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Abstract

Background: Obtaining complete gene structures is one major goal of genome assembly. Some gene regions are
fragmented in low quality and high-quality assemblies. Therefore, new approaches are needed to recover gene
regions. Genomes are widely transcribed, generating messenger and non-coding RNAs. These widespread
transcripts can be used to scaffold genomes and complete transcribed regions.

Results: We present P_RNA_scaffolder, a fast and accurate tool using paired-end RNA-sequencing reads to scaffold
genomes. This tool aims to improve the completeness of both protein-coding and non-coding genes. After this

tool was applied to scaffolding human contigs, the structures of both protein-coding genes and circular RNAs were
almost completely recovered and equivalent to those in a complete genome, especially for long proteins and long

circular RNAs. Tested in various species, P_RNA_scaffolder exhibited higher speed and efficiency than the existing
state-of-the-art scaffolders. This tool also improved the contiguity of genome assemblies generated by current
mate-pair scaffolding and third-generation single-molecule sequencing assembly.

Conclusions: The P_RNA_scaffolder can improve the contiguity of genome assembly and benefit gene prediction.
This tool is available at http://www fishbrowser.org/software/P_RNA_scaffolder.
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Background

In a genome sequencing project, identifying genes is
fundamental to functional study and comparative ana-
lysis. Although mate-pair libraries and long single-
molecule reads facilitate generating high-quality assem-
blies, it is difficult to recover the complete structures of
all genes. Therefore, novel scaffolding methods are ne-
cessary to solve this difficulty. Transcribed genomes gen-
erate different types of RNAs, such as mRNAs and long
non-coding RNAs [1]. These widespread RNAs can be
used to scaffold genomes and complete the structures of
transcribed regions. For low-quality genome assemblies,
many approaches have been generated to increase the
continuity of the gene regions using proteins [2] or
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transcripts [3] as guides. Since RNA-sequencing technol-
ogy captures both mRNAs and non-coding RNAs [4],
using RNA-sequencing reads to scaffold genomes can
rebuild transcribed regions. We previously developed
L_RNA_scaffolder, which scaffolded genomes using long
single-end RNA-sequencing reads or assembled tran-
scripts from paired-end RNA-sequencing reads [3]. This
tool has been widely adopted in many genome projects
to improve the genome assembly and gene annotation
[5-8]. Vij et al. improved the contiguity of a 90x cover-
age PacBio sea bass genome assembly using L_RNA_s-
caffolder with an assembled transcriptome [9]. In
contrast to a strategy using long single-end transcripts,
Mortazavi et al. applied paired-end RNA-sequencing
reads into scaffolding with RNAPATH [10].
BESST_RNA (https://github.com/ksahlin/BESST_RNA),
Rascaf [11], and AGOUTI [12] are other scaffolders
using paired-end RNA-sequencing data. However, these
tools are either error-prone, or have complicated pro-
cesses and long runtimes. In addition, studying the
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influences of RNA-sequencing depth and breadth on
scaffolding performance will improve the scaffolding of
genomes using RNA-sequencing reads.

In the present study, we developed a fast and accurate
tool, called P_RNA_scaffolder, to scaffold genomes using
paired-end RNA-sequencing reads. Compared to other
similar scaffolders using RNA-sequencing reads, this tool
produces the most connections with the shortest run-
time and the highest accuracy. One notable advantage of
this tool is that the improved proportions of fully cov-
ered protein-coding and non-coding genes after scaffold-
ing are close to the proportions in the finished genome.
We also examined the practicability of P_RNA_scaf-
folder for improving the genome assemblies generated
by current mate-pair scaffolding and third-generation se-
quencing assembly.

Methods

Algorithm of the P_RNA_scaffolder

High-quality reads obtained with SolexaQA++ [13] were
provided to P_RNA_scaffolder for scaffolding. To sup-
port paired-end RNA-sequencing reads as evidence, we
modified the scaffolding algorithm of L_RNA_scaffolder,
which adopted the strategy of maximal supporting evi-
dence to connect genomic sequences [3]. This previous
scaffolder only supports single-end RNA-sequencing
reads as scaffolding evidence. The modifications in the
present study are summarized as follows:

(1)First round of alignment and filtration

We align RNA-sequencing reads to contigs with short-
read mappers. In eukaryotes mature RNAs are spliced,
so we align paired-end RNA-sequencing reads using
HISAT?2 [14], a fast and sensitive spliced alignment tool.
Since mRNA is not typically spliced in prokaryotes [15],
BWA-mem algorithm in the BWA package [16] is used
to align RNA-sequencing reads to prokaryotic genomes.
To rapidly align reads to contigs, multiple processors are
utilized. We retain those pairs for which two reads are
uniquely aligned to two different contigs.

(2)Second round of alignment and re-filtration

To filter out pairs for which both ends are located on
one contig, the retained pairs in the first step are further
realigned to contigs using BLAT [17]. If two reads of
one pair are realigned to the same contig, or if at least
one read is realigned to multiple contigs over a certain
minimal length coverage (MLC), then this pair is dis-
carded. The final retained pairs are selected as ‘guides’.
One ‘guide’ pair corresponds to two different contigs.
This pair is considered the supporting evidence to con-
nect two corresponding contigs. The pair number
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aligned to these two contigs was considered as the
weight of this connection.

(3)Ordering the contigs

Since one ‘guide’ pair is located at two different con-
tigs, two corresponding contigs are ordered and oriented
based on the orders of two reads in this pair. In this con-
nection, the first contig is considered as the donor and
the second sequence is the acceptor.

(4)Filtering erroneous connections of large inserted size

It is assumed that the alignment regions (a and b) cor-
responding to two reads are located in donor A and ac-
ceptor B, respectively. The median exon length was
approximately 170 nt across metazoans [18], smaller
than the total length of the two reads in one pair. Exons
larger than 300 nt were infrequent exceptions [19].
Therefore, two reads in one pair are likely respectively
located at two exons. The inserted DNA sequence be-
tween a and b is an intron. The minimal size of the
inserted size is equal to [Length(A) - end(a) + start(b)].
Length (A) is the length of donor A, end (a) is the end
position of region a in donor A and start (b) is the start
position of region b in acceptor B. If the minimal size of
an inserted DNA length is smaller than a certain max-
imal intron length (MIL), then the connection is reliable.
Otherwise, this connection is filtered out.

(5)Optimizing connections and forming scaffolding
graphs

The number of RNA-sequencing pair supporting the
connection was the sequencing depth of this region and
considered the connection weight. Among all retained
connections, one contig could be a donor and/or an ac-
ceptor in different connections. For each donor, the con-
nection with the most weight (maximal supporting
pairs) is selected. If many connections had the most
weight, then they might result from repetitive regions or
misalignments and were filtered out. Similarly, the con-
nection of each acceptor is optimized. Then, we generate
the scaffolding graphs by linking all optimal connections
following a previous strategy [3].

(6)Estimating gap size

To estimate the gap size of two connected contigs, we
select all pairs for which two reads are aligned to the
same contig. The region between two alignments in a
contig is an intron. We estimate the median intron size
from all selected alignments. If the MIL of one connec-
tion is smaller than the median size, then we insert a
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sequence comprising the letter ‘N, the number of which
is the difference between two sizes. Otherwise, we insert
100 N.

Human RNA-sequencing reads and genome assembly for
parameter simulation

To study the influence of scaffolding parameters and es-
timate the performance, 36,437 high-quality contigs in
hg38 assembly (N50 size of 148.7 kb, downloaded from
NCBI GenBank [20]) were used for scaffolding perform-
ance comparison. We did not select the sequences gen-
erated by de novo assemblers for comparison, as these
de novo tools produced mis-assemblies [21], which
might interfere with the accuracy estimation of
P_RNA scaffolder. The paired-end RNA-sequencing
reads from brain, liver, lung and cells used in the present
study are listed in Additional file 1: Table S1. We se-
lected the libraries prepared with the Ribosomal Deple-
tion Kit. This strategy can capture RNA-sequencing
reads from both non-polyA RNAs and polyA RNAs [4]
and cover protein-coding and non-coding gene regions.

Estimating scaffolding accuracy and performance

We measured the accuracy of P_RNA_scaffolder follow-
ing the Genome Assembly Gold Standard Evaluations
pipeline [21]. Assuming that the reference assembly is
completely correct, we compared the connections by
P_RNA_scaffolder with those in the reference assembly
and tallied all connections into six types. (i) Consistency:
two scaffolded contigs have the same order and orienta-
tion as the reference assembly. (ii) Correctable reloca-
tions: two contigs with a distance smaller than MIL in
one reference chromosome are linked together by
P_RNA_scaffolder. (iii) Inversion: Compared with the
reference assembly, two scaffolded contigs have the same
order but opposite orientations. (iv) Erroneous reloca-
tions: two contigs with a distance longer than MIL in
one reference chromosome are linked together by
P_RNA_scaffolder. (v) Translocations: two scaffolded
contigs are distributed at two reference chromosomes.
(vi) Unknown: two scaffolded contigs are distributed at
two scaffolds of the reference assembly and the accuracy
could be not assessed. The links of (i) and (ii) were con-
sidered correct. The scaffolding correctness was calcu-
lated as the ratio of (correct connections / total
connections).

The N50 size was calculated to be a scaffolding per-
formance indicator without consideration scaffolding er-
rors. To produce accurate scaffolding graphs, we also
measured the corrected N50 size after splitting scaffolds
at every error point (including inversions, erroneous re-
locations and translocations).
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The scaffolding parameter simulation to balance N50 size
and accuracy

The scaffolding performance and accuracy of P_RNA_s-
caffolder is influenced by supporting pair number, MLC,
and MIL. We varied the parameters and compared the
resulting N50 size and accuracy. First, to study the influ-
ence of supporting pair number on scaffolding perform-
ance, MLC and MIL were set as 0.9 and 100 kb,
respectively. Then, we calculated the scaffolding per-
formance and accuracy with the pair number from one
to five. Notably, the more stringent the supporting guide
pair number, the fewer pairs that are used to scaffold,
leading to a smaller N50 size. In contrast, because the
more stringent guide pair number would filter out the
sequencing error or translocation, the more stringent
the supporting guide pair number, the higher scaffolding
accuracy. Second, with the supporting pair number of
two and the MIL of 100 kb, we calculated the scaffolding
performance and accuracy when the MLC increased
from 0.5 to 0.99. Third, with the supporting pair number
of two and MLC of 0.9, we set the MIL from 10 kb to
500 kb and examined the change of the scaffolding per-
formance and accuracy at each MIL.

Calculating genome coverage in different sequencing
depths and breadths

The genome coverage of aligned RNA-sequencing reads
affects the scaffolding performance. It is reasonable that
the scaffolding performance increases with increasing
genome region sequenced. Genome coverage is mea-
sured as the ratio of the total bases covered in the align-
ment regions to all genomic bases [22]. We aligned
RNA-sequencing reads to the human hg38 assembly
using HISAT?2 [14] and selected the pairs of which two
ends were aligned to the same chromosome. The gen-
omic regions between the alignment regions of two ends
were covered by this pair. To investigate the effect of
genome coverage on scaffolding performance, we calcu-
lated the correlation coefficient (R) between N50 size
improvement and genome coverage and investigated
whether the R was statistically significant using Student’s
t-test. We also calculated the R between corrected N50
size improvement and genome coverage and the signifi-
cance of the R.

Genome coverage by RNA-sequencing reads is af-
fected by sequencing depth and breadth. The sequencing
depth was measured as the RNA-sequencing pair num-
ber. To assess the effect of sequencing depth to genome
coverage and performance, we sampled ten subsets from
10% to 100% of brain RNA-sequencing reads and then
calculated genome coverage, the scaffolding performance
and accuracy of each subset.

The sequencing breadth comprises sequenced tissues
and developmental stages. Because of the spatial and



Zhu et al. BMC Genomics (2018) 19:175

temporal expression features of genes, increased sequen-
cing breadth, including multiple tissues and develop-
mental stages, would cover more genomic regions. To
investigate the influence of sequencing breadth on per-
formance, we constructed six RNA-sequencing datasets
from four tissues and scaffolded the contigs using each
dataset. The genome coverage, scaffolding performance
and accuracy of each subset were calculated.

Estimating the proportion of fully covered protein-coding
genes and non-coding RNAs

The proportions of fully covered proteins and non-
coding RNAs were used to measure the gene complete-
ness in different assemblies. To evaluate the proportions
of fully covered protein-coding genes, with BLAT [17]
we aligned human Swiss-Prot [23] proteins to three as-
semblies (the contigs, the P_RNA_scaffolder assembly
and the hg38 assembly). If one protein had an alignment
where the sequence coverage was over 0.9, then this pro-
tein was fully covered. Next, we calculated the propor-
tion of fully covered proteins in all proteins.

To evaluate the proportions of fully covered non-
coding genes, human circular RNAs (circRNAs) down-
loaded from circBase [24] were aligned to three assem-
blies with SPALN [25]. If the alignment coverage of one
circRNA was over 0.9, then it was considered complete
in the assembly. Then, we calculated the proportion of
complete circRNAs in all circRNAs.

Comparison of the performances of P_RNA_scaffolder
and other tools using various species

Five tools using paired-end RNA-sequencing reads for
genome scaffolding were used, including RNAPATH
[10], L_RNA_scaffolder [3], Rascaf [11], AGOUTI [12]
and BESST_RNA (https://github.com/ksahlin/
BESST_RNA). RNAPATH with the denoised joining-
pairs, which were produced by AGOUTI, had better per-
formance than itself without denoising steps [12]. Thus,
in the comparison, we ran RNAPATH with the denoised
joining-pairs. We compared the present method with
these five tools in human, C. elegans and E. coli, which
corresponded to genomes of large, medium and small
sizes, respectively. For human, the brain RNA-
sequencing reads were used to scaffolding 36,437 high-
quality contigs in hg38 assembly. For E. coli (K-12 strain,
MG1655 substrain), the reference assembly was obtained
from the NCBI Genome database. Since the high-quality
reference assembly is finished and consists of only a se-
quence, we randomly fragmented the whole assembly
into 100 contigs (N50 size of 76 kb). A total of
38,915,405 cleaned RNA-sequencing pairs were used to
scaffold  (Accession in NCBI SRA  database:
SRR1931786). For C. elegans (WBcel235), 21,965,772
cleaned RNA-sequencing pairs (Accession in NCBI SRA
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database: SRR4017997) were used as the input of six
tools. Similar to E. coli, the finished reference assembly
of C. elegans is of such high quality that only six
chromosome sequences are included. To re-scaffold the
C. elegans genome for comparison, 2000 contigs (N50
size of 84.4 kb) were generated by randomly splitting the
reference assembly. Each scaffolder was run with a sup-
porting pair number of two. The alignments of RNA-
sequencing reads to contigs and each scaffolding result
were run with twenty threads on the same machine.

Data used in the present study and scaffolder usage

All data used in the present study are available in NCBI
SRA database, as stated in Additional file 1: Table SI.
P_RNA_scaffolder together with the RNA-sequencing
reads in the present study, are available at http://
www.fishbrowser.org/software/P_RNA_scaffolder.

Results

Balancing N50 size and accuracy by different parameters
Compared with long single-end RNA-sequencing tech-
nology, the simplicity, cheapness, and high throughput
of paired-end RNA-sequencing technology could make
RNA-sequencing widely applicable for genome scaffold-
ing. However, scaffolding strategies using paired-end
RNA-sequencing reads are distinct from L_RNA_scaf-
folder using single-end RNA-sequencing data. Although
the method could employ assembled transcripts from
paired-end RNA sequencing reads, this strategy required
transcriptome de novo assembly, leading to much long
runtime and low accuracy. Therefore, to be compatible
with paired-end RNA sequencing reads, we modified the
core algorithm of a previous scaffolder. Compared with
the previous tool, this new method has two important
modifications. First, in L_RNA_scaffolder, we aligned
long single-end transcripts using BLAT [17], which was
suitable for the accurate alignment of low-throughput
sequences. Different from the strategy to align long tran-
scripts, short-read mappers, such as HISAT2 [14] and
BWA [26], were supported in the new tool. Second, the
paired-end RNA-sequencing reads were shorter than the
long single-end reads. One pair might be aligned to two
contigs at most, while a long single-end read might be
covered in multiple contigs. Hence, one pair could sup-
port only one connection but one single-end read could
support multiple connections. The core algorithm of
P_RNA_scaffolder is outlined in Fig. 1 and Additional
file 2: Figure S1.

To assess the accuracy and performance of P_RNA_s-
caffolder, we used the human genome as a reference be-
cause this genome assembly was almost complete and
well-collected paired-end RNA-sequencing data were
available. We built scaffolds using P_RNA_scaffolder
from 36,437 initial contigs in hg38 assembly (assembly
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Fig. 1 The main steps of P_RNA_scaffolder. Main steps of P_RNA_scaffolder. i) Paired-end reads (red) generated from transcripts (blue) are aligned
to genomic fragments (orange). The arrows represent transcript orientation. We retained those pairs for which two ends are aligned to two con-
tigs. ii) The pair is the connection evidence of two contigs. For each connection, we calculated the supporting evidence numbers of all connec-
tions. In one connection, two contigs are ordered based on their positions in the pairs and classified into the start and the end. iii) We select the

optimal connection for each start contig and each end contig. The retained optimal connections are attributed into scaffolding paths

size of 3.09 Gb with N50 size of 148.7 kb). We stud-
ied the effects of supporting pair number, minimal
length coverage (MLC), and maximal intron length
(MIL) to the performance and accuracy with brain
RNA-sequencing reads. When MLC and MIL were
set as 0.9 and 100 kb, respectively, the N50 size de-
ceased as the supporting pair number increased.
When the supporting pair number was one (Fig. 2a),
the accuracy was 94.03%, with a resulting N50 size of
201 kb. If the pair number was over two, then the ac-
curacy was higher than 96%, but the resulting N50
size was smaller than 1884 kb. The supporting pair
number exhibited a negative correlation with the N50
size but a positive correlation with the accuracy. For
MLC simulation where the MIL and supporting pair
number were set as 100 kb and two, the N50 size in-
creased over 188.4 kb but the accuracy decreased to
96% as MLC increased to more than 0.9 (Fig. 2b).
For MIL simulation with the supporting pair number
of two and MLC of 0.9, the accuracy decreased from
99.69% to 96% accompanying the increase of N50 size
when the MIL was more than 100 kb (Fig. 2c). The
MLC and MIL exhibited a positive correlation with
N50 size but a negative correlation with accuracy.
These three simulations revealed the opposite effects
of supporting pair number, MLC and MIL to scaffold-
ing performance and accuracy.

Improving the performance by multiple RNA-seq datasets
from increasing sequencing depth and breadth

To study the influence of sequence depth and breadth
on scaffolding, the optimal supporting pair number,
MLC and MIL parameters were set as two, 0.9 and
100 kb, respectively. The optimal parameters were used
to balance the N50 size and accuracy. We sampled hu-
man brain RNA-sequencing reads from 10% to 100%.
The corresponding genome coverage increased from
30.01% to 54.60% and the N50 size reached 188.4 kb
(26.71% increase compared to that in the initial contig,
Additional file 1: Table S2). A significant correlation was
observed between genome coverage and N50 size (cor-
relation coefficient R =0.992, Student’s t-test P value =
2.06 x 10~ %, Fig. 3a). If we corrected the scaffolds by
splitting scaffolds at every error point, then the N50 size
was also significantly correlated with genome coverage
(R=0.993, Student’s t-test P value=8.16 x 10™°, Add-
itional file 2: Figure S2a). We inferred that the N50 was
not saturated and would increase as more transcriptome
data became available (Fig. 3b).

To assess the effect of sequence breadth to scaffolding
performance, we constructed six datasets of RNA-
sequencing reads from different tissues, including (i)
brain, (ii) liver, (iii) lung, (iv) brain and liver, (v) brain,
liver and lung, (vi) brain, liver, lung and cells. With en-
larged RNA-sequencing reads from different datasets,
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Fig. 2 Influence of supporting pair number, MLC and MIL on the performance of P_RNA_scaffolder. a Influence of supporting pair number on
the performance and accuracy of P_RNA_scaffolder. As the supporting pair number increased, the accuracy (red line) increased but the N50 size
(blue line) decreased. b Influence of MLC on the performance of P_RNA_scaffolder. The N50 size (blue line) increased but the accuracy (red line)
decreased with increasing MLC. ¢ Influence of MIL on the performance of P_RNA_scaffolder. The accuracy (red line) exhibited the opposite trend
to the N50 size (blue line)

the genome coverage increased from 44.42% to 85.5%
(Additional file 1: Table S3). With the parameters (sup-
porting pair number of two, MLC of 0.9, and MIL of
100 kb), the N50 size was improved with increasing

number of sequenced tissues; a significant correlation
was observed (R = 0.949, Student’s ¢-test P value = 3.76 x
1077, Fig. 4a). The corrected N50 size was also signifi-
cantly correlated with genome coverage (R =0.938,
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Fig. 3 The influence of sequence depth on performance. a Using ten scaffolding results generated by sampling brain RNA-sequencing reads, we
found significant correlation between N50 size improvement and genome coverage. R was the correlation coefficient. P was the statistical value
of Student’s t-test for R. b The N50 size (blue line) increased with the increased sequencing depth but is not saturated. During the sampling, the

accuracy (red line) was approximately 96%

Student’s t-test P value=5.55x 10" >, Additional file 2:
Figure S2b). With all RNA-sequencing reads from four tis-
sues (brain, liver, lung and cells), P_RNA_scaffolder gener-
ated 10,849 connections, covering a total of 2.74 Gb
(85.5%) of human genome. The final N50 size was
279.9 kb (an 88.2% increase compared to that in the initial
contig set, Additional file 1: Table S3) with an accuracy of
96.14%. The corrected N50 size was 262.5 kb, showing an
improvement of 76.54%. Even with all studied reads, the
N50 size was not saturated (Fig. 4b). Taken together, these
results indicated that enlarged sequencing depth and
breadth could increase the scaffolding performance.

The completeness of protein-coding gene regions and
non-coding gene regions is improved and close to those
in human genome

To assess the coverage improvement of protein-coding
genes after scaffolding, we aligned 20,208 human Swiss-

Prot proteins to three assemblies (the contigs, P_RNA_s-
caffolder assembly and hg38 assembly) using BLAT [17].
With a length coverage threshold of 90%, the propor-
tions of fully covered proteins were 82.8% (in the con-
tigs), 97.4% (in the P_RNA_scaffolder assembly) and
99.8% (in hg38 assembly). Specifically, the percentage of
recovered proteins over 500 amino acids showed a larger
increase (from 72.2% to 96.4%) than that of shorter pro-
teins (Fig. 5a).

We also examined the coverage improvement of non-
coding genes after scaffolding. A total of 140,790 human
circRNAs from circBase [24] were aligned to three as-
semblies with SPALN [25]. The percentage of fully cov-
ered circRNAs increased to 95.6% in the
P_RNA_scaffolder assembly, higher than that in the con-
tigs (87.4%) and close to that in hg38 (96.2%). Particu-
larly, the percentage of complete circRNAs over 5000 bp
showed a larger improvement (from 78.4% to 96.2%)

Fig. 4 The influence of sequence breadth on performance using different tissue sets. a With increasing sequence breadth, we observed
significant correlation between N50 size improvement and genome coverage. b The N50 size (blue line) increased with increasing number of
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compared to that of shorter circRNAs (Fig. 5b). These
results showed that the present method significantly re-
covered the structures of both protein-coding genes and
non-coding genes.

P_RNA_scaffolder is faster and more efficient than other
tools among various species

To compare the performance of the present method with
that of five existing tools of the same type (RNAPATH
[10], L_RNA_scaffolder [3], Rascaf [11], AGOUTI [12]
and BESST_RNA), we used these six tools to scaffold the
contig sets from the reference assemblies of human, C.
elegans and E. coli. Assuming that the contig sets had no
mis-assemblies, we computed the connection number, ac-
curacy, and runtime of each tool. Using human brain
RNA-sequencing reads, among the six scaffolding results
of human contigs, P_RNA_scaffolder produced the most
connections (7727, Fig. 6a; Additional file 1: Table S4).
The accuracy of the present method (96%) was also higher
than that of the other five scaffolders. P_RNA_scaffolder
had a runtime of 195 min, which was approximately two-
thirds of the runtime of AGOUTI (the second fastest tool,
301.35 min and 92.47% accuracy, Additional file 1: Table
S4 and Table S5).

We also compared the performance of each scaffolder
on small (E. coli) and medium size (C. elegans) size ge-
nomes. In E. coli, the present tool and BESST produced
more connections (67) than the other tools (65 by
AGOUTI, 63 by RNAPATH, 51 by Rascaf, and 31 by
L_RNA_scaffolder, Fig. 6b, Additional file 1: Table S6).
The scaffolding accuracy of P_RNA_scaffolder reached
100%, equal to that of BESST_RNA, RNAPATH and
L_RNA_scaffolder, but higher than that of AGOUTI

(98.46%) and Rascaf (94.12%). However, the runtime of
P_RNA_scaffolder was the shortest (19 min) and only
two-thirds the runtime of AGOUT]I, the second fastest
tool (Additional file 1: Table S7). In C. elegans, the
present tool produced more connections (480) than the
other tools (478 by BESST_RNA, 461 by RNAPATH,
458 by AGOUT]I, 407 by Rascaf, and 259 by L_RNA_s-
caffolder, Fig. 6c, Additional file 1: Table S8) with a
shorter runtime (12.77 min) than the other tools (Add-
itional file 1: Table S9). Additionally, P_RNA_scaffolder
produced only one mis-assembly, with the second high-
est scaffolding accuracy (99.79%) among all tools. Taken
together, comparison of the performances of P_RNA_s-
caffolder and other tools among various species demon-
strated that P_RNA_scaffolder outperformed the existing
state-of-the-art scaffolders using paired-end RNA-
sequencing reads.

Our tool improves the contiguity of genome assembly
generated by the mate-pair scaffolding strategy
Mate-pair based scaffolding is dominant in genome pro-
jects. Mate-pair libraries are widely used for genome
scaffolding. In a previous study [3], four mate-pair librar-
ies of distinct insert sizes (2, 5, 10 and 35 kb) with the
same amount of pairs (8.8 million) were employed into
scaffolding human contigs using five scaffolding tools
(Opera [27], Soapdenovo [28], MIP scaffolder [29],
SSPACE [30], and SOPRA [31]). A total of 19 scaffolding
results were generated, except for using SOPRA with the
library of 35 kb inserts. We compared the present
method with those of mate-pair scaffolding tools with
respect to performance. The input RNA-sequencing read
number was equal to that of mate-pair reads in all four
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libraries (8.8 million pairs). P_RNA_scaffolder generated
an assembly with the N50 size of 277 kb and an accuracy
of 97%. The N50 size of P_RNA_scaffolder result was
larger than 14 scaffolding results using libraries of 2 kb,
5 kb or 10 kb inserts but smaller than those using the
35 kb library (Additional file 2: Figure S3). The N50 size
produced by MIP scaffolder with the 10 kb library was
also larger than that of P_RNA_scaffolder. The accuracy
of P_RNA_scaffolder (97%) was higher than that of MIP

scaffolder using the 35 kb library (82.39%) and Opera
using the 10 kb library (86.21%), and close to the results
of the other 17 scaffolding results (>98.45%).
P_RNA_scaffolder is complementary to current mate-
pair scaffolding strategies. First, assembly by the present
tool exhibited considerably higher completeness of gene
regions than most assemblies by a mate-paired strategy.
To assess the improvement of gene coverage with the
different methods, we aligned human Swiss-Prot
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proteins to each scaffolding assembly using BLAT. As
shown in Fig. 7a, with a length coverage threshold of
90%, the proportion of completely covered protein-
coding genes in P_RNA_scaffolder (96.35%) was higher
than those in 18 scaffolding results but only less than
that in the assembly produced by OPERA with the 35 kb
library (97.81%). Second, mate-pair approaches are lim-
ited by cloning or ligation efficiency and are more costly
[32, 33]. The simplicity and high throughput of RNA-
sequencing technology could make transcriptome reads
widely applicable to genome scaffolding. Third, a hybrid
strategy using first mate-pair scaffolding and then
P_RNA_scaffolder will significantly improve the contigu-
ity of assembly. Using P_RNA_scaffolder, we further
scaffolded these 19 assemblies. The N50 sizes of the new
assemblies were 1.08~2.54-fold higher than the 19
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assemblies prior to scaffolding (Fig. 7b and Additional
file 1: Table S10). Taken together, these data demon-
strated that P_RNA_scaffolder provided not only a prac-
tical alternative to the existing scaffolding methods for
N50 improvement but also a better solution to improve
gene coverage.

Our tool improves the contiguity of genome assembly
generated by the third-generation sequencing assembly
strategy

The third-generation of single-molecule sequencing
strategy has been used for genome assembly, and can
produce much longer contigs [34, 35]. Our previous
tool, L_RNA_scaffolder, had been demonstrated to im-
prove the contiguity of long-read (Pacific Biosciences, or
PacBio) genome assembly [9]. We also examined the
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improvement of the PacBio genome assembly by
P_RNA_scaffolder. Berlin et al. generated de novo as-
semblies of Saccharomyces cerevisiae and human hydati-
diform mole cell line (CHM1) with SMRT sequencing
reads [36]. The assembly contig N50 sizes of S. cerevisiae
and human CHM1 were 818,518 bp and 5,082,961 bp,
respectively. To scaffold the PacBio assembly of S. cere-
visiae, 30,485,207 pairs of cleaned RNA-seq (Accessions
in NCBI SRA database: SRR5417301 and SRR5417312)
were inputted into P_RNA_scaffolder and the final N50
size was 946,396 bp with a 15.6% increase. With human
RNA-seq reads from brain, lung, liver, and cells, the N50
size of human Pacbio assembly was improved to
6,889,382 bp (a 35.5% increase). These two applications
of P_RNA_scaffolder to PacBio assemblies demonstrated
that the present tool was also complementary to third-
generation single-molecule sequence assembly.

RNA-sequencing reads of close species is not suitable for

scaffolding target genome

Homologous proteins of close species can be used to
scaffold target genomes [2, 37]. Thus, we examined
whether paired-end RNA-sequencing reads of close spe-
cies could be employed to scaffold target genomes.
Cleaned mouse RNA-sequencing reads (38 million of
pairs, Accession in NCBI SRA database: SRR2878547)
were used to scaffold human contigs. Only 85 connec-
tions were generated with an N50 size improvement of
0.21%. The accuracy was as low as 62.35% (Additional
file 1: Table S11). These results indicated few connec-
tions and high error rates using RNA-sequencing reads
from close species to scaffold a target genome. The
major reason for this finding is likely nucleotide variants
between species.

Discussion

Compared with other tools (except the unpublished
BESST_RNA), P_RNA_scaffolder exhibited three novel-
ties to ensure its accuracy and efficiency. First, to
achieve high accuracy, P_RNA_scaffolder performed two
rounds of alignments and filtrations to select uniquely
aligned RNA-seq reads whereas other tools performed
only one round of alignment and filtration. As expected,
an additional round of alignment and filtration improved
accuracy compared with the results from only one round
of alignment (Additional file 1: Table S12). Second, the
present method has fewer prerequisites than other tools.
AGOUTI required predicted gene models [12]. Zhang et
al. showed that RNAPATH with denoised joining-pairs,
produced by AGOUT]I, had better performance than it-
self without denoising steps [12]. Therefore, to obtain
better performance and higher accuracy, RNAPATH is
also dependent on gene models. However, this require-
ment of gene models limited their application to only
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scaffolding the coding genomic regions. The present
strategy does not depend on predicted gene models and
thus could be applied to scaffolding non-coding gene re-
gions. Rascaf built exon blocks and gene blocks and then
detected the order of the gene blocks [11]. De novo
transcriptome assembly was time-consuming but neces-
sary for L_RNA_scaffolder [3]. Neither constructing
gene blocks nor transcriptome assembly are needed by
P_RNA_scaffolder. Third, the speed and accuracy of de-
termining the connections is another challenge.
AGOUTI and RNAPATH determined reliable connec-
tions by employing RNA-seq alignments and predicted
gene models. After splitting scaffolds into contigs, Rascaf
incorporated RNA-sequencing alignments and initial
scaffold connections to form new contig graphs.
P_RNA_scaffolder directly utilized the RNA-seq align-
ments as evidence and adopted the strategy of maximal
support evidence for scaffolding. In various organisms,
P_RNA_scaffolder outperformed existing state-of-the-art
scaffolders, generating the most connections with the
shortest runtime and highest accuracy. These compari-
sons demonstrate that the present strategy to determine
accuracy connections is faster and more efficient than
the combination of RNA-sequencing alignments and
additional evidence.

Alternative splicing may influence the accuracy of
P_RNA_scaffolder. We carefully examined three poten-
tial cases where alternative splicing exists in the scaf-
folds. (1) If all isoforms were distributed at the same
genome sequences, then the reconstructed scaffold
could completely cover all alternative splicing isoforms
(Additional file 2: Figure S4a). (2) If one isoform in-
cludes all exons and has dominant expression, then
P_RNA_scaffolder uses the reads of this isoform to con-
struct the connecting paths (Additional file 2: Figure
S4b). The scaffold covers all alternative splicing iso-
forms. (3) If the dominantly expressed isoform consists
of a part of exons, then the alternative exonic contigs
are not scaffolded, leading to a relocation event (Add-
itional file 2: Figure S4c). Some isoforms could not be
completely recovered. To evaluate the influence of alter-
native splicing events on the accuracy of the present
method, 161,844 human splicing isoforms (to 20,272
genes) annotated by Ensembl database [38] were used as
a test dataset. Among these genes, 161,199 isoforms
(99.6%) were completely aligned to P_RNA_scaffolder
result using BLAT. This result indicated that alternative
splicing had little influence on the present scaffolding
strategy.

Another challenge is that low-abundance RNA-
sequencing reads generated from transcriptional noise
might influence P_RNA_scaffolder accuracy. Low-
abundance transcripts might be active genes. The ex-
pression of protein-coding genes measured through
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RNA-sequencing shows a bimodal distribution of high
and low expression [39]. In addition, the expression of
long non-coding RNAs is on average lower than that of
protein-coding genes [40, 41]. However, the low-
abundance RNA-sequencing reads might also result
from technical or biological noise, which might lead to
errant scaffoldings. We determined that the connection
threshold is two. As shown in Fig. 2a, the accuracy was
higher than 96% with the pair number (sequencing
depth) >two. That is, a region having a sequencing
depth > two might represent active transcription rather
than transcription noise.

The advantages of the present tool were demonstrated
by two different uses. Compared with the 19 scaffolding
results using mate-pair libraries, the N50 size of the
present tool ranked fifth, but the gene completeness of
the present tool ranked second. Since RNA-sequencing
technology is simpler and more efficient than mate-pair
sequencing, paired-end RNA-sequencing should make
transcriptome reads widely applicable to genome scaf-
folding. Moreover, the present tool could improve the
contiguity of genome assembly generated by current
mate-pair scaffolding strategy and third-generation
single-molecule sequencing assembly strategy. There-
fore, P_RNA_scaffolder can make a significant contribu-
tion to genome assembly and gene prediction.

Conclusions

Using paired-end RNA-seq reads, P_RNA_scaffolder can
improve the contiguity of genome assembly. It exhibits
higher speed and efficiency than the existing state-of-
the-art scaffolders. It also provides a fast and accurate al-
ternative to the existing assembly methods. Furthermore,
after scaffolding the completeness of protein-coding and
non-coding gene regions is improved and close to that
in reference genome. The promising outcomes indicate
that this tool can be of value and wide use for gene pre-
diction. Overall, P_RNA_scaffolder can improve the con-
tiguity of genome assembly and benefit gene prediction.
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RNA-sequencing reads. Table S2. The performance of P_RNA_scaffolder
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performance of P_RNA_scaffolder with paired-end RNA-sequencing data
from different tissues. Table S4. The accuracy and performance of six
scaffolders on human contigs. Table S5. The runtime of six scaffolders
on human contigs (minutes). Table S6. The accuracy and performance of
six scaffolders on E.coli contigs. Table S7. The runtime of six scaffolders
on E.coli contigs (minutes). Table S8. The accuracy and performance of
six scaffolders on C.elegans contigs. Table S9. The runtime of six
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