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Abstract

Background: Emissions from diesel vehicles and biomass burning are the principal sources of primary ultrafine
particles (UFP). The exposure to UFP has been associated to cardiovascular and pulmonary diseases, including lung
cancer. Although many aspects of the toxicology of ambient particulate matter (PM) have been unraveled, the
molecular mechanisms activated in human cells by the exposure to UFP are still poorly understood. Here, we
present an RNA-seq time-course experiment (five time point after single dose exposure) used to investigate the
differential and temporal changes induced in the gene expression of human bronchial epithelial cells (BEAS-2B) by
the exposure to UFP generated from diesel and biomass combustion. A combination of different bioinformatics
tools (EdgeR, next-maSigPro and reactome FI app-Cytoscape and prioritization strategies) facilitated the analyses the
temporal transcriptional pattern, functional gene set enrichment and gene networks related to cellular response to
UFP particles.

Results: The bioinformatics analysis of transcriptional data reveals that the two different UFP induce, since the
earliest time points, different transcriptional dynamics resulting in the activation of specific genes. The functional
enrichment of differentially expressed genes indicates that the exposure to diesel UFP induces the activation of
genes involved in TNFα signaling via NF-kB and inflammatory response, and hypoxia. Conversely, the exposure to
ultrafine particles from biomass determines less distinct modifications of the gene expression profiles. Diesel UFP
exposure induces the secretion of biomarkers associated to inflammation (CCXL2, EPGN, GREM1, IL1A, IL1B, IL6, IL24,
EREG, VEGF) and transcription factors (as NFE2L2, MAFF, HES1, FOSL1, TGIF1) relevant for cardiovascular and lung
disease. By means of network reconstruction, four genes (STAT3, HIF1a, NFKB1, KRAS) have emerged as major regulators
of transcriptional response of bronchial epithelial cells exposed to diesel exhaust.

Conclusions: Overall, this work highlights modifications of the transcriptional landscape in human bronchial cells
exposed to UFP and sheds new lights on possible mechanisms by means of which UFP acts as a carcinogen and
harmful factor for human health.
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Background
Combustion processes are the principal sources of pri-
mary ultrafine particles (UFP) and emissions from diesel
vehicles and biomass burning account for the majority
of ambient UFP [1]. Exposure to these particles have
been linked to cardiovascular and pulmonary diseases,
including lung cancer [2, 3]. Epidemiological and clinical
evidences exist for both acute and chronic effects of
combustion particles. Long-term epidemiologic studies
have reported an increased risk of mortality from cardio-
pulmonary symptoms and lung cancer [2]. Acute expos-
ure to traffic particulate matter (PM) has been directly
linked to triggering of myocardial infarction [3] and
studies involving volunteers exposed to UFP highlighted
a higher rate of adverse vascular effects [4, 5].
The mechanisms of PM and UFP toxicity are multiple

and greatly depend on the different combustion condi-
tions under which particles are generated and, ultim-
ately, on their chemical composition [5]. Several in vitro
and in vivo studies unraveled diverse aspects of PM toxi-
cology. Biomass and diesel combustions emit primary
nanoparticles and are among the most important con-
tributors to the total emitted UFP [6]. While diesel parti-
cles have been largely investigated, less data are available
for particles derived from biomass combustion. Recently,
we investigated the physicochemical properties and asso-
ciated cellular effects of diesel and biomass UFP pro-
duced under controlled laboratory conditions [7]. Here,
we report the analysis of the transcriptional changes in-
duced in human bronchial cells by the exposure to UFP
produced by the diesel and biomass combustion.
Oxidative stress and inflammation are the main cellu-

lar responses driving the effects of air borne PM and
combustion-derived [3, 8]. UFP from diesel exhaust and
biomass burning are enriched in organic compounds,
such as polycyclic aromatic hydrocarbons (PAHs) and
their derived molecules, that bind to and activate the
aryl hydrocarbon receptor (AhR) [9]. AhR is responsible
for the transcription of genes involved in responses to
DNA damage and in xenobiotic metabolism. Although
other mechanisms may concur, the metabolism and con-
sequent activation of PAHs by the xenobiotic pathway is
considered the main mechanism of diesel-induced react-
ive oxygen species (ROS) generation and oxidative stress
[1]. AhR has also been reported to directly participate in
the activation of the inflammatory response by diesel
and traffic-related PM [10, 11]. In addition, oxidative
stress itself is considered a main mechanism of diesel-
induced inflammation, as ROS formation may activate
redox-sensitive transcription factors involved in the
regulation of pro-inflammatory genes, such as NF-κB
and Nrf2 [8]. In mice, cardiovascular effects derived
from the exposure to ambient and diesel PM have been
related to airway inflammation and to the release of

inflammation cytokines such as TNF-α and IL-6 [12–
14]. Overall, these mechanisms might contribute to
carcinogenesis, the complex process leading to tumor
formation. DNA oxidative damage by ROS and DNA
adducts formation by electrophilic reactive products of
PAHs are known to be implicated in the initiation stage
of carcinogenesis [2]. Both inflammation and oxidative
stress can contribute to the promotion and progression
of carcinogenesis by altering the expression of genes re-
lated to cell differentiation, growth, proliferation and mi-
gration. Inflammatory events also contribute to the
modification of the tumor microenvironment, enhancing
angiogenesis and suppressing the immune system [2, 15].
Although genome-wide approaches have been previ-

ously used to assess the effect of PM on health [16], the
impact of UFP exposure on gene expression remains
under-investigated leaving largely undefined the effect of
UFP on the transcriptional dynamics in human cells. To
elucidate how UFP from diesel vehicles and biomass
burning emissions modulate gene expression dynamics
in bronchial epithelial cells, we performed a time course
RNA-seq experiment in BEAS-2B cells, after exposure
to a single dose of these emissions. The design of time
course experiment allowed identification of early tran-
scriptional events, likely involved in the activation of piv-
otal signaling cascades, and of hallmark processes
linking UFP exposure to molecular mechanism under-
lying human diseases.

Methods
Particle sample collection
Diesel particles were sampled from a Euro IV light duty
vehicle without diesel particle filter (DPF), fuelled by
commercial diesel and run over a chassis dyno. A
“URBAN” Artemis Driving Cycle was used to represent
the average “stop & go” driving conditions typical of a
European city urban context. To collect the particles
mass necessary for biological and chemical analyses, we
performed 30 driving cycles. In particular, 5 cycles were
performed at the beginning of the experimentation to
set up the sampling condition and 5 at the end of the
sampling campaign to confirm that the performances of
the vehicle were not modified. The remaining 20 cycles
were used to collect particles for the biological analysis
and chemical characterization. To remove aggregates
larger than 1 μm, particles were collected on Teflon
filters (Whatman), using a DGI-1570 (Dekati Gravimet-
ric Impactor, Finland). Biomass particles were produced
by a modern automatic 25 kW boiler, propelled with
prime quality spruce pellet. To improve volatile organic
compounds condensation, particles were sampled on
Teflon filters after dilution of flue gases with clean air.
Filters were kept at − 20 °C immediately after sampling,
until chemical characterization or UFP extraction for
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biological tests was performed. A chemical and morpho-
logical characterization of particles has been conducted
as in [7]; briefly, transmission electron microscopy
(TEM) analysis of both diesel and biomass samples
showed aggregates of soot particles, with dimension
lower than 50 nm. Chemical characterization showed
that metal content was higher in diesel samples, with the
exception of Mn and K that were higher in biomass.
Diesel particles were characterized by the presence of
transition metals such as Fe, Zn, Cr, Pb, V and Ni. Speci-
ation showed a typical composition of PAHs associated
with diesel soot with high levels of pyrene, phenan-
threne, benzo[a]anthracene and dibenzo[a,h]anthracene,
while the most abundant PAHs in biomass samples were
fluoranthene and pyrene. The content of PAHs was
higher in diesel (592 ng/mg) samples compared to bio-
mass (55 ng/mg) ones. UFP exposed to cells were ex-
tracted from Teflon filters as described in [17]. Briefly,
filters of the same source were pooled in a glass vial,
covered with cold sterile water, and sonicated in an ice-
cold water-bath (SONICA Soltec). Particle suspensions
(Additional file 1: Figure S1) were dried into a desiccator
weighed, and stored at − 20 °C until use. Particles were
re-suspended in sterile water at a final concentration of
2 μg/μl just before use.

Cell culture and experimental design of UFP exposure
Human bronchial epithelial cells BEAS-2B were main-
tained in LHC-9 medium at 37 °C and 5% of CO2. Cells
for treatments were seeded at a concentration of 2.7 ×
105 cells/well in Cell BIND 6-well plates (Corning), and
treated the day after with diesel or biomass UFP. Cell
viability was assessed after 20 h of exposure to 2.5, 5, or
10 μg/cm2 (equivalent to 25, 50, and 100 μg/ml) of UFP
by Alamar Blue assay accordingly to manufacturer’s
instructions (Life technologies). Cells were sampled at 1,
4, 8, 16, and 20 h after a single exposure to 2.5 μg/cm2

(25 μg/ml) of UFP and compared to untreated controls
at the same time of exposure.

RNA extraction and RNA sequencing
BEAS-2B cells exposed to 2.5 μg/cm2 of UFP or medium
alone were collected at 1, 4, 8, 16, and 20 h, lysed, and
stored in QIAzol Lysis reagent (Qiagen, Hilden, Germany)
until RNA extraction. Three independent biological
replicates were examined at each time point in UFP
exposed and paired controls samples for a total of 45
samples. Total RNA was extracted using the miRNeasy
extraction kit (Qiagen, Hilden, Germany) and eluted in
RNase free-water, according to the manufacturer’s recom-
mended guidelines. Quality and quantity of the total RNA
samples were evaluated with 2100 Bioanalyzer (Agilent,
Santa Clara, CA) and Nanodrop 1000 (Thermo Fisher Sci-
entific, Wilmington, DE), respectively. Only RNA samples

with RIN score more than 9 were considered. Same RNA
samples were used either for RNA-seq and for qPCR val-
idation. RNA-seq library was prepared from 1.5 μg of total
RNA using TruSeq Stranded mRNA Library Prep Kit in
paired end format (Illumina) following the manufacturer’s
recommendations. RNA sequencing was carried out on
Illumina HiSeq2500 platform (Illumina) at IGA technol-
ogy service (Istituto Genomica Applicata, Udine, Italy).
RNA-seq raw and processed data are deposited in the
Array Express archive under the accession number E-
MTAB-5157.

Bioinformatics analysis
Read quality assessment and trimming were obtained by
means of fastQC (version 0.11.3) and Trimmomatic (v. 0.
33) [18], respectively. First 15 bases from the start of the
reads were removed by the headcrop function of Trimmo-
matic tool. Then, raw reads were aligned to the human
genome version hg19 with TopHat [19] (version 2.1.0)
changing only the mate inner distance and its S.D. to 250
and 300, respectively, respect to default parameters. Read
counts for UCSC annotated genes were calculated using
the htseq-count function of HTSeq tool [20] (version 0.6.
0) with the mode option set as union (default) for
ambiguously-mapped reads.. Normalization was carried
out with edgeR package [21] (version 2.12.0,) in R-3.2.2.
Raw counts were normalized according to library size to
obtain counts per millions (cpm) and only genes with a
cpm ≥1 in at least three samples were retained for subse-
quent analyses.
Differentially expressed genes (DEGs) at each time

point between treated and untreated samples were iden-
tified using a paired design with the likelihood ratio tests
of the glmLRT function in edgeR package and considered
significant if the p-value was ≤0.05 and the absolute Fold
Change (FC) ≥1.2. DEGs were annotated with the Topp-
Gene suite (https://toppgene.cchmc.org/) [22] and prior-
itized by literature mining using PubMatrix [23].
Enrichment analysis was performed using the pre-

ranked tool of Gene Set Enrichment Analysis [24]
(GSEA, version 2.2.1,) and the gene sets of the Molecu-
lar Signature Database Hallmarks collection (i.e., 50 gene
sets representing well-defined biological processes;
MSigDB http://software.broadinstitute.org/gsea/msigdb).
Specifically, genes were ranked separately for each time
point using the fold change value between treated and
untreated samples. Gene sets smaller than 15 or larger
than 500 genes were excluded; gene sets passing this fil-
ter were considered significant if the False Discovery
Rate (FDR) was ≤0.05 when using 1000 permutations of
gene sets. To test DEGs enrichment for diseases signatures
we used the ToppGene tool (https://toppgene.cchmc.org/)
with the DisGeNET database (http://www.disgenet.org/),
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considering significant only the diseases with FDR cor-
rected p-value ≤0.05.
Groups of genes with a differential temporal expres-

sion profile in exposed cells (as compared to controls)
were identified using the next-maSigPro method of the
maSigPro [25, 26] R package (version 1.34.1). Briefly, the
p.vector function was used to compute a regression fit
for each gene in both matrixes of cpm counts for BEAS-
2S exposed to diesel and biomass UFP separately. Tem-
porally differentially expressed genes were detected
using the generalized linear model (glm) setting a p-
value ≤0.05 after FDR correction. In the glm, the family
parameter was set to negative.binomial to adapt the the-
oretical distribution of the read counts, the counts par-
ameter was set to true, and the theta parameter which
corresponds to the dispersion of the distribution_ was
left to the default value of 10, since any variation (e.g.,
increasing to theta = 20 or decreasing to theta = 5) in-
duced no evident changes in the number of DEGs.
Genes with significant expression changes over time
were detected with a second regression model by the t.
fit function, selecting the two.ways.backward procedure
for the regression method and theta = 10 for the negative
binomial distribution. The final selection of temporally
differentially expressed genes was obtained filtering the
result of the second regression model with the get.sig-
genes function, with the R-squared parameter set to 0.7
and the vars parameter to groups. Finally, significant
genes have been grouped into k = 9 groups (default
value) with the see.genes function, using hierarchical and
two.ways.backward as clustering method and regression
procedure, respectively. Genes used in the network re-
construction were selected among those satisfying at
least one of the following criteria: i) a significant modu-
lation (DEGs) in at least one time point; ii) the inclusion
in at least one time point in the core enrichment of 4
manually selected significant gene sets from GSEA ana-
lysis (TNF-α signaling via NF-κB; inflammatory response,
epithelial mesenchymal transition(EMT); and xenobiotic
metabolism); iii) a PubMatrix total score higher or equal
to 15, corresponding to at least 15 publications contain-
ing both the gene name and the terms cardiovascular
diseases, lung cancer, or lung diseases. The gene network
was created in Cytoscape [27] (version 3.3) using the
Reactome FI plugin [28] (version 5.0). For diesel UFP,
129 genes selected using the above mentioned criteria
were inputted as a list to the Reactome FI, which recon-
structed gene-gene interactions using the pathway-based
Reactome Functional Interaction (FI) database (version
2015). The Reactome Functional Interaction (FI) data-
base contains both manually annotated and predicted
gene-gene relationships [29]. Since genes modulation
could have been induced at protein level only, we used
the linker genes option to add putative linker genes in

the network. Linker genes are automatically selected by
the plugin algorithm among the genes that connect the
higher number of genes of the input list according to the
Reactome FI database annotation. Moreover, we dis-
carded single genes, i.e. genes not linked to any node of
the network (n = 7). Finally, fold changes have been visu-
alized in the network using the pie chart style of the
Cytoscape EnhancedGraphics plugin [30] (version 1.0.3).

Validation of selected genes and proteins modulated by
diesel exposure
Expression levels of selected genes were validated by
qPCR using a customized RT2 PCR profiler system
(Qiagen, Hilden, Germany) and the TaqMan technology.
The qPCR validations were carried out on same RNA
samples used for RNA-seq analysis, comprised 4 time
points (4, 8,16, and 20 h) and 3 biological replicates of
BEAS-2B exposed to diesel UFP. The expression of each
gene within each sample was normalized using the aver-
age expression levels of three housekeeping genes
(ACTB, B2M, GAPDH). For IL1B gene, we used a pre-
designed TaqMan® Gene Expression assay (Hs01555410_
m1) and TaqMan® Universal Master Mix (Applied Biosys-
tem, Foster City, CA) using ACTB genes (Hs99999903_
m1) as reference. All qPCR reactions were processed on
an Applied Biosystem 7900HT real time PCR machine.
The fold change was calculated for each condition using
the 2-ΔΔCt method comparing ΔCt of UFP treated cells to
ΔCt of control untreated cells.
To validate results at the protein level, the expression

of four secreted proteins (i.e., IL-6, VEGF, EREG, and IL-
24) has been quantified with the ELISA assay (IL-6 and
VEGF: Life Technologies; EREG and IL-24: Elabscience)
according to the manufacturer’s guidelines. The absorb-
ance of each sample was measured using a Multiplate
Reader Ascent (Thermo Fisher Scientific) at 450 nm and
630 nm and data analyzed with Ascent Software. Data
are reported in pg/ml as mean and standard error of
mean (SEM) of three independent experiments. Statis-
tical analyses were performed in Sigma Stat 3.1, using
one-way ANOVA with Dunnett’s or Dunn’s post hoc test
and p-value< 0.05 for statistical significance.

Results
To investigate the effects of UFP on the gene expression
dynamics, we analyzed the transcriptional profiles of
BEAS-2B cells exposed for 1, 4, 8, 16, and 20 h to a single
dose of 2.5 μg/cm2 (corresponding to 25 μg/ml) of UFP of
diesel and biomass combustion. We designed the time
course in order to monitor transcriptional changes arising
immediately after the exposure (e.g., 1 h) and during a
period that could represent a fair approximation of the
exposure in a real setting (i.e., 20 h). To determine the UFP
dose for the time course experiment, first we assessed cell
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viability at various doses (25, 50, and 100 μg/ml) using the
Alamar Blue assay (Additional file 2: Figure S2) and then
we monitored by qPCR the transcription of few selected
genes known to be involved in the cellular response to UFP
exposure; finally, we selected the lowest (non-cytotoxic)
dose with an effect on gene modulation (i.e., 25 μg/ml). We
quantified gene expression levels using RNA sequencing.
The overall quality of reads from RNA-seq was good: the
quality metrics only indicated the presence of a general bias
in the per-base sequence content for the first 12–15 bp (the
difference between A and T, or G and C was greater than
20% in the first 15 bases), most likely due to an unbalanced
selection of random primers. Furthermore, to elevate the
mapping quality, we trimmed out the first 15 bases from all
reads prior to alignment. On average, we obtained 10 mil-
lion mapped reads with a mapping rate of 90.1% in the 45
analyzed samples (Additional file 3: Table S1). Starting from
a total of 25,369 UCSC annotated human genes, after quan-
tification and normalization, we retained and considered
for the subsequent analyses 13,309 genes with a transcrip-
tional signal greater than 1 count per million (cpm) in at
least 3 samples (Additional file 4: Figure S3).

Exposure to diesel and biomass UFP induces specific
transcriptional patterns in BEAS-2B cells
Differential expression analysis with edgeR paired design
identified a variable number of differentially expressed
genes (DEGs) across the five time points in samples
exposed to diesel and biomass UFP as compared to un-
exposed controls (Fig. 1a and Additional file 5: Tables S2
and Additional file 6: Table S3). Globally, the exposure
to diesel resulted in a higher number of modulated
genes (n = 545) with respect to biomass (n = 407) at any
time point (Fig. 1a). Interestingly, the number of DEGs
induced by exposure to diesel UFP increased with time
whereas the magnitude of the transcriptional modulation
was variable across the time course for biomass. In gen-
eral, the exposure to diesel UFP determined larger varia-
tions of the expression levels as compared to biomass.
Overall, diesel and biomass induced the transcriptional
modulation of 94 common genes (Additional file 7:
Table S4), the majority of which (71) displayed the same
pattern of expression along the time course. Among
them, we found genes involved in translation (RPL27,
RPL36, GSPT2, RPLP2, RPS12, RPS15A) and AhR
(CYP1A1, CYP1B1, AHRR) pathways and genes encoding
soluble factors involved in inflammation process and sig-
naling (IL24, IL15, TNFSF9, NTF4, EPGN, IL1B). Few
DEGs displayed a differential expression with respect to
controls in more than one time point within the same
treatment and only the exposure to UFP from diesel
induced the statistically significant up-regulation of 11
genes along the entire time course (Fig. 1b). In particular,
five of these (i.e., CYP1A1, CYP1B1, IL24, ADAMTS15, and

SHISA2) showed an almost constantly growing up-
regulation along the entire experiment, while six genes
(EPGN, IL1A, IL1B, IGFBP1, TIPARP, and NPTX1) dis-
played a variable up-regulation at the different time points
(Additional file 8: Figure S4). Despite some small differ-
ences in the three biological replicates, expression data of
DEGs were able to clearly partition exposed cells from con-
trols (Fig. 1c). To validate relevance of identified signatures
in lung diseases, we compared DEGs to publicly available
datasets. We limited the analysis to genes most constantly
modulated during time, e.g. in at least 3 out of 5 time
points, for a total of 53 and 3 genes for diesel and biomass,
respectively. By ToppGene enrichment analysis with the
DisGeNET database, we observed a significant involvement
to several cancer-related disorders for DEGs induced by
diesel UFP: Squamous Cell Carcinoma (FDR p-value: 4.
791E-7), Chemical Carcinogenesis (FDR p-value: 6.405E-5),
Squamous cell carcinoma of the head and neck (FDR p-
value: 6.405E-5) and Lung Adenocarcinoma (FDR p-value:
8.653E-5) were among top significantly enriched diseases.
No significant diseases were found for biomass UFP-
induced DEGs because of the low number of genes.
To functionally characterize transcriptional patterns, we

applied the pre-ranked gene set enrichment analysis
(GSEA) to 50 hallmark gene sets, i.e., to lists of genes
summarizing well-characterized biological mechanisms
with coherent expression levels. GSEA highlighted that
exposure to diesel and biomass UFP induced the
modulation of 42 and 33 hallmark gene sets in at least 1
time point, respectively (Additional file 9: Table S5 and
Additional file 10: Table S6). The more massive modula-
tion occurred at 20 h with 33 gene sets significantly mod-
ulated by diesel and 20 by biomass exposure (with a 95%
statistical confidence, FDR ≤ 0.05). TNF-α signaling via
NF-κB, Hypoxia and Inflammatory response gene sets
resulted up-regulated by both treatments after 20 h of
exposure (Table 1). In cells exposed to diesel UFP, the
gene set of TNF-α signaling via NF-kB was strongly and
steadily enriched across the entire time course differently
from other gene sets (as P53 pathway, EMT, and xeno-
biotic metabolism) that were mostly enriched only after
20 h of exposure (Fig. 2).
Interestingly, when considering genes mostly contribut-

ing to the enrichment of the TNF-α signaling via NF-kB
gene set at the various time points, we identified 21 core
enrichment genes (i.e., AREG, CDKN1A, CXCL2, EGR1,
F3, FOSL1, ICOSLG, IER3, IL1A, IL1B, IRF1, LIF, MAFF,
NFE2L2, PHLDA1, SERPINB2, SLC16A6, TGIF1, TIPARP,
TSC22D1,VEGFA) conserved across all time points. Some
of these genes code for secreted proteins (as IL1A, IL1B,
LIF, EREG, CXCL2, F3, VEGFA) and transcription factors
or modulators (as NFE2L2, MAFF, HES1, FOSL1, TGIF1)
and their expression resulted significantly modulated in at
least 1 time point (Additional file 7: Table S4). In general,
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gene expression data from cells exposed to biomass UFP
returned lower normalized enrichment scores (NES) and
smaller number of DEGs in the core enrichment of modu-
lated pathways indicating a milder modulation of hallmark
gene sets by biomass as compared to diesel. For instance,
none of the genes comprised in the core enrichment of
the hypoxia pathway, the most enriched gene set after
exposure to biomass UFP (Table 1), resulted significantly
differentially expressed, suggesting a uniform but modest
modulation induced by biomass UFP.

Exposure to diesel and biomass UFP modulates
transcriptional dynamics in BEAS-2B cells
To capture variations in the transcriptional dynamics
after exposure to diesel and biomass UFP, we identified

genes showing statistically significant expression changes
over time using the next-maSigPro method of the maSig-
Pro R package [24, 25]. maSigPro revealed profound
temporal changes in the expression of 120 and 96 genes
in BEAS-2B cells exposed to diesel and biomass UFP,
respectively, at a 95% confidence level (Additional file 11:
Table S7). Using hierarchical clustering and maSigPro
default parameters, significant genes were grouped into
nine clusters showing distinct expression profiles during
the time of the experiment (Fig. 3 and Additional file 12:
Figure S5 and Additional file 11: Table S7). Overall, we
observed that exposure to diesel UFP exerted a stronger
effect on the modulation of transcriptional dynamics in
comparison with biomass UFP. Indeed, upon diesel
exposure, four groups of genes (i.e., those comprised in

Fig. 1 Analysis of the transcriptional differences of BEAS-2B cells exposed to diesel (left panels) and biomass UFP (right panels) as compared to
controls. a Number of differentially up- and down-regulated genes at each time point. b Overlap of DEGs identified at each time point. c Hierarchical
clustering of the 191 and 70 genes differentially expressed after 20 h of exposure to diesel and biomass UFP, respectively
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clusters 4, 6, 7, and 9) showed a peak of expression at
early time points (4 h–8 h); two clusters displayed an
increasing trend over time after 8 h of exposure (clusters
2 and 5), while genes in cluster 3 and 8 had a sharp de-
crease of their expression level at 8 h (Fig. 3). In particu-
lar, cluster 9 presents some of the most up-regulated
genes (as EPGN, GREM1, HMOX1, SERPINB2), cluster

2 comprises AHRR, CYP1A1, CXCL2, IRAK2, TNFAIP3,
IL24, IL6, and VEGFA, while cluster 8 includes CYP1B1,
MAFF, LIF, and TIPARP (Fig. 3). Upon exposure to bio-
mass UFP, three groups of genes (clusters 1, 4, and 5)
showed a peak of expression at early time points (4 h–8 h)
, while genes in clusters 7 and 9 increased their expression
during the entire time course (Additional file 12: Figure
S5). Annotation analysis of the gene groups highlighted
that exposure to diesel UFP activated biological processes
such as response to oxidative stress and blood vessels
development while UFP from biomass exposure induced a
significant enrichment in genes belonging to gene expres-
sion (data not shown).

Reconstruction of the gene networks in BEAS-2B cells
exposed to diesel and biomass UFP
To extract regulatory relations we applied a gene net-
work analysis to the gene expression data of BEAS-2B
exposed to UFP. To build the regulatory networks we
selected genes that were differentially expressed or
present in the core enrichment of significantly enriched
gene sets in at least one time point (Additional file 13:
Table S8). The application of these criteria led to the
reconstruction of the regulatory network only for cells
exposed to UFP derived from diesel, while the low num-
ber of DEGs and of genes in the core enrichment of
GSEA hampered the reconstruction of a network based
on the transcriptional profile of cells exposed to biomass
UFP. For cells exposed to diesel UFP, the network com-
prised 164 genes and 576 interactions, mainly representing
“expression regulation”, “activation” and “phosphorylation”
types of regulation (Additional file 14: Table S9). The net-
work architecture highlighted the presence of several inter-
connected sub-networks including several genes (nodes)
interacting with many DEGs (Additional file 15: Figure S6).
Overall, we identified 42 node genes that, although not

differentially expressed, displayed direct interactions with
either up or down-modulated genes (Fig. 4). By literature
mining we identified some interesting genes (as STAT3,
HIF1a, NFKB1, KRAS) that have been reported to play an
important role in biological processes as inflammation,
EMT, coagulation and angiogenesis, which are at the basis
for cancer and cardiovascular diseases. Overall, the gene
network allowed discovering hidden regulators that may
act up- and down-stream to modulate the expression of
genes responsive to the exposure to UFP derived from
diesel combustion.

Validation of genes and proteins differentially expressed
upon exposure to diesel UFP
The differential expression of a set of DEGs, annotated
in the biological processes of inflammation and oxida-
tive stress, vasculature developments, was validated using
qPCR (Table 2). The 23 selected targets were manually

Table 1 Top15 enriched gene sets in BEAS-2B cells after 20 h of
exposure to UFP from diesel and biomass (FDR≤ 0.05). Gene
sets are from the of the MSigDB hallmarks collection; size is the
number of genes in the gene set and NES, the normalized
enrichment score, accounts for the overrepresentation of a gene
set at the top or bottom of a ranked list of genes. Positive NES
indicates enrichment in treated samples, instead negative NES
in controls

Gene set Size NES

Enriched in BEAS-2B cells exposed to diesel UFP

TNFA_SIGNALING_VIA_NFKB 182 4.635

P53_PATHWAY 185 3.383

HYPOXIA 168 3.145

EPITHELIAL_MESENCHYMAL_TRANSITION 173 3.063

XENOBIOTIC_METABOLISM 141 2.814

COAGULATION 80 2.723

ESTROGEN_RESPONSE_EARLY 166 2.645

CHOLESTEROL_HOMEOSTASIS 70 2.411

REACTIVE_OXIGEN_SPECIES_PATHWAY 43 2.389

GLYCOLYSIS 174 2.318

INFLAMMATORY_RESPONSE 127 2.272

APICAL_JUNCTION 150 2.270

G2M_CHECKPOINT 197 −2.819

PROTEIN_SECRETION 92 −3.075

E2F_TARGETS 199 −3.502

Enriched in BEAS-2B cells exposed to biomass UFP

HYPOXIA 168 2.920

MTORC1_SIGNALING 194 2.555

PROTEIN_SECRETION 92 2.534

TNFA_SIGNALING_VIA_NFKB 182 2.363

FATTY_ACID_METABOLISM 130 2.350

ANDROGEN_RESPONSE 89 2.337

G2M_CHECKPOINT 197 2.335

E2F_TARGETS 199 2.330

INTERFERON_GAMMA_RESPONSE 158 2.263

MYC_TARGETS_V1 198 2.222

INFLAMMATORY_RESPONSE 127 2.115

BILE_ACID_METABOLISM 76 2.080

COMPLEMENT 139 2.049

TGF_BETA_SIGNALING 50 1.875

MYOGENESIS 123 −2.445
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Fig. 2 Enrichment plots along the entire time course of the TNF-α signaling via NF-kB hallmark gene set in BEAS-2B cells exposed to diesel UFP.
Enrichment plots show an overrepresentation of genes on the left of the graph (vertical black lines), corresponding to a significant enrichment in
up-regulated genes of this gene set after exposure to diesel UFP. The green line indicates the trend of the enrichment score (ES) with genes
mostly contributing to the gene set enrichment located on the left with respect to the ES maximum

Fig. 3 Expression profiles of genes showing statistically significant expression changes over time in BEAS-2B cells exposed to diesel UFP. Genes
have been grouped into 9 clusters showing distinct expression profiles during the time of the experiment. For each plot, the expression values of
the clustered genes are represented in either control cell lines (green) or cells after UPF diesel exposure (red), respectively. Solid line indicates the
median instead shadow the median ± S.D. (standard deviation) of the expression values at each time point
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chosen according to their inclusion in the gene set of
next-maSigPro cluster and of GSEA hallmarks. More-
over, we proceeded with a deep literature mining ana-
lysis referring to specific keywords such as lung diseases,
cardiovascular. Further details are reported in the legend
of Table 2. Overall, qPCR results confirmed the expres-
sion patterns at 4, 8, 16, 20 h identified by RNA-seq in
BEAS-2B exposed to diesel UFP and values from the
two types of transcriptional assay resulted highly corre-
lated across all time points (average Pearson correlation
value of 0.75 between expression levels from RNA-seq
and qPCR; Table 2). Alternatively to qPCR validation, to
support the evidences of gene expression profiling and
bioinformatics analyses, we quantified the release of four
soluble factors, involved in the inflammatory signaling,
cell proliferation and regulation of angiogenesis, in cells
supernatants. In particular, we evaluated with ELISA assay

the protein levels of IL-6, IL-24, EREG, and VEGFA in the
protein lysate of BEAS-2B cells exposed to diesel and bio-
mass UFP. As compared to cells exposed to the sole
medium, cells exposed to UFP from diesel significantly
increased the release of interleukins, IL-6 and MDA-7/
IL24, and of EREG and VEGF (Table 3). On the contrary,
biomass UFP did not induce any significant modulation of
the analyzed proteins (data not shown).

Discussion
In our study we designed and adopted a time course ex-
periment to investigate, through RNA-seq, the transcrip-
tional changes induced in human bronchial epithelial
cells by the exposure to UFP from diesel and biomass
combustion. The bioinformatics analysis of transcrip-
tional data reveals that the two different UFP induce,
since the earliest time points, different transcriptional

Fig. 4 Network analysis of selected DEGs in cells exposed to from diesel UFP. The initial 545 DEGs were filtered by the presence in the core
enrichment of four significant hallmarks GSEA (TNF-α signaling via NF-κB, Inflammatory response, EMT, Xenobiotic metabolism) or by literature
mining prioritization; (further details on DEGs selection are in section Material and Methods, and in Additional file 14: Table S9). Of the 129
resulting DEGs, network analysis identified a biological interaction for 122 genes (rounded shape) and 42 further “linker” genes (diamond shape).
Some of the most interesting linker genes are investigated in the Discussion section (red board). Grey lines indicate manually curated interactions
according to Reactome FI database. Size of DEGs nodes is directly proportional to the number of differentially expressed time points; the FC at
each time point in cells exposed to UFP from diesel vs control is also indicated. The complete network inclusive of the predicted interactions is
available as Additional file 15: Figure S6
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dynamics resulting in the activation of specific genes
and activation of some common molecular mechanisms,
although at very different amplitudes.
The gene expression analysis evidenced that the exposure

to diesel UFP induces a stronger modulation of gene tran-
scription as compared to biomass in term of differentially

expressed genes, temporal patterns, and pathway activation.
We can hypothesized that this difference is connected to
the different physicochemical properties of the two types of
UFPs. Indeed, in a previous paper [7], we showed that
diesel particles are characterized by the presence of PAHs
associated with diesel soot, such as pyrene, phenanthrene,
benzo[a]anthracene and dibenzo[a,h]anthracene, while bio-
mass particles are enriched in fluoranthene and pyrene.
Moreover, we demonstrated that metals are present at
higher concentrations in diesel samples as compared to bio-
mass ones. These compounds have been indicated as the
main contributors to the effects induced by the combustion
particles and differences in their relative content have been
suggested to explain the variability of the toxicological
responses elicited by such particles [5, 31]. Although a
direct association of the different physicochemical proper-
ties and the diverse transcriptional effects is still speculative,
the previously reported evidences might partly explain the

Table 2 Comparison of qPCR versus RNA-seq of 23 selected DEGs in BEAS-2B cells exposed to diesel UFP. Numbers represent fold
changes of separate experiments (n = 3) for each time point. Fold changes for both qPCR and RNA-seq are calculated considering
exposed cells versus control cells after normalization. Pearson correlation between qPCR and RNA-seq FC for 4, 8, 16 and 20 h
resulted in 0.759, 0.772, 0.715 and 0.774 respectively

Gene symbol qPCR (FC) RNAseq (FC) Biological annotations (GSEAe)

4 h 8 h 16 h 20 h 4 h 8 h 16 h 20 h

ALDH3A1 3.49 6.79 6.40 3.74 4.64 4.95 4.65 4.14 Enzyme

CCL5 1.78 1.78 −1.04 −1.71 1.85 1.19 1.63 −1.16 Secreted protein (NFK; INF)

CDKN1A 1.68 1.51 1.29 1.41 1.56 1.62 1.27 1.34 Transcription factor (NFK; INF)

CXCL2a −1.52 −1.04 2.01 3.24 1.28 1.37 1.26 2.09 Secreted protein (NFK; INF)

EPGNb 6.50 6.04 5.19 4.09 5.92 6.94 8.52 6.06 Secreted protein

FOSL1 1.37 1.87 1.94 1.27 1.29 1.75 1.70 1.98 Transcription factor (NFK)

GREM1b 1.66 2.38 3.50 2.64 1.22 1.97 2.61 2.76 Secreted protein (EMT)

HES1 3.56 1.21 1.47 2.34 2.15 −1.19 1.26 1.28 Transcription factor (NFK)

HMOX1b 3.70 2.95 2.51 2.34 3.46 2.48 1.16 1.35 Enzyme (XEN)

IER3 1.88 1.54 2.15 1.63 1.22 1.89 1.85 2.04 Secreted (NFK)

IGFBP1 4.20 2.86 3.73 1.95 4.21 4.73 3.82 3.71 Transcription factor (XEN)

IL1A 2.47 1.71 2.32 2.08 2.57 1.79 2.25 1.91 Secreted protein (NFK;INF)

IL1B 2.10 2.60 3.70 5.30 2.16 1.83 3.73 3.49 Secreted protein (NFK;INF)

LIFc 1.86 1.72 1.98 1.74 1.36 1.69 1.84 2.25 Secreted protein (NFK)

MAFFc 1.41 1.41 1.96 1.67 1.52 1.29 1.79 1.45 Transcription factor (NFK)

NFE2L2 −1.76 −1.08 1.26 1.94 1.64 1.26 1.28 1.13 Transcription factor (NFK)

PPP1R15Ad 3.39 1.51 −1.12 1.07 2.24 1.88 1.18 1.17 ENZYME (NFK)

SLC16A6 3.86 1.58 1.05 2.09 4.09 1.78 1.37 1.29 Solute carrier (NFK)

SLC7A5 1.57 2.28 −1.08 2.90 1.25 1.82 1.77 1.98 Solute carrier

STC2a 3.54 2.25 1.60 1.48 1.94 2.03 1.60 1.53 Secreted factor

TGIF1 2.37 1.41 1.15 1.18 1.77 1.23 1.34 1.34 Transcription factor (NFK)

TNFAIP3a −1.12 1.22 2.33 2.26 1.01 1.72 1.76 1.48 Transcription factor (NFK;INF)

TXNRD1b −1.04 1.92 1.57 2.14 1.43 1.54 1.51 1.55 Enzyme

Gene included in next-maSigPro cluster analysis: acluster 2; bcluster 9; ccluster 8;dcluster 3
eGSEA hallmarks gene set legend: NFK TNF-α signaling via NF-kB, INF inflammatory response, XEN, xenobiotic metabolism, EMT, epithelial mesenchymal transition

Table 3 Protein release of BEAS-2B cells exposed to diesel UFP
for 20 h assessed by ELISA. Numbers represent mean ± SEM of
separate experiments (n = 6)

Protein name Control (pg/ml) Diesel (pg/ml) ANOVA test*

IL-6a 158 ± 14.7 289 ± 15.7 0.006

IL-24a 113 ± 11.6 196 ± 30.9 0.041

EREG 130 ± 2.9 196 ± 4.2 0.032

VEGFAa 224 ± 36.2 356 ± 40.7 0.037

*One Way ANOVA (Bonferroni and Dunnett’s), p < 0.05 compared to
untreated cells
agene temporally modulated in cluster 2 (see Additional file 11: Table S7)
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stronger biological response induced by the exposure to
diesel UFP.
Bioinformatics analysis allowed the identification of 11

genes significantly induced just 1 h after exposure to diesel
UFP and remained constantly over-expressed along the
entire time course. This immediate and extended modula-
tion indicates that cell responses are activated shortly after
the exposure, and sustained in time. The most modulated
genes by diesel UFP were functionally annotated to xeno-
biotic metabolism (CYP1A1, CYP1B, and TIPARP) and in-
flammatory response (IL24, EPGN, IL1A, and IL1B). The
expression of these genes was also induced by biomass
UFP, but at a much lower extent and at later time points
(Additional file 6: Table S3). Since PAHs activate the tran-
scription of genes of the xenobiotic metabolism after bind-
ing the AhR transcription factor [32], these results are
concordant with the higher content of PAHs in diesel par-
ticles. Several studies reported that AhR activation and
CYP enzymes increase in in vitro and in vivo models
exposed to diesel particles [9, 33], while, to our knowledge,
data on biomass and wood particles effects are still lack-
ing. Bonvallot et al. [34] have reported the induction of
CYP1A1 gene expression in 16HBE cells treated with na-
tive diesel particles and their organic extracts, but not with
stripped particles, showing that the organic compounds
are responsible for this over-expression. A more recent
study has investigated different diesel samples and found
that particles with higher PAHs content were more effect-
ive in inducing CYP1A1 and markers of inflammation and
oxidative stress [35]. The same authors analyzed also
inflammatory markers, in particular IL1B, in mono-
cytes exposed to traffic-derived, wood, and commer-
cial diesel particles, reporting differences in activated
signaling pathways in relation to the particle chemical
composition [36].
Functional enrichment analysis revealed that both types

of particles activate some common molecular mecha-
nisms, although at very different amplitudes. As compared
to biomass, exposure to diesel UFP determined higher en-
richment scores of biologically relevant gene sets and a
larger number of differentially expressed genes in the core
enrichment of the modulated pathways. For instance, both
diesel and biomass up-regulated genes comprised in the
gene sets of TNF-α signaling via NF-kB, inflammatory re-
sponse, and hypoxia but only the exposure to diesel UFP
induced this up-regulation along the entire time course.
Among the genes belonging to the core enrichments of
the TNF-α signaling via NF-kB pathway (Fig. 2) and exert-
ing a profound temporal expression changes by diesel
UFP some were confirmed at RNA and protein levels (Ta-
bles 2 and 3). By literature mining, we found that these
genes of TNF-α signaling via NF-kB pathway are involved
in human diseases such as lung cancer, respiratory, and
cardiovascular dysfunctions (Additional file 13: Table S8).

Interestingly, TNF-α is an inflammatory mediator, which
has a tumor-promoting role in various stages of carcino-
genesis, induces EMT mediated by TGF-β, promotes
angiogenesis through the release of VEGF, and activates
NF-kB signaling in models of cancer [37]. Inflammatory
mediators as CCL5, CXCL2, and some interleukins (e.g.
IL6, IL8) contribute to several human diseases through
processes including inflammation and angiogenesis [37].
Several studies have shown that exposure to diesel parti-
cles and to some diesel compounds (e.g. 1-nitropyrene)
triggers the release of such mediators in vitro and in vivo
[38–40]. Release of LIF, IL6, and IL1B has been also
observed in alveolar and bronchial cells exposed to ambi-
ent PM [41]. IL6 is a well-known marker of diesel and
airborne PM exposure, and it has been already suggested
to contribute to particles-induced cardiovascular and re-
spiratory diseases [1].. NFE2L2 (NRF2) is an important
transcription factor activated by high ROS levels. It regu-
lates genes involved in oxidative stress, inflammation and
injury response, and has a protective role in lung and car-
diac diseases [42]. In accordance with a recent paper on
gene expression modulation after PM exposure [43], our
data have shown that diesel exposure regulates many
NFE2L2 target genes involved in glutathione synthesis
(GCLM), cysteine-glutamate transporter (SLC7A11) and
antioxidant response (HMOX1, TXNRD1, and NQO1).
VEGF (VEGFA) is a pro-angiogenic factor with multifunc-
tional roles, including the regulation of both physiological
and pathological angiogenesis and vascular remodeling,
promoting endothelial cells proliferation and cell migration
[44, 45]. It has been reported that an increased expression
of VEGF, at the mRNA and protein level, in A549 and
BEAS-2B cells, occurs after the exposure to external stimuli
such as IL1B, TNF-α and lipopolysaccharide (LPS) [46].
This event suggests that pulmonary inflammation contrib-
utes to the up-regulation and release of VEGF from lung
epithelial cells with consequent modulation of lung endo-
thelial cells function and permeability [46]. A recent work
from Tseng et al. [47] has reported that endothelial cells ex-
posed to diesel particles release VEGF through the in-
duction of intracellular ROS formation and the
secretion of the pro-inflammatory cytokines TNF-α and
IL6. VEGF together with other markers, such as MMPs,
HO-1 and ET-1, correlates with the development of
atherosclerotic plaque and angiogenesis in mice follow-
ing exposure to ultrafine PM [48] and diesel particles
[49–51]. Noticeably, in diesel we obtained a significant
enrichment also for the EMT gene set (Table 1). Since
EMT is an important step in the carcinogenic process,
this result further supports the tumorigenic potential of
exposure to diesel UFP [52]. These observations
indicate that diesel particles might contribute to the
carcinogenic potential of fine PM [53] at least in cities
where traffic contribution to air pollution is relevant.
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To extract regulatory connections from the gene
expression data, we applied a gene regulatory network
analysis and, at least for the exposure to diesel UFP, we
discovered some hidden regulators that may act up- and
down-stream to modulate the expression of genes re-
sponsive to diesel exposure (Fig. 4 and Additional file 15,
Figure S5). Among the regulators, we have found the
transcription factor STAT3, which is activated by
pathways involved in inflammation, angiogenesis, and
epithelial remodeling [54], and participates in several
physiologic cellular function such as proliferation, differ-
entiation, and apoptosis [55, 56]. STAT3 activation also
contributes to pathological processes as oncogenesis, by
augmenting tumor invasion and angiogenesis [57, 58].
Cao and coworkers [59] reported the activation of
STAT3 in bronchial epithelial cells exposed to diesel
exhaust. STAT3 target genes include HES1, HMOX1,
IL6, IL24 and VEGF, whose modulation has been vali-
dated here by qPCR (Table 2) and at protein level (Table
3). The hypoxia inducible-factor-1a (HIF1a), another
relevant node of the reconstructed gene network, can
also induce VEGF transcription, and both these genes
were previously found modulated in HUVEC cells ex-
posed to diesel [50]. Consistently with the functional en-
richments analyses that highlighted the role of TNF-α
signaling via NF-kB, the gene network pointed out to the
transcription factor NFKB1 (a subunit of the NF-κB
complex), previously reported to be activated upon
diesel exposure [11]. NFKB1 has been related to the car-
cinogenic process through its biological role as cell sur-
vival, differentiation, inflammation, and growth [15, 60].
Recently, it has been demonstrated that UFP from ve-
hicular traffic promotes vascular calcification via NF-κB
signaling activation [61], indicating its possible contribu-
tion to cardiovascular diseases. Moreover, the gene
network analysis identified, as a relevant node, the onco-
gene KRAS, that was demonstrated to induce the over-
expression of EREG [62], a protein that we found to be
significantly released by cells exposed to diesel UFP. To
our knowledge, EREG modulation has never been re-
ported before in cells exposed to diesel UFP, although
we previously reported its release in BEAS-2B and A549
cells exposed to PM [17, 63]. These findings might have
a significant role in relation to diesel and PM carcino-
genic potency, since deregulation of EREG is known to
contribute to the progression of different cancers, including
lung, and to lead to an aggressive phenotype and an un-
favorable prognosis in KRAS-mutant non-small-cell lung
carcinoma (NSCLC) [62, 64],. Overall, the network
reconstruction indicated the presence of transcription
factors that might activate novel signaling pathways in
BEAS-2B cells at diesel exposure.
Nonetheless, the present investigation presents some

limitations. BEAS-2B is a cell line commonly used in in

vitro models to investigate the potential effect of PM
and other airborne pollutants on human bronchial epi-
thelia [65, 66]. However, the use of mono cell culture
has clearly disadvantages (e.g. might represent a simpli-
fication of the real conditions, lacking the airway multi-
cellular barriers and the air surface liquid secreted by
the lung epithelial cells). Recently, systems with cells
cultured at Air Liquid Interface (ALI) received consid-
erable attention as an alternative method to expose
epithelial cells when investigating the biological effects
of ultrafine particle matters [67, 68]. However, studies
based on ALI exposure systems still benefit of further
experimental validations before able to replace conven-
tional culture condition in air pollution toxicological
studies. In the present study, BEAS-2B cells have been
exposed to a low dose of UFP (2.5 μg/cm2) that,
although lower than what reported by Schwarze and
co-workers [8], is similar to the deposition dose calcu-
lated by Li et al. [69] for the tracheobronchial region.
Indeed, starting from an environmental concentration
of 79 μg/m3/24 h, Li and collaborators indicated that
the real life daily exposure might determine a deposition
of PM2.5 particles up to 200 μg/cm2 in the nasopharyngeal
tract and up to 2.3 μg/cm2 in the tracheobronchial region
in persons with healthy conditions. During the winter
season, the metropolitan area of Milan might experience
environmental concentrations that exceed the level of
79 μg/m3/24 h (Regional Environmental Protection
Agency ARPA Lombardia) and, thus, the deposition of
PM2.5 particles in the tracheobronchial region might be
higher than the dose adopted here. Nevertheless,
transcriptional profiles of cells exposed at this dose
indicate that even a low UFP concentration induces a
transcriptional modulation. In this respect, we believe that
the conditions we selected in our experimental design,
although not perfectly mimicking what experienced in a
real setting, still constitute an adequate working scenario
to recapitulate the impact on human health of UFP from
the selected sources of emission.

Conclusions
Altogether, these data provide new insights into UFP
toxicity and shed new light on possible biochemical
mechanisms by means of which these particles may act
as carcinogens and harmful factors for human cardiovas-
cular disease. In this direction, we think that future in-
vestigation should focus on the functional role of genes
such as STAT3, HIF1a, NFKB1 and KRAS that have
emerged as major regulators from the network analysis.
An adequate understanding of the mechanisms activated
by ambient particles will enable in the future to improve
knowledge in the field of PM risk assessment as well as
the setting of new strategies towards health protection.
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Additional file 2: Figure S2. Alamar Blue viability test of BEAS-2B
exposed to increasing concentrations of diesel and biomass UFP.
Alamar blue assay (Alamar Blue® Reagent, Catalog nr. DAL1025) was
performed according to manufacturers’ instructions. Alamar Blue is a
non-toxic dye that changes its colour when active cells metabolize it.
Cells viability was proportionally related to the colour of the reagent
and it was expressed as percentage (%) of living cells respect to
control samples (untreated cells, 100%).The experiments were
replicate 3 times and results are expressed as mean percent ± SEM
of viable cells in comparison to controls (untreated cells). (PDF 92 kb)

Additional file 3: Table S1. Total number of reads and number and
percentage of reads mapped by TopHat in each analyzed sample. (XLS 39 kb)

Additional file 4: Figure S3. Distributions of normalized cpm counts
(in log2) for the 13.309 genes passing the expression filter. The uniform
distribution of read counts across all 45 samples supports the elevate quality
of sequencing data. Sample IDs are in Additional file 3: Table S1. (PDF 549 kb)

Additional file 5: Table S2. FC and p-value of the genes differentially
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controls) at the different time points. (XLS 3855 kb)

Additional file 6: Table S3. FC and p-value of the genes differentially
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to controls) at the different time points. (XLS 3855 kb)

Additional file 7: Table S4. Fold change of genes differentially
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Additional file 8: Figure S4. Temporal variation of fold changes for
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along the entire time course of BEAS-2B cells, exposed to diesel UFP.
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Additional file 9: Table S5. Functional enrichment of gene sets from
GSEA Hallmarks collection in cells exposed to diesel UFP. (XLS 48 kb)

Additional file 10: Table S6. Functional enrichment of gene sets from
GSEA Hallmarks collection in cells exposed to biomass UFP. (XLS 49 kb)

Additional file 11: Table S7. Genes identified by maSigPro as
differentially modulated in time during the exposure to biomass or diesel
UFP, respectively. (XLS 66 kb)

Additional file 12: Figure S5. Expression profiles of genes showing
statistically significant expression changes over time in BEAS-2B cells
exposed to biomass UFP. Genes have been grouped into 9 clusters
showing distinct expression profiles during the time of the
experiment. For each plot, the expression values of the clustered
genes are represented in either control cell lines (green) or cells after
UPF biomass exposure (blue), respectively. Solid line indicates the
median instead shadow the median ± S.D. (standard deviation) of the
expression values at each time point. (PDF 330 kb)

Additional file 13: Table S8. Detail of the filtering criteria for each of
the DEGs from network analysis (Fig. 4); for each gene, the number of
significant time points, presence in the core enrichment of the selected
GSEA hallmarks or the number of Pubmed publications with
cardiovascular diseases, lung cancer, or lung diseases terms are indicated.
(XLS 78 kb)

Additional file 14: Table S9. Biological interactions of genes from
network analysis (Fig. 4 and Additional file 15: Figure S6) according to the
Reactome FI database; for each interaction, the type of regulation and
the score are indicated. Scores range from 0 to 0.99 for predicted while
are equal to 1 for manually annotated interactions. (XLS 123 kb)

Additional file 15: Figure S6. Complete network from Fig. 4 inclusive of
predicted and manually curated interactions according to the Reactome FI
database (see Additional file 14: Table S9), respectively as dashed or grey
lines. As for Fig. 4, size of DEGs nodes is directly proportional to the number
of differentially expressed time points; the FC at each time point in cells
exposed to UFP from diesel vs control is also indicated. (PDF 1247 kb)
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