLPNAMNAAEITDK (0.17)

H13  Natural killer enhancing Osmerus mordax 5.8/223 102/14  3/3 LAPDFTAK (26)
factor 1 ACO AVMPDGQFK (18)
09982 QITINDLPVGR (0.0028)
H14 Glutathione S-transferase 3 S. aurata 6.9/25.5 206/19 5/3 FTGILGDFR (0.00069)
AFV39802 MTEIPAVNR (0.1)

TVMEVFDIK (2.2)
YLPVFEK (11)
AILNYIAEK (0.79)

H15 Triosephosphate isomerase A S. aurata 8.7/288 203/18 5/4 IHIYGGSVTGATCK (0.3)
FG266106 NVSEAVANSVR (0.0059)
KNVSEAVANSVR (1200)
GAFTGEISPAMIK (4.9)
FGVAAQNCYK (11)

H16  Triosephosphate isomerase B D. rerio 6.5/27.1 76/12 3/3 FFVGGNWK (0.065)
Q90XGO GAFTGEISPAMIK (5.7%1077)
WVILGHSER (0.037)
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Table 1 Details of the differentially expressed protein spots in skin mucus of S. aurata after chronic wounds (Continued)

SN®

Protein name

Organism ANP

pI/MW

s/cd

M/US

Peptide sequence and e-value'

H17

H18

H19

H20

H21

H22

H23

H24

H25

H26

Triosephosphate
isomerase B

ATP synthase
subunit beta

Actin-related protein

Actin cytoplasmic 1

Macrophage-capping
protein

Citrate synthase

Heat shock cognate
71 kDa

Heat shock cognate
71 kDa

Keratin type |

Complement component 3

D. rerio
Q90XGO

Cyprinus carpio
Q9PTYO

T. rubripes
073723

Oreochromis mossambicus

P68143

L. crocea
XP_010735467

Katsuwonus pelamis
Qes9v7

Oryzias latipes
QIWeEY1

Ictalurus punctatus
P47773

O. mykiss
NP_001117848

S. aurata

6.5/27.1

5.1/553

5.6/479

5.3/42.1

5.8/387

8.5/524

5.8/76.6

52/716

5.2/519

8.1/186.9

131/23

317/28

33/8

144/15

185/12

95/8

476/20

306/14

521/14

152/4

5/5

10/10

3/3

5/5

5/4

4/4

13/3

8/2

9/0

7/6

FFVGGNWK (6.1)
GAFTGEISPAMIK (1.7%107°)
WVILGHSER (0.001)
HVFGESDELIGQK (2.9%10°)
VVLAYEPVWAIGTGK (0.022)

TIAMDGTEGLVR (0.0043)
VLDTGAPIR (1.8%107°)
IPVGPETLGR (7.4*107%)
IMNVIGEPIDER (1.1*1079)
VVDLLAPYAK (3*107°)
IGLFGGAGVGK (6.8*107°)
TVLIMELINNVAK (0.022)
VALVYGQMNEPPGAR (54*107°)

IPSAVGYQPTLATDMGTMQER (0.0006)

AIAELGIYPAVDPLDSTSR (0.0045)

FSYVCPDLVK (0.062)
DYEEIGPSICR (0.0066)
EVGIPPEQSLETAK (0.14)

AGFAGDDAPR (3.8*1079)
VAPEEHPVLLTEAPLNPK (0.0038)
DLTDYLMK (0.024)
GYSFTTTAER (1.5%107°)
EITALAPSTMK (0.066)

TQVEILPQGK (0.022)
MKTQVEILPQGK (0.45)
MPELAESTPEEDSK (0.16)
EIASLIR (10)

EGGVESGFR (1.8)

DVLSDLIPK (0.25)
ALGFPLERPK (0.061)
VVPGYGHAVLR (3.7*107°)
IVPNVLLEQGK (1.1*107%)

NQVAMNPTNTVFDAK (1.8%1077)
SFYPEEVSSMVLTK (1.2%107°)
GQIHDIVLVGGSTR (0.0077)
VEIIANDQGNR (5.8%107°)
MKEIAEAYLGK (7.2¥107°)
EIAEAYLGK (0.02)
DAGTISGLNVLR (3.6*107°)
INEPTAAAIAYGLDKK (1*107%)
STAGDTHLGGEDFDNR (0.0014)
ARFEELNADLFR (5.5*107°)
FEELNADLFR (7.6*107)
LLQDFFNGK (9.2¥107°)
NGLESYAFNMK (0.00053)

TTPSYVAFTDSER (1.8*107°)
FELTGIPPAPR (0.00019)
VEIIANDQGNR (2.3*107)
MKEIAEAYLGK (0.096)
DAGTISGLNVLR (7.8*107")
STAGDTHLGGEDFDNR (0.00012)
FEELNADLFR (7.2*107%)
LLQDFFNGK (0.0026)

KLEAANAELELK (1.7%107%)
LEAANAELELK (0.00012)
LAADDFR (0.0068)
TKYENELAMR (0.041)
QSVEADIAGLKR (43)
SDLEMQIEGLK (9.2¥107°)
NHEEELLAMR (1.6)
TRLEMEIAEYR (0.18)
LEMEIAEYR (0.029)

TLYTPESTVLYR (18)
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Table 1 Details of the differentially expressed protein spots in skin mucus of S. aurata after chronic wounds (Continued)

SN? Protein name Organism ANP

pl/MWE s/Ce

MUy Peptide sequence and e-value’

ADM13620

H27  Gelsolin S. aurata

HS984154

S. aurata
AFN20639

H28  Immunoglobulin M
heavy chain

6.0/31.6

6.1/512 50/2 11

DITYLILSR (0.87)
VTGDPEATVGLVAVDK (62)
SVPFIIPMK (13)
DSSLNDGIMR (21)
VVPQGVLIK (11)
EYVLPSFEVK (100)

QPGLQVWR (0.035)
GGVASGFQHVVTNDMSAK (13)
GDSFILDLGK (0.059)
LHMVEEGEEPK (25)

AFTEALGPK (2.1)
TAIAPSTPDDEKADISNK (0.00049)
GALYMISDASGTMK (0.0044)
VSSVAPSSPFK (0.0033)
QAMLSPEECYILDNGVDK (1600)
IENLDLKPVPK (54)

GFSPNSFQFK (0.039)

548/45  9/7

2Spot number

PAccession number in NCBI or SwissProt databases
“Theoretical isoelectric point and molecular weight (kDa)
%Total score and coverage (%)

“Total matched peptides (Mp)/total unique peptides (Up)

fUnique peptides are in bold. Expect value (e-value) is noted for each peptide sequence

Stress-related molecules

Chronic wounds in the skin also altered some stress-
related proteins in the mucus of gilthead seabream (Ta-
bles 1 and 2). Peroxiredoxins are a family of antioxidant
enzymes that protect cells from oxidative damage [33].
Some of the most studied peroxiredoxins, identified here
such as NKEF1 (spot 13) and NKEF2 (spot 11), were
down-regulated after chronic wounding in skin mucus
of gilthead seabream. Furthermore, we have identified
SOD (spot H4), GST3 (spot 14) and HSC70 (it was iden-
tified in two parts of the proteome map, spots H23 and
H24), which were also down-regulated after chronic
wounding (Table 3).

Structural molecules

Our study indicated that structural proteins also play a
major role in chronic injury of skin. We have identified
ACTB (spots H10 and H20), ARP (spot 19), CAPG (spot
H21), KRT1 (spot H25) and GSN (spot H27), and shown
down-regulation in all cases with the lowest levels in
KRT1 (Tables 1 and 2).

Metabolism molecules

Important proteins involved in several metabolic
routes were identified in the present study. We
found differential expression of YWHAZ (spot H6),
PEBP1 (spot H8), ARF3 (spot H12), TPIA (spot
H15), TPIB (spot H16 and H17), ATPB5B (H18) and
CS (H22). All of these were down-regulated after
chronic wounds in skin mucus of gilthead seabream
(Tables 1 and 2).

Functional level of IgM

Our ELISA study with specific antibodies for total IgM
of gilthead seabream showed a significant decrease of
total IgM levels detected in skin mucus after chronic
wounds compared to the levels detected in the skin
mucus of control group (Fig. 2).

Transcript levels

Due to the importance of the skin mucus markers in the
processes of immunity, inflammation, stress, skin regen-
eration and wound healing, we have selected and studied
the gene expression profile of several immune-related
(ighm, ¢3 and h2b), stress-related (hsc70, sod and gst3)
and finally structural-related molecules (gsn, actb and
krtl) (Fig. 3). Regarding immune-related genes, ighm
was significantly down-regulated in the wounded group,
while the increase and decrease observed in ¢3 and /42b,
respectively, were not significant compared to the con-
trol group. Little variations were observed at transcript
level in the case of stress-related genes, where only gst3
showed a significant down-regulation in the wounded
group, while /sc70 and sod remained unaltered com-
pared to the control group. Finally, the structural genes
were the most affected by chronic wounds, as all of
them the trend were down-regulation, with significant
changes in the case of actb and krtl, the latter being the
most affected molecule at transcript level in the
wounded group compared to the control groups.

Discussion
Many factors such as stress by temperature, hypoxia,
transportation, crowding, seasonal or dietary changes,



Cordero et al. BMC Genomics (2017) 18:939

Table 2 List of proteins that are differentially expressed in skin mucus of S. aurata after chronic wounds
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Spot Protein name Fold change Previously detected in skin mucus? References

H1 Histone H4 (H4) 1001 Yes [21, 23]

H2 Apolipoprotein A1 (APOAT) 1004 Yes [19-22, 29, 40]
H3 Histone H2B (H2B) 1012 Yes [20]

H4 Cu/Zn Superoxide dismutase (SOD) 1 0.09 Yes [21-23]

H5 Histone H2A (H2A) 1 0.06 Yes [23]

H6 14-3-3 protein beta/alpha 1 1 0.02 Yes [19-23, 29]
H7 Apolipoprotein A1 (APOAT) 1 044 Yes [19-22, 29]

H8 Phosphatidylethanolamine-binding protein 1 (PEBP1) 1 0.09 Yes [22, 23]

H9 Apolipoprotein A1 (APOAT) 1 0.06 Yes [19-22, 29, 40]
H10 Actin cytoplasmic 1 (ACTB) 1032 Yes [20-23, 29, 40]
H11 Natural killer enhancing factor 2 (NKEF2) 1013 Yes [21-23]

H12 ADP-ribosylation factor 3 (ARF3) 1 0.06 Yes [29, 40]

H13 Natural killer enhancing factor 1 (NKEF1) 1017 Yes [20-23]

H14 Glutathione S-transferase 3 (GST3) lLon No None

H15 Triosephosphate isomerase A (TPIA) 1001 Yes [19, 23, 29]
H16 Triosephosphate isomerase B (TPIB) 1002 Yes [19, 21, 23]
H17 Triosephosphate isomerase B (TPIB) 1 001 Yes 19, 21, 23]
H18 ATP synthase subunit beta (ATB5B) 1 0.07 Yes [20, 22, 23, 40]
H19 Actin-related protein (ARP) 1 046 Yes [23, 24, 40]
H20 Actin cytoplasmic 1 (ACTB) 1025 Yes [19, 21-23, 40]
H21 Macrophage-capping protein (CAPG) 1018 Yes [22]

H22 Citrate synthase (CS) 1 0.09 Yes 9]

H23 Heat shock cognate 71 kDa (HSC70) 1012 Yes [20, 22, 23, 40]
H24 Heat shock cognate 71 kDa (HSC70) 1027 Yes [20, 22, 23, 40]
H25 Keratin type | (KRT1) 1011 Yes [19-23, 29]
H26 Complement component 3 (C3) 1036 Yes [21, 29, 40]
H27 Gelsolin (GSN) 1 041 Yes [21, 22, 40]
H28 Immunoglobulin M heavy chain (IgM) 1007 No None

| indicates under-expression of the proteins at p < 0.01. In addition, a literature-based comparison about presence of these proteins in skin mucus of other fish
species after 2-DE spot detection is included

can affect directly the skin integrity in farmed fish.
Most of the available studies have tried to improve
the skin healing by dietary supplementation of diets
with vitamin C [34], B-Glucans [35, 36] and minerals
with different combinations of vitamins and glucans
[37]. But curiously, the global molecular changes
produced by wounds have scarcely been studied in
fish. Only the transcriptomic changes using micro-
array technology in the skin after skin and scale re-
generation was reported [38]. The present study
represents the first proteomic approach in the study
of fish skin wounds.

From our own studies on fish skin mucus [11, 12, 39]
and with proteomic tools [19, 26, 29], we provide evi-
dence that 2-DE followed by LC-MS/MS provides good
resolution and high performance for protein detection.

One of the limitations of this approach could be the lim-
ited range of molecular weights available, thus mucins
and other high molecular weight proteins have been un-
detected in these works. A recently published proteome
map of gilthead seabream with more than 2000 proteins
used 1-DE gels and mass spectrometry and any mucin
was identified [40].

In the present study both protein levels and transcript
levels were studied. In general one must have transcripts
to make proteins, however due to, among others, RNA
turnover rate, RNA localisation and protein turnover
rate the changes in protein amount and RNA amount
do not need to be the same. We found that ighm, gst3,
actb, krtl transcripts were changed, whilst other tran-
scripts were not significantly changed even if changes in
proteins were observed.
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Table 3 Information of primers used for qPCR study
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Gene names Accession number Amplicon Sequence (5'— 3)
size
Immunoglobulin mu heavy chain JQ811851 113 F: CAACATGCCCAATTGATGAG
R: GGCACGACACTCTAGCTTCC
Complement component 3 HM543456 106 F: CGCTCTTCTTGCTCTGGTGA
R: CTGAGTTGATCCGTAGCCCC
Histone 2b AMO953480 174 F: AGACGGTCAAAGCACCAAAG
R: AGTTCATGATGCCCATAGCC
Heat shock cognate 71 kDa HS987272 124 F: GCCATGAACCCAACCAACAC
R: GGCGGGTGTTGTCATTGATG
Superoxide dismutase AJ937872 103 F: TCACGGACAAGATGCTCACT
R: TCCTCGTTGCCTCC CcC
Glutathione s-transferase JQ308828 1M F: AGCGCTACCTTCCAGTGTTC
R: CCTCCAACATCAGGGTGCAT
Gelsolin HS984154 105 F: GCCATCAGAGCAACAGAGGT
R: CTCACTGCCACACCACTGAT
Actin beta AF316854 352 F: GGCACCACACCTTCTACAATG
R: GTGGTGGTGAAGCTGTAGCC
Keratin 1 FJ744592 105 F: AGAGATCAATGACCTGCGGC
R: CCCTCTGTGTCTGCCAATGT
Elongation factor 1 alpha AF184170 115 F: TGTCATCAAGGCTGTTGAGC
R: GCACACTTCTTGTTGCTGGA
Ribosomal protein s18 AM490061 109 F: CGAAAGCATTTGCCAAGAAT

R: AGTTGGCACCGTTTATGGTC

Skin mucus is the first barrier of defense in fish, which
contains immune components involved in both innate
and adaptive immunity. In the present study we have
demonstrated the presence of C3, APOA1l, H2A, H2B,
H4 and IgM. C3 can, upon cleavage, act as a chemo-
attractant (recruit immune cells), as opsonin (coat path-
ogens) to increase phagocytosis or as an agglutinin
(coagulate pathogens) [21]. C3 was previously found in
skin mucus of European sea bass [21]. While in the
present study C3 was under-expressed in chronic wound
specimens, in another study C3 was over-expressed after
crowding stress in skin mucus of gilthead seabream [29].

Total Immunoglobulin M
levels (O.D. 450nm)
o e o o
N N N N
N w S (3]

L L 1 1

0.21 T

Fig. 2 Total IgM levels detected by ELISA in skin mucus of control
(yellow bar) and wounded (black bar) S. aurata specimens. Results
are expressed as mean = SEM (n = 3). The asterisks indicate
significant differences (when p < 0.05) between control and
wounded groups

At transcriptional level, no changes in ¢3 expression are
reported in the skin of gilthead seabream after chronic
wounds. Accordingly, in our previous study the tran-
script levels of ¢3 were also unaltered in skin after
crowding stress despite the protein differential expres-
sion in skin mucus of gilthead seabream [29].

APOAL1 is the major component of high density lipopro-
tein in serum [41], which also act as a negative acute phase
protein [42], and possesses bactericidal activity in vitro [43];
however, despite the previous finding of APOALI as a con-
served marker in skin mucus of European sea bass [21],
Atlantic salmon [27], lumpsucker [20], Atlantic cod [19, 26]
and gilthead seabream [29], its role in mucus is still un-
known. Our study suggests that it plays a role as a negative
acute phase protein may also occur in skin mucus as we
found that APOA1 was under-expressed after chronic injury.

In addition to their classical role as histones folding
DNA into chromatin, H2A, H2B and H4 are also known
as antimicrobial peptides [32, 44], a role especially not-
able for H2A and H2B in skin mucus of fish [45, 46].
The histone H4 deserves more attention since previous
studies have found this histone in the skin mucus [21],
but little is known about its role as antimicrobial pep-
tide. The under-expression of these three histones in
skin mucus after chronic wounds may facilitate the entry
of potential pathogens resulting in loss of immune
defense. However, in sharp contrast with other studies
where h2b was mostly up-regulated after virus and/or
bacterial infections [44], in our study, #2b showed no
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differences at transcript level between control and
wounded groups.

The main effector of the humoral systemic adaptive
immunity, IgM, has been widely studied by ELISA in
skin mucus of fish maintained under many different
conditions and in several fish species [11, 12, 39]. How-
ever, in the present study we have identified IgM in a
fish skin mucus proteome using 2-DE technology for the
first time. IgM was under-expressed in skin mucus after
chronic wounds. At transcript level, the down-regulation
of ighm demonstrated the key role of this immunoglobu-
lin in this type of stress. In many cases, the down-
regulation of one gene or even the protein level are not
correlated with the activity, but importantly in our study
the IgM levels were also decreased when specific anti-
body was used. Further studies on this topic will help to
characterize and elucidate the IgM functions in skin
mucus as adaptive immunity players.

Here we hypothesize that the lower levels of these im-
munological proteins could promote the entry of patho-
gens into the fish body since the epidermis was removed

and the skin was, therefore, interrupted. However, these
lower levels could be related to the fact that abrasion
promotes overproduction of immature mucus high in
mucins unmeasurable in 2D gel analyses, which could
lead to underestimation of the detected proteins. In this
context, the knowledge on the production of mucins
during the wound healing process would be essential.
On the other hand, it has been previously reported an
increased inflammatory response ie. changed cytokine
expression profile in wound healing on day 14 after
wounding [36]. By contrast, in the present paper, we
have not detected any cytokine, which does not neces-
sarily mean absence of inflammation, but cytokines
could be undetectable in our study because of their low
molecular sizes and/or their limited presence in skin
mucus. The differences in results could also be because
the inflammatory response was detected mainly after
14 days [36], whilst our results were from 5 days of
wound healing. There is a close relation between stress
and immunity, especially in lower vertebrates such as
fish, in which, for instance, cytokines and neuropeptides
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are performing roles in both neuroendocrine and im-
mune system [47]. Another example of this relationship
between stress and immunity are peroxiredoxins, which
may act as modulators of inflammation in pathogen in-
fection and in protection against cell death, tissue repair
after damage, and tumour progression [48]. According
to our results, in which NKEF1 and NKEF2 are under-
expressed in skin mucus after chronic wounds, fish
NKEFs expression, at either gene or protein level, is reg-
ulated by LPS treatment and pathogens including bac-
teria, viruses and parasites [33]. Concretely, NKEFs have
been previously found in skin mucus of gilthead seab-
ream [23], and over-expressed after crowding stress [29].
Our results indicate the opposite expression regulation
when fish were stressed by crowding or damage and
chronic wounds.

Also in close relation with the immunity, SOD is an
enzyme that protects the tissue against oxidative stress
by regulating various reactive oxygen (ROS) and reactive
nitrogen species molecules [49]. In addition, T cell acti-
vation induces the secretion of SOD [50]. SOD was also
identified previously in skin mucus of gilthead seabream
[22, 23], however, this is the first time that this protein
was demonstrated to be differentially expressed in skin
mucus, but curiously no changes were found at tran-
script levels of sod in the skin after causing the wounds.
In sharp contrast with our data, sod was up-regulated
after in vitro exposure with different metals in gilthead
seabream erythrocytes [51] as well as in gilthead seab-
ream SAF-1 cell line [52].

GSTs are the superfamily of phase II detoxification en-
zymes that play crucial roles in cellular defense [21].
Some members of this superfamily have been previously
identified in skin mucus of fish [9], reducing the amount
of proteins in Atlantic cod after V. anguillarum infection
[26] or increasing the amount of protein in gilthead
seabream after probiotic intake [29]. In the present study
GST3 was identified for first time in skin mucus, and
was under-expressed after chronic wounds. At the tran-
scriptional level, gst3 was the only stress marker which
was significantly down-regulated in skin of gilthead
seabream after chronic wounds. By contrast, a previous
study also in gilthead seabream reported an up-
regulation of gst3 in the liver after nanoparticle exposure
[53]. However, there is no further information is avail-
able on the effects of gst3 in the skin of teleost fish.

HSPs are part of a superfamily of stress proteins,
highly conserved across species, often classified based
on their molecular weight [21]. Both HSP70 and HSC70
may have similar cellular roles and have been previously
found in skin mucus [20-23]. HSC70 can be mildly
modulated by stressors such as heat [54], pathogens
[55], and heavy metals [56]. According to these previous
studies, at protein level, the present study demonstrated
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the under-expression of HSC70 in skin mucus after
chronic wounds. By contrast, at transcript level, ksc70
remains unaltered after wounding.

Some metabolic proteins have also been found to be
under-expressed in skin mucus after chronic injury.
PEBP1 was found in the mapping of gilthead seabream
skin mucus [22], similar to YWHAZ [22, 23]. Moreover,
YWHAZ was found in skin mucus of other fish species
such as Atlantic cod [19], lumpsucker [20] and Atlantic
salmon [24]. In agreement with the present study, it was
reported that YWHAZ, ARF and TPIA were under-
expressed after crowding stress in skin mucus of gilthead
seabream [29]. CS and ATP5B were previously found in
the skin mucus of Atlantic cod [19] and gilthead seab-
ream [23], but this is the first time that these proteins
were found differentially expressed in skin mucus of fish.

Beta actin (ACTB) is a multifunctional protein in-
volved in cell motility and phagocytosis. It has been re-
ported that ACTB can be fragmented after stress [27].
This fact could explain the under-expression of ACTB
found in our study. In agreement with this result, ATCB
was also under-expressed after crowding stress [29]. At
transcript level, actb was also down-regulated after
chronic wounds in gilthead seabream. The variations of
actb in both skin and skin mucus in the present and
other studies demonstrate that this molecule is highly
influenced by the different stimuli, and therefore, its use
as reference gene should be avoided, or at least reconsid-
ered, in this tissue and fish species. In close relation with
ACTB, ARP, CAPG and GSN were previously found in
skin mucus of gilthead seabream [22, 23], however little
is known about the interaction of all these proteins in
stress processes since this is the first time that ARP and
CAPG were found differentially expressed in skin mucus
of fish. On the other hand, GSN was also expressed in
skin mucus of gilthead seabream after stress stimuli [40].
The transcript levels of gsn were studied in gilthead
seabream for first time in the present article, reporting
no changes in the expression of gsn in the skin of gilt-
head seabream after chronic wounds. The importance of
gsn in the skin remains unknown since most of the stud-
ies were focused in the corneal development and em-
bryogenesis of zebrafish [57, 58].

KRTs are heteropolymeric intermediate filaments con-
taining type I (KRT1) and type II (KRT2) keratins. These
molecules have been reported in skin mucus of many
fish species [9]. In the present study KRT1 was under-
expressed after chronic wound in a similar fashion than
KRT2 was under-expressed in skin mucus after infection
[26]. In contrast, KRT1 was over-expressed in skin
mucus after crowding stress [29]. It has been reported
that KRTs play a role in the regulation stress-resistance
in epithelial cells [59]. In addition, KRTs have been asso-
ciated with pore-formation activities in skin mucus of
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fish [60]. A recent article reported an overexpression of
KTR2 in skin mucus after different chronic stressors
such as shaking, sounds and light flashes [40]. At tran-
script level, the present study revealed a great down-
regulation of krtl after chronic wounding. Despite of the
diversity of keratins reported in fish [61], there is very
little information about the changes produced by these
molecules at transcript levels in fish. Overall, it seems
that KRTs are essential to maintain the proper function
of skin mucus. The present findings of KRT1/krtl at
both protein and transcript levels suggest an important
role of this molecule after chronic wounds in the skin
mucosae that it deserves to be studied in depth.

Conclusion

This study shows for first time the fish skin mucus
proteome map of wounds. Thus, chronic wounding
leads to a down-regulation in skin mucus proteins
which are immune-related (C3, APOA1, H2A, H2B, H4
and IGM) and stress-related (NKEF1, NKEF2, SOD,
GST3 and HSC-70), but also molecules involved in me-
tabolism (PEBP1, YWHAZ, TPIA, TPIB, ARF, CS and
ATP5B) and structural proteins (ATCB, ARP, CAPG,
GSN and KRT1). The chronic wounding also leads a
down-regulation of the transcripts corresponding to
four of these proteins found in the skin of wounded
specimens. These early alterations after chronic wounds
could increase the susceptibility to pathogen infection
due to the decrease in immune-related proteins as im-
mune barrier and because of the decrease in structural
proteins of the physical barrier, allowing for penetration
of pathogens and, therefore, increasing the vulnerability
of the fish.

Methods

Animal care

Forty specimens of gilthead seabream (S. aurata) (4.7 £
13 g and 7.4 +0.6 cm), obtained from a local farm
(Murcia, Spain), were kept in running seawater aquaria
of 250 L (water flow 900 1 h™") at 28 %o salinity, 22 °C
and a photoperiod of 12 h light: 12 h dark. Fish were fed
daily at 2% rate of fish biomass per day with commercial
diet (Skretting). All the fish handling procedures were
approved by the Ethical Committee of the University of
Murcia (Permit Number: A13150104).

Chronic wounds

Fish were anesthetized with 100 mg L™ of MS-222 (tri-
caine methanesulfonate; Sigma-Aldrich). Chronic wounds
with a diameter of 8 mm and around 50 pm of depth were
induced in the skin with an electric toothbrush (PRIMO)
used for 30 s in each body side of the fish specimens
(Fig. 4). The procedure was repeated twice each two days
and sampled two days after the last abrasion (Fig. 4). The
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control group was handled in a similar manner as control
fish without triggering wounds.

Mucus and tissues samples

Twenty fish per group were anesthetized as described
above prior to sampling. Mucus was gently scraped off
from the skin surface, avoiding blood, urine and faeces
during collection [62]. In order to obtain a large enough
amount of mucus, mucus samples from 10 fish were
pooled as described elsewhere [29] resulting in two
pools/groups. Mucus was transferred into tubes of 15 ml
and stored at —80 °C until use. Skin tissue was collected
in QIAzol lysis reagent (Qiagen) and stored at -80 °C
for subsequent RNA extraction.

Histological analysis

Skin samples (n = 6) were collected and processed as de-
scribed elsewhere [63]. Skin samples were sectioned at
5 pm and stained with periodic acid—Schiff (PAS; Merck)
according to the manufacturer’s instructions. Images
were obtained under a light microscope (Leica
DM6000B) with a digital camera (Leica DFC280) and
processed by Leica Application Suite V 2.5.0. Software.

Mucus protein purification

Each sample was solubilised with 1 mM DTT and
1.5 mM EDTA, which serves to act as a mild muco-
lytic agent [64]. Next, after two rounds of sonication
for 6 s followed by cooling for 1 min, samples were
centrifuged at 20,000 g for 30 min at 4 °C. The
supernatant containing the soluble mucus proteins
was desalted with proteomic grade water (G Biosci-
ences) using centrifugal filters of 3 KDa (VWR) by
spinning 3 times at 14,000 g at 4 °C with 0.2 ml of
ice cold water each time. The dialysed protein solu-
tion was further purified by 2D clean-up kit (Bio-Rad)
following the manufacturer’s instructions.

2-DE

The samples obtained after the 2D clean-up were resus-
pended in 2D lysis buffer (Bio-Rad) containing 7 M urea,
2 M thiourea, 1% (w/v) ASB-14, 40 mM Tris base,
0.001% bromophenol blue and 50 mM DTT (Sigma-Al-
drich) and 0.5% (v/v) Biolytes 3—10 ampholyte (Bio-
Rad). The protein content of the solubilised samples was
estimated using Qubit protein assay (Life Technologies).
Two hundred pg of proteins for each sample were rehy-
drated in 17 cm 3-10 IPG strips (Bio-Rad) and isoelec-
tric focusing (IEF) was carried out using protean IEF cell
(Bio-Rad). After IEF, the electro-focused IPG strips were
reduced and alkylated for 15 min each in equilibration
buffer containing 6 M urea (Sigma-Aldrich), 0.375 M
Tris-HCl pH 8.8 (Bio-Rad), 2% (w/v) SDS (Sigma-Al-
drich), 20% (v/v) glycerol (Merck) with 0.2% (w/v) DTT
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(Sigma-Aldrich) or 0.3% (w/v) iodoacetamide (Bio-Rad),
respectively. The equilibrated strips were loaded on
12.5% polyacrylamide gels to perform SDS-PAGE [65],
run on PROTEAN II system (Bio-Rad). The gels were
stained overnight with SYPRO™ Ruby Protein Gel Stain
(Life Technologies) according to the supplier’s protocol.
Gel image documentation was carried out using Chemi-
DocTM XRS imaging system (Bio-Rad). Raw pictures
were analysed using PDQuest Advanced software ver-
sion 8.0.1 (Bio-Rad) including detection of spots,
normalization using local regression, spot matching and
differential expression analysis. Protein spots were con-
sidered as differentially expressed when expression level
was at least 1.5-fold different compared to the control
group and when the differences were detected as signifi-
cant at p < 0.01 by two tailed Student’s t-test.

LC-MS/MS analysis

Spots from SYPRO-stained gilthead seabream skin
mucus 2-DE gels (n =6) were picked, excised and sub-
jected to in-gel reduction, alkylation, and tryptic diges-
tion using 2-10 ng/pl trypsin (V511A; Promega) as
described elsewhere [66]. Peptide mixtures containing
0.1% formic acid were loaded onto a nanoACQUITY
UltraPerformance LC (Waters), containing a 5 um Sym-
metry C18 Trap column (180 um x 20 mm; Waters) in
front of a 1.7 pm BEHI130 C18 analytical column
(100 pm x 100 mm; Waters). Peptides were separated
with a gradient of 5-95% acetonitrile, 0.1% formic acid,
with a flow of 0.4 ul min™" eluted to a Q-TOF Ultima
mass spectrometer (Micromass/Waters). The samples
were run in data dependent tandem mass spectropho-
tometry (MC/MC) mode. Peak lists were generated from
MS/MS by Mascot Distiller Workstation and submitted
to MASCOT search engine (version 2.5.1) and searched
against NCBInr with the following parameters:

maximum one missed cleavage by trypsin, peptide mass
tolerance 100 ppm, MS/MS ion tolerance set to 0.1 Da,
carbamidomethylation of cysteine selected as fixed
modification and methionine oxidation as variable
modification. Protein hits not satisfying a significance
threshold (p < 0.05) or with low sequence coverage were
further searched against Swissprot and vertebrate EST
(expressed sequence tags) databases, taxonomy
Actinopterygii.

Primer design

Primers were designed by OligoPerfect™ Designer (Life
Technologies) from S. aurata sequences that are avail-
able in NCBInr database. Details regarding oligonucleo-
tide primers and their attributes are given in Table 3.

Gene expression analysis

The mRNA levels corresponding to nine differentially
expressed immune-related, stress-related and structural
proteins in the skin of the experimental fish were ana-
lysed by real-time PCR (qPCR). RNA was extracted indi-
vidually from 50 mg of skin from six specimens of
gilthead seabream from both ulcered and control groups
using QIAzol lysis reagent method (Qiagen) as described
elsewhere [67]. The quality of total RNA was checked
on a 1.2% agarose gel, followed by quantification using
the Qubit RNA assay kit and Qubit 2.0 fluorometer
(Life Technologies). The complementary DNA (cDNA)
was synthetised from 1 pg of RNA using QuantiTec Re-
verse Transcription Kit (Qiagen). Ten times diluted
c¢DNA was used to conduct qPCR on a ABI PRISM 7500
instrument (Applied Biosystems) as described elsewhere
[21], using SYBR Green PCR Core Reagents (Applied
Biosystems) and the 2788Ct method [68]. Each plate sub-
jected to qPCR contained a negative control for cDNA
template (water) as well as a control for reverse
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transcription. No amplification product was observed in
negative controls and neither primer-dimer formation
nor secondary structures were observed in any case. All
qPCR reactions were carried out in duplicate and quan-
tification cycle (Ct) values of each gene (target) were
converted into relative quantities. Normalization factors
were calculated as the geometric mean of relative quan-
tities of reference genes elongation factor 1 alpha (efla)
and ribosomal protein S18 (rps18) using the BestKeeper®
algorithm [69], which have been previously reported to
be suitable reference genes in the skin of gilthead seab-
ream as well [29].

Data are expressed as relative gene expression of each
target gene (mean + SEM). Statistical analysis (t-test) was
performed using Statistical Package for the Social Sciences
(SPSS) software v19.0. One or two asterisks denote signifi-
cant differences when p < 0.05 or p < 0.01, respectively.

ELISA assay
Total mucus IgM levels were analysed by ELISA as de-
scribed elsewhere [70]. First, 100 pl per well of 1/5 di-
luted mucus were placed in flat-bottomed 96-well plates
in triplicate and the protein coating was performed by
overnight incubation at 4 °C with 200 pl carbonate—bi-
carbonate buffer (35 mM NaHCO3; and 15 mM Na,COs,
pH 9.6). After three rinses with phosphate buffered sa-
line (PBS; Sigma-Aldrich) containing 0.05% Tween 20
(PBT, pH 7.3) the plates were blocked for 2 h at room
temperature with blocking buffer containing 3% bovine
serum albumin (BSA; Sigma-Aldrich) in PBT, followed
by three rinses with PBT. The plates were then incu-
bated for 1 h with 100 pl per well of mouse anti-gilthead
seabream IgM monoclonal antibody (Aquatic Diagnos-
tics Ltd.) (diluted 1/100 in blocking buffer), washed and
incubated with secondary antibody anti-mouse IgG-
HRP (diluted 1/1000 in blocking buffer; Sigma-Aldrich).
After exhaustive rinsing with PBT, the plates were devel-
oped using 100 pl 0.42 mM 3,3,5,5-tetramethylbenzidine
hydrochloride (Sigma-Aldrich) solution, freshly prepared
in distilled water containing 0.01% H,O, (Merck). The
reaction was allowed to proceed for 10 min and stopped
by the addition of 50 pl 2 M H,SO, and the plates were
read at 450 nm in a plate reader (BMG, Fluostar
Omega). Negative controls were wells without mucus
and wells without primary antibody, both in triplicates,
whose OD values were subtracted for each sample value.
ELISA data were analysed by using t-test. Data are
expressed as mean + SEM. Statistical test was performed
using SPSS software v19.0. Asterisks denote significant
differences between groups when p < 0.05.
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