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Two divergent Symbiodinium genomes
reveal conservation of a gene cluster
for sunscreen biosynthesis and recently
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Abstract

Background: The marine dinoflagellate, Symbiodinium, is a well-known photosynthetic partner for coral and other
diverse, non-photosynthetic hosts in subtropical and tropical shallows, where it comprises an essential component
of marine ecosystems. Using molecular phylogenetics, the genus Symbiodinium has been classified into nine major
clades, A-I, and one of the reported differences among phenotypes is their capacity to synthesize mycosporine-like
amino acids (MAAs), which absorb UV radiation. However, the genetic basis for this difference in synthetic capacity
is unknown. To understand genetics underlying Symbiodinium diversity, we report two draft genomes, one from
clade A, presumed to have been the earliest branching clade, and the other from clade C, in the terminal branch.

Results: The nuclear genome of Symbiodinium clade A (SymA) has more gene families than that of clade C, with
larger numbers of organelle-related genes, including mitochondrial transcription terminal factor (mTERF) and
Rubisco. While clade C (SymC) has fewer gene families, it displays specific expansions of repeat domain-containing
genes, such as leucine-rich repeats (LRRs) and retrovirus-related dUTPases. Interestingly, the SymA genome encodes
a gene cluster for MAA biosynthesis, potentially transferred from an endosymbiotic red alga (probably of bacterial
origin), while SymC has completely lost these genes.

Conclusions: Our analysis demonstrates that SymC appears to have evolved by losing gene families, such as the
MAA biosynthesis gene cluster. In contrast to the conservation of genes related to photosynthetic ability, the
terminal clade has suffered more gene family losses than other clades, suggesting a possible adaptation to symbiosis.
Overall, this study implies that Symbiodinium ecology drives acquisition and loss of gene families.
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Background
Dinoflagellates are one of the major groups in the super-
group Alveolata, with an estimated ~ 2500 species [1].
They inhabit aquatic environments and nearly half are
phototrophic [1]. Dinoflagellate evolution has been re-
solved using morphological and molecular phylogenetic
analyses [2, 3]. Comparative analyses suggest that

horizontal gene transfers are linked to major transitions
in dinoflagellate evolution [4, 5].
Recent studies of dinoflagellates focused on their life

styles in relation to marine environments [1, 6]. Dinofla-
gellates are the major group of red tide-producing mi-
croorganisms [7], specialized for toxin biosynthesis [8].
However, dinoflagellates of the genus Symbiodinium are
renowned for their symbiotic relationships with
reef-building corals [9, 10], which are foundational to
marine ecosystem biodiversity [11–13].

* Correspondence: eiichi@oist.jp; c.shinzato@aori.u-tokyo.ac.jp
1Marine Genomics Unit, Okinawa Institute of Science and Technology
Graduate University, Onna, Okinawa 904-0495, Japan
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Shoguchi et al. BMC Genomics  (2018) 19:458 
https://doi.org/10.1186/s12864-018-4857-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-018-4857-9&domain=pdf
mailto:eiichi@oist.jp
mailto:c.shinzato@aori.u-tokyo.ac.jp
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


The extensive diversification of Symbiodinium has
been well described [11–16]. Molecular phylogenetics
has classified these dinoflagellates into nine major
groups, A to I [17]. Symbiodinium strains are hosted by
ciliates, foraminiferans, sponges, cnidarians, molluscs,
and acoelomorphs [12, 18]. It is thought that clade A di-
verged first (the oldest) and that lineages C and H in the
crown clade are the most recent (the youngest) (Fig. 1a).
Clade A Symbiodinium may also form parasitic as well
as mutualistic symbioses with other organisms [19–21].
The diversity and dominance of clade C in association
with reef invertebrates has been reported in the Great
Barrier Reef (GBR), Australia, and at Zamami Island,
Okinawa, Japan [22].
Physiological work on Symbiodinium diversity has

been reported using cultured Symbiodinium strains
[23–25] and recent work clarifies differences in me-
tabolite production among Symbiodinium clades [26].
One of the pioneering studies reported differences in
mycosporine-like amino acid (MAA) production [23], but
the genetic basis of this chemistry remains unknown in
Symbiodinium. MAAs function as anti-oxidants and
UV-absorbing molecules [27]. In a cultured dinoflagellate,
Gymnodinium sanguineum, MAAs function as specific
UV blockers to protect the dinoflagellate photosynthetic
machinery [28]. Recently, four biosynthetic enzymes in a
cyanobacterium were characterized using heterologous
gene expression and an MAA biosynthetic gene cluster
encoding those enzymes was characterized [29]. Further
reports suggested that three enzymes involved in MAA
biosynthesis, dimethyl 4-deoxygadusol (DDG), O-methyl-
transferase (O-MT), and ATP-grasp, are conserved in bac-
teria [30, 31] and the enzyme for the fourth biosynthetic
step from the cluster is either a non-ribosomal peptide
synthetase (NRPS) homolog or D-alanine (D-Ala) D-Ala
ligase-like [30, 32]. Although these genes have also been
found in eukaryotic genomes [33–37], the gene cluster has
been identified only in bacterial [38] and red algal
genomes [39]. One hypothesis is that the capacity for
MAA production in Symbiodinium may be essential
for symbioses involving hosts that cannot produce
MAAs [27, 40].
Draft genomes have been published for three Symbio-

dinium taxa [4, 41, 42]. The most recent report [42] fo-
cused on diversification of transmembrane transporter
genes. Comparative analysis also described the import-
ance of duplicated genes as an evolutionary mechanism,
underscoring the importance of lineage-specific expan-
sions for symbiotic lifestyles, especially for genes encoding
ion transporters. Comparative transcriptomic analyses
have identified possible lineage- or clade-specific gene
families [43]. While genome evolution of parasitic
apicomplexans has been extensively studied, genomes
of symbiotic dinoflagellates are still comparatively little

known. Therefore, comparative genomic studies of diverse
Symbiodinium species are essential to better understand
Symbiodinium diversity. To clarify the genetic basis for
different physiological phenotypes, we decoded the ge-
nomes of culturable clade A and clade C Symbiodinium
and performed comparative analyses.

Results
Genome assembly and physiological characters in
divergent Symbiodinium taxa
To obtain Symbiodinium genome sequences from early-
and late-branching lineages, two strains (clade A, Y106
and clade C, Y103) were selected for genome sequencing
(Fig. 1b and c). A molecular phylogenetic tree (Fig. 1a)
from the recent analysis by Pochon et al. [12] and ITS
sequences showed that Y106 belongs to clade A3
(SymA). In contrast, the subclade of Y103 was not clear
from our phylogenetic analysis (SymC), although its ITS
suggested that it is similar to clade C92 [44].
Physiological characterization by mass spectrometry

confirmed that SymA3 produces an MAA, Porphyra-334
(Fig. 1d and e), which has an m/z of 347.1456 Da. On the
other hand, MAAs were not detected in SymC (Fig. 1d) or
in S. minutum (shown here as SymB) of clade B1 (data
not shown). These results are comparable to previously
reported differences at the clade level [23].
Using genomic DNA and mRNA from cloned cells, we

obtained sequence data using Illumina GAIIx and Hiseq
sequencers (Additional file 1: Tables S1 and S2).
Approximately ~ 200 Gbp of genomic sequences were
used for each assembly (Additional file 1: Table S1). In
our previous sequencing of the S. minutum (SymB) gen-
ome, sequence data amounted to ~ 56 Gbp from Roche
454 and Illumina GAIIx platforms [4]. Thus, the amount
of raw data in this study was much greater than that of
the previous study. The assembly was performed as de-
scribed previously, with several modifications [4]. We
produced two assembled genomes suitable for gene ana-
lyses (Additional file 1: Table S3), as in our previous
report [4]. Scaffolds totaled ~ 767 Mb and ~ 705 Mb for
SymA and SymC, respectively (Additional file 1:
Table S3). RNAseq data were derived from Symbiodinium
cultured under standard conditions, as described previ-
ously [4], or under dark conditions (Additional file 1:
Table S2). Data were assembled into 76,628 unique
cDNAs in SymA and 68,876 in SymC (Additional file 1:
Table S4). Gene predictions yielded 69,018 and 65,832
protein-coding models, respectively (Additional file 1:
Table S3). The following genome browser provides access
to the assembled data and predicted genes: http://marine
genomics.oist.jp/gallery/ [45]. Using TopHat with default
parameters [46], RNAseq reads were mapped by library
(Additional file 1: Table S2) onto the draft genomes and
information for read counts is available on the browser
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Fig. 1 (See legend on next page.)
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(Additional file 2: Figure S1). For SymA, 67.5% of the
gene models were supported by RNAseq data and
62.5% for SymC. A characteristic feature of gene struc-
tures in SymC was a higher frequency of genes lacking
introns (~ 19.7%) (Additional file 1: Table S3). The GC
contents of the assembled SymA and SymC genomes
were 50 and 43%, respectively (Additional file 1: Table
S3). Unidirectional arrangements of genes and three
major types (GT/GC/GA) of the first two nucleotides
of introns [4] were found in the genomes of SymA and
SymC (Additional file 1: Table S3).

Gene content of each Symbiodinium genome
Both genomes were predicted to contain more than
65,000 genes (69,018 for SymA and 65,832 for SymC)
(Additional file 1: Table S3). These numbers are larger
than those of previously reported Symbiodinium ge-
nomes (41,925 for S. minutum, 36,850 for S. kawagutii,
and 49,109 for S. microadriaticum) [4, 41, 42], although
they fall within the estimated range of 38,000–87,000
[47]. To clarify which gene families are conserved or ex-
panded in each lineage, we annotated predicted proteins
using a pfam domain search (http://marinegenomics.
oist.jp/gallery/) and compared the proteins with genes of
S. minutum. We found 4435 domain classes for 26,261
SymA genes, 4169 for 21,107 SymB genes, and 4122 for
23,808 from SymC (Fig. 2a).
Next, we compared gene numbers within gene families

in each genome. Lineage-specific gene family expansions
were defined as Pfam domain groups with multiple cop-
ies in Symbiodinium, in which gene numbers were sig-
nificantly greater in one genome compared to the other
two. The 30 most expanded gene families are summa-
rized for SymA (Additional file 1: Table S5) and SymC
(Additional file 1: Table S6), respectively. Our analyses
indicate that the majority of the top 30 Pfam domains in
SymA correspond to those reported previously [42].
These include reverse transcriptase (RVT), regulator of
chromosome condensation (RCC1), and endonuclease
(Additional file 1: Table S5). In the SymC genome, gene
families for RVT, DNA methylase, integrase, and
zf-CCHC are expanded. Thus, comparisons of gene
numbers with Pfam domains showed many copies of

reverse transcriptase in SymA and SymC. Special expan-
sions in the genome of the late-branching group were
predicted in gene families with DNA methylase or
zf-CCHC domains. Similar observations have been re-
ported in the Symbiodinium kawagutii genome [41]. It is
possible that DNA methylation is related to endogenous
retroviral expression [48]. zf-CCHC domains have been
found in retrovirus GAG proteins [49]. These larger
gene numbers in SymA and SymC (Additional file 1:
Table S3) seem to be partly related to the richness of en-
zyme genes in many retroviruses.
To confirm the relationship between lineage-specific

expansions and potential retrogenes, we constructed a
molecular phylogenetic tree of UTPase proteins from
Symbiodinium genomes (Fig. 2b). dUTPases prevent the
misincorporation of uracil into DNA, and these enzymes
have recently been suggested to regulate host interac-
tions [50]. The two Symbiodinium genomes (SymA and
SymB) encode one or two eukaryotic dUTPases per gen-
ome (Fig. 2b). On the other hand, the dUTPases in
SymC are expanded and some of them had RVT do-
mains. In addition, many of them are intronless, suggest-
ing that gene expansion in SymC is due to integration of
processed cDNAs [51].

Genes of endosymbiotic origin are conserved in the
early-branching genome
When proteins containing transposable elements or
retrovirus-related Pfam domains were removed from the
calculation, it became apparent that organelle-related
genes (mitochondrial or plastid proteins) have been ex-
panded in SymA (Additional file 1: Table S5). In particu-
lar, the gene expansion for mitochondrial transcription
termination factor family protein (mTERF) was found in
the early-diverging genome (Fig. 2c). mTERF genes have
been identified as putative organellar transcription
factors [52, 53]. Land plants have the highest number of
mTERF genes (~ 30 members), which are targeted to
plastids and mitochondria [54]. The mammalian mTERF
family (four genes) is important in mitochondrial gene
expression. In addition, gene numbers for Peridinin-
chlorophyll A binding protein (PCP), chlorophyll A-B
binding proteins, and Rubiscos were more numerous

(See figure on previous page.)
Fig. 1 Phenotypic differences in the production of mycosporine-like amino acids of two divergent Symbiodinium species. a. Phylogenetic positions of
the Symbiodinium species analyzed, SymA (green) and SymC (red). A phylogenetic tree was constructed using the Maximum-Likelihood method,
based on 28S rDNA sequences [12]. The scale bar shows 0.2 changes per site. b. Zoospore of SymA. Scale bar, 5 μm. c. Zoospore of SymC. A short,
transverse flagellum originating from the cingulum and a long longitudinal flagellum originating from the sulcus, are observed in zoospores (arrows).
d. High-performance liquid chromatography (HPLC) comparison of aqueous extracts prepared from SymA (black) and SymC (pink) detected at
330 nm. The largest difference between SymA and SymC is seen in peaks with a retention time of ~ 4.5 min (arrow). The large peak in SymA is not
detected in SymC. e. High-resolution mass spectrum of isolated Porphyra-334 (MH+ 347.1456, C14H23N2O8, Δ 0.74 mmu), showing the production of
mycosporine-like amino acid (MAAs) by SymA (arrow). Inset shows the chemical formula of Porphyra-334
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than those of other Symbiodinium. Expansion of
chlorophyll a-binding proteins has also been reported
in Symbiodinium minutum [55]. Several genes for
Rubisco are tandemly aligned in the SymA genome,
consistent with a previous report in the dinoflagellate,
Prorocentrum minimum [56]. Differences in plastid
physiological responses to heat stress were analyzed
in SymA and SymB [57] and may be due to the ex-
panded plastid-related proteins. In a future study, the
relationship between stress and expansion of
organelle-related genes will be determined, although
gene functions in organelle genomes might also be
important to understand differences in sensitivity to
heat and light stress [58, 59].

Expansions of repeat domain-containing genes in the
late-branching genome
There were fewer gene families in the SymC genome
than in SymA or SymB. On the other hand, genes for re-
peated domains are expanded, including leucine-rich re-
peats (LRR), FNIP (initial “FNIP” amino acids) repeats,
and tetratrico peptide repeats (TPR) (Additional file 1:
Table S6). Those domains are involved in protein-protein
interactions [60, 61]. Therefore, these expansions may be
similar to those of apicomplexans [62]. To characterize
expanded LRR-containing proteins, we performed
molecular phylogenetic analyses. Most of the expansion in
SymC pertained to one subfamily similar to FNIP repeats,
which has also been expanded in the Dictyostelium
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discoideum genome [63]. Other proteins with expanded
LRRs were similar to those of sds22 and PfLRR1, which
relate to cell cycle regulation [64]. Molecular phylogeny
showed that lineage-specific expansions occurred in both
SymB and SymC (Fig. 2d), suggesting that numbers of
genes for protein-protein interactions are expanded in the
late-branching genome.

Gene cluster for mycosporine-like amino acid (MAA)
biosynthesis in Symbiodinium
To determine the genetic basis for the difference in
MAA production (Fig. 1d and e), we surveyed the
decoded Symbiodinium genomes. MAA biosynthetic
genes have not been found in the genome of Symbiodi-
nium kawagutii [41], but they have been identified in
the host genomes of cnidarian anthozoans [35, 36]. We
found genes for MAA biosynthesis [29, 30] in the SymA
genome. In addition, preliminary RNAseq analysis indi-
cated that expression levels of those genes were similar
between light and dark conditions (Additional file 2:
Figure S1). Unexpectedly, the gene cluster corresponds
to that of bacteria, although the gene arrangement of
D-Ala D-Ala ligase differs from the bacterial arrange-
ment (Fig. 3). We constructed four phylogenetic trees
incorporating the genes in this cluster (Fig. 3a,
Additional file 2: Figures S2-S4). Dinoflagellate DDG
synthases clustered with those of anthozoans (Fig. 3a),
while O-methyltransferases and D-Ala D-Ala ligases
are shared with those of bacteria (Additional file 2:
Figures S2 and S4). The phylogenetic relationship of
ATP-grasp is unclear (Additional file 2: Figures S3). This
complicated result suggests that those genes have been
lost in eukaryotes or have been transferred several times.
It has been suggested that the fusion gene (3-dehydroqui-
nate synthase+O-methyltransferase) came from cyanobac-
teria [33] or via secondary endosymbiosis [65]. Our
analysis implies that these genes were likely acquired in
gene transfers via secondary endosymbiosis (Fig. 3a).

Discussion
Our comparative analysis identified genomic characters
of SymA and SymC, both of which were originally
isolated from bivalve molluscs. The higher GC content
of the SymA genome was similar to that reported in S.
microadriaticum [42], suggesting that this may be an
attribute of the earliest-branching lineage. Comparisons
of gene families suggest that the late-branching lineage
has lost more gene families than early-branching
lineages, or that the early-branching lineages have
acquired more gene families than the late-branching
lineage. In other words, in SymC, there are fewer gene
families, even though total gene numbers are expanded
in late-branching Symbiodinium.

Finally, we found that the genome of SymA in the
early-branching clade encoded a gene cluster for MAA
biosynthesis. As this gene cluster is conserved, the trans-
fer of large DNA segments probably occurred at an early
stage of endosymbiosis. However, we cannot exclude the
possibility that the cluster formed in the Symbiodinium
lineage. Our survey shows that the three genes for MAA
biosynthesis are found in S. microadriaticum and their
genomic locations are dispersed on three scaffolds,
22, 397 and 882 [66] (http://smic.reefgenomics.org).
Differences between the two genomes of clade A Sym-
biodinium also support reports of diversity in this early
diverging lineage [20, 21]. Although it is suggested that
adaptation to shallow-water environments may have
been maintained in clade A Symbiodinium [67], previous
reports for 54 species of symbiotic cnidarians have
shown that highly variable MAA concentrations are not
depth-dependent [68]. On the other hand, genes in this
cluster were not found in the SymC genome. Although
we surveyed raw data from publicly available Symbiodi-
nium genomes by BLAST search, orthologs of the fusion
gene (3-dehydroquinate synthase+O-methyltransferase)
were not found in SymB, S. kawagutii or SymC (data not
shown). Since SymB and S. kawagutii (clade F) genomes
also lack these genes [4, 41], it is likely that gene losses
occurred in the common ancestor of the crown lineages.
Loss of the capacity to produce UV-absorbing mole-

cules may have been compensated by expansion of other
genes for UV stress. We surveyed possible enzymes for
repairing UV-damaged DNA [69] because crypto-
chromes/photolyases in dinoflagellates have not been
surveyed in detail. Molecular phylogenetic analyses re-
vealed no large differences in such gene families.
Genomes of Symbiodinium encode three groups of cryp-
tochromes/photolyases [69] (Additional file 2: Figure S5).
Therefore, it is difficult to conclude that there is any
relationship between acquisitions of repair genes and
losses of MAA biosynthetic genes. On the other hand,
diverse MAAs have been detected in coral tissues [27,
70] and in shallow-water bivalves [40], so adaptation
to UV radiation may depend largely on symbioses
with MAA-producing or -using hosts [40, 71]. For
example, a report about Symbiodinium evolution and
bivalve symbiosis suggests that the Symbiodinium
in the bivalve, Fragum, might be a shade-loving
alga [72]. SymC, which was originally isolated from
Fragum, had no MAA biosynthetic gene cluster, so
our analysis supports that suggestion [72].

Conclusions
Gene expansions in Symbiodinium have occurred both by
tandem duplication and integration of processed cDNA,
possibly transposon-mediated. Comparative analyses
indicate that expanded genes in the early-branching
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lineage include organelle-related genes. The crown
lineage retains fewer gene families, but has acquired
repeat-domain genes for protein-protein interactions,
resembling massive gene losses and extracellular protein
expansions in apicomplexans [62]. Finally, our decoded
genomes show that the MAA gene cluster of secondary
endosymbiotic origin, which is present in some dinoflagel-
late genomes, has been lost in the crown lineage of
Symbiodinum. Taken together, these studies suggest that
gene losses and expansions of genes transferred via
secondary endosymbiosis drive Symbiodinium evolution.

Methods
Biological materials
Two dinoflagellates, Symbiodinium spp. clade A (SymA)
and clade C (SymC) were cultured to produce genomic
DNA and mRNA for sequencing. SymA and SymC are
harbored by the cardiid clams, Tridacna crocea and
Fragum sp., respectively, obtained in Okinawa, Japan. In
regard to host habitats, T. crocea is epifaunal and
Fragum is infaunal [72]. In the 1980s, isolations of
Symbiodinium cells were performed by Prof. Terufumi
Yamasu at the University of the Ryukyus using sterilized
seawater and micropipettes [73]. The cultured Symbiodi-
nium have been maintained since then in the laboratory
of Prof. Michio Hidaka, at the University of the Ryukyus.
SymA and SymC were designated as strains “Y106” and
“Y103,” respectively. By manually isolating single cells
under a microscope using a glass micropipette, each iso-
clonal line was established at the Marine Genomics Unit
of Okinawa Institute of Science and Technology
Graduate University in 2009. Repetitive subculture in
250-mL flasks has continued for 8 years, as previously de-
scribed [4]. Using an incubator (CLE-303, TOMY), all cul-
tures were maintained at 25 °C on a 12 h-light/12-dark
cycle at about 20 μmol.m− 2 s− 1 illumination with white
fluorescent lamps. The culture solution was artificial sea-
water containing 1× Guillard’s (F/2) marine-water enrich-
ment solution (Sigma-Aldrich), plus three antibiotics,
ampicillin (100 μg/mL), kanamycin (50 μg/mL), and
streptomycin (50 μg/mL). Although culturing difficulties
for some clade C Symbiodinium have been reported [74],
the same culturing conditions have resulted in similar
growth rates for SymA, SymC, and S. minutum (SymB).

Genome sequencing and assembly
DNA obtained from clonal cultures (25 °C) of SymA and
SymC was used for Illumina library construction
(Additional file 1: Table S1), as described previously.
Libraries were sequenced using the Illumina Genome
Analyzer IIx (GAIIx) and Hiseq (Additional file 1:
Table S1). Paired-end reads were assembled de novo with
IDBA_UD (ver. 1.1.0) [75], and subsequent scaffolding
was performed with SSPACE (ver. 3.0) [76] using Illumina

mate-pair information. Gaps inside scaffolds were closed
with Illumina paired-end data using Gapcloser [77]. As
described previously [4], sequences that aligned to another
sequence by more than 70% using BLASTN (1e− 100) were
removed from the assembly. Scaffolds > 1 kb were added
in version 1.0 of the genome assembly.

Transcriptome sequencing and assembly
Cells cultured at 25 °C were aliquoted and freshly cul-
tured under three types of conditions, 25 °C on
12 h-light/12-dark (Control), 31 °C on 12-light/12-dark
(heat-stressed), and 25 °C under 24-dark (dark condi-
tion) (Additional file 1: Table S2). After 48 h, cells were
collected and frozen for RNA extraction, as done previ-
ously [4]. RNAseq library preparation followed manufac-
turer protocols. RNA sequencing was performed using
the GAIIx platform. De novo transcriptome assembly
was performed using Trinity software [78].

Gene prediction and annotation
A set of gene model predictions (Gene Model ver. 1)
was generated mainly with AUGUSTUS [4], and a gen-
ome browser has been established using the Generic
Genome Browser (JBrowser) [79]. Annotation and iden-
tification of Symbiodinium genes were performed using
three methods or combinations of methods: reciprocal
BLAST analyses, screening of gene models against the
Pfam database [80] at an E-value cutoff of 0.001, and
phylogenetic analyses. Gene annotations are available at
the genome browser site (http://marinegenomics.oist.jp/
gallery/). Scaffold 1 of both SymA and SymC manifested
similarities to a bacterial genome, which was identified by
genome sequencing of Symbiodinium minutum [4], but
which was not included for gene annotation. Expansions
of gene families were predicted by chi-square values from
comparisons of gene numbers with Pfam domains.

Molecular phylogenetic analysis
Maximum likelihood (ML) phylogenetic trees were con-
structed using MEGA 5.2, as previously described [81]. ML
phylogenetic analysis of the DDG synthase family was also
carried out using RaxML with 1000 bootstraps and using
the GAMMA and Le-Gasquel model of rate heterogeneity
[82]. Bayesian inference was conducted with MrBayes v.3.2
[83] using the same replacement model and run for 4 mil-
lion generations and four chains until the posterior
probability approached 0.01. Statistics and trees were sum-
marized using a burn-in of 25% of the data. Phylogenetic
trees were visualized using Figtree (http://tree.bio.ed.ac.uk/
software/figtree/) and edited with Treegraph 2 [84].

MAA extraction from Symbiodinium
Symbiodinium cells were cultured at 25 °C for 1 mo on
a 12 h-light/12-dark cycle at about 20 μmol.m− 2 s− 1
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illumination, as described in the section, Biological ma-
terials, and cells were not exposed to UV. Biomass was
collected by centrifugation and extracted with methanol
(10 mL × 2) at room temperature. Methanol (10 mL)
was added to the biomass (0.4–0.6 g, wet weight)
followed by vortexing (1 min), sonication (10 min), and
centrifugation (7000 g, 10 min, 10 °C) to yield a metha-
nol extract. The resulting clear solution was transferred
to a new tube and stored at − 30 °C. Additional metha-
nol was added to the residue, vortexed, and kept over-
night at room temperature. After centrifugation, the
second methanol extract was decanted, pooled with the
first extract, and dried in a vacuum concentrator (40 °C),
and the crude extract was stored at − 30 °C before HPLC
analysis and purification. The dried methanol extract
was suspended in TFA (0.2%, 1 mL) followed by vortex-
ing (1 min), sonication (10 min), and centrifugation
(7000 g, 10 min, 10 °C) to give a clear aqueous solution,
which was collected and analyzed by HPLC and LC-MS.

MAA analysis by high performance liquid chromatography
(HPLC)
HPLC was run on a Nexera (LC-10 AD, Shimadzu)
equipped with an autosampler (SIL-30 AC), a column
oven (CTO-20 AC), and diode-array detector
(SPD-M20A). An ODS column (150 × 2.1 mm, 5 μm,
Hypersil Gold, Thermo) was used for MAA analysis and
an ODS column (250 × 4.6 mm, 5 μm, Cosmosil) was used
for purification. A 16-min gradient was used (A/B 100/0
for 0.0–5.0 min, 100/0 to 85/15 for 5.0–10.0 min, followed
by washing 5/95 for 10.0–13.0 min and equilibration
100/0 for 13.0–16.0 min. Solvents (A) Milli Q water and
(B) acetonitrile, both containing 0.1% TFA) were used for
separation of compounds. A 15 μL sample was injected
into the column using the auto-sampler and MAAs were
detected at λ330 nm. A constant flow rate 300 μL/min
was used and the column was kept at 25 °C.

MAA crude extracts purification by HPLC
The aqueous MAA extract from Symbiodinium was
dried and redissolved in 0.2% TFA (300 μL) and injected
into the preparative ODS column (250 × 4.6 mm, 5 μm,
Cosmosil) using the above HPLC and the target peak
(retention time, 8.0 min) was collected. The purified
component showed homogeneity in HPLC analysis and
was identified as porphyrin-334 by high-resolution mass
spectrometry.

Identification of MAAs from Symbiodinium by NanoLC-mass
spectrometry (NanoLC-MS)
As described previously [8], a Thermo Scientific hybrid
(LTQ Orbitrap) mass spectrometer was used for MS
data collection. The mass spectrometer was equipped
with an HPLC (Paradigm MS4, Michrom Bioresources

Inc.), an auto-sampler (HTC PAL, CTC Analytics), and a
nanoelectrospray ion source (NSI). The high-resolution
MS spectrum was acquired at 60,000 resolution in
FTMS mode (Orbitrap), full mass range m/z
150–500 Da, with capillary temperature (200 °C) and
spray voltage (1.9 kV), in positive ion mode. Crude
extracts and purified MAA were separated on a capillary
ODS column (50 × 0.15 mm, 3-μm, C18, Vydac). A 15-min
gradient was employed (100% A for 0.0–10.0 min, 100 to
50% A from 10.1 to 12.0 min, hold at 50% A until
15.0 min, equilibration at 100% A for 15.0 to 18.0 min,
where solvent A was water-acetonitrile 98:2 and solvent B
was water-acetonitrile 2:98, both containing 0.1% formic
acid. The flow rate was 2.0 μL/min and a 2.0 μL sample
loop was used for MAA separation.
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