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Abstract

Background: It is known that long non-coding RNAs (lncRNAs) play an important role in various biological
processes, including cell proliferation, differentiation and apoptosis. However, their functions and profiles in
lactation cycle of dairy cows are largely unknown. In this study, lncRNA-seq technique was employed to compare
the expression profiles of lncRNAs and mRNAs from Chinese Holstein mammary gland in dry and lactation period.

Result: Totally 3746 differentially expressed lncRNAs (DELs) and 2890 differentially expressed genes (DEGs) were
identified from the dry and lactation mammary glands of Holstein cows. Functional enrichment analysis on target
genes of lncRNAs indicated that these genes were involved in lactation-related signaling pathways, including cell
cycle, JAK-STAT, cell adhesion, and PI3K-Akt signaling pathways. Additionally, the interaction between lncRNAs and
their potential miRNAs was predicted and partly verified. The result indicated that the lactation-associated miR-221
might interact with lncRNAs TCONS_00040268, TCONS_00137654, TCONS_00071659 and TCONS_00000352, which
revealed that these lncRNAs might be important regulators for lactation cycle.

Conclusion: This study provides a resource for lncRNA research on lactation cycle of bovine mammary gland.
Besides, the interaction between lncRNAs and the specific miRNA is revealed. It expands our knowledge about
lncRNA and miRNA biology as well as contributes to clarify the regulation of lactation cycle of bovine mammary
gland.
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Background
Mammary gland is an important organ for the synthesis
and secretion of milk, which provides essential nutrients
for human and other animal offspring. The development
and regression cycles of mammary gland include preg-
nancy, lactation, and involution, which is regulated by
growth factors, hormones, and coding genes [1–3]. Janus
kinases and signal transducers and activators of tran-
scription ((JAK-STAT) have been shown to function
downstream of several peptide hormones and cytokines
that are required for postnatal development and

secretory function of mammary gland [4]. In mammary
epithelial cells, the phosphorylated STAT5A and STAT5B
form homodimers and heterodimers to modulate differen-
tiation, survival and proliferation through alterations in
cellular gene expression [5]. The phosphatidylinositol
3-kinase-proteinkinase B/mammalian target of the rapa-
mycin (PI3K-Akt/mTOR) signaling pathway regulates a
wide range of cellular processes, such as cell proliferation,
growth, survival and metastasis [6], and it is essential for
mammary gland development [7]. A conditional knockout
of Akt1 averts the extended survival of mammary epithe-
lial cells that express hyperactive STAT5, which indicates
that the PI3K-Akt/mTOR pathway is a crucial down-
stream effector of JAK-STAT signaling [8].
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In the past few years, many studies focused on the func-
tions of protein-coding genes and microRNAs (miRNAs)
for the development and regression cycles of mammary
gland [9, 10]. ErbB3 played a crucial role in mammary
epithelial survival and differentiation during pregnancy
and lactation [11]. Forty milk lipid synthesis- and
secretion-associated genes, including FADS1, AGPAT6,
GPAM, LPIN1, BTN1A1, LPL, CD36, FABP3, ACSL1,
ACSS2, ACACA, FASN, SCD, XDH, BDH1, INSIG1,
PPARG, and PPARGC1A were verified from dry period
to the end of subsequent lactation period [12]. During lac-
tation, MAPK14, FRAP1, EIF4EBP2, GSK3A and TSC1
had an increased expression which revealed that these
genes had important roles in milk protein synthesis and
secretion [13]. MiRNAs are a kind of non-coding RNA,
which can silence or degrade gene expression by targeting
the 3’UTR region of coding gene. An increasing number
of studies had demonstrated that miRNAs were involved
in lactation of mammary gland by regulating their target
genes [14–18]. It had been found that miR-27a could
regulate cellular triacylglycerol synthesis by targeting
PPARG gene in bovine mammary epithelial cells (BMECs)
[15]. The overexpression of miR-206 changed the expres-
sion of Wnt, Tbx3 and Lef1 genes which were essential for
mammary gland development, indicating that miR-206
might be a novel candidate for morphogenesis during the
initiation of mammary gland formation [16]. As a down-
stream regulator of PTEN, miR-486 expressed higher
during bovine high quality lactation period and could
regulate the secretion of β-casein, lactose and triglyceride
in BMECs, which indicated that miR-486 was required for
the development of cow mammary gland [17]. In cattle,
the expression of miR-221 was found to be higher in peak
lactation than in early lactation, suggesting its role in the
control of endothelial cell proliferation or angiogenesis
[18]. In mice, miR-221 regulated lipid metabolism in
mammary epithelial cells and was expressed differentially
at various stages during mammary gland development
[19]. MiR-212 and miR-132 were necessary for mice mam-
mary gland development and growth by targeting MMP9
gene, especially for mammary epithelial ducts [20].
Long non-coding RNAs (lncRNAs) are transcripts

longer than 200 nucleotides, which have uncovered new
layers in the control of various biological processes, in-
cluding cell proliferation, differentiation and apoptosis
[21]. H19 and SRA, two of the earliest identified regula-
tory lncRNAs, may play a role in the developing mam-
mary gland [22]. Initially, H19 was found to function to
restrict embryonic growth, but later evidence showed
that H19 had a role in long-term maintenance of adult
hematopoietic stem cells [23]. Long noncoding RNA
mPINC (mouse pregnancy-induced non-coding RNA)
and Zfas1 (Znfx1 antisense 1) had growth-suppressive
roles in mammary epithelial cells [24, 25]. Previous

observation demonstrated that lncRNA Neat1 could
regulate mammary gland morphogenesis and lactation
by investigating the proliferation of Neat1-mutant cells
in mice [26]. lncRNAs also could act as competing en-
dogenous RNAs (ceRNAs) to control muscle differenti-
ation and involve in goat lactation process [27, 28].
Pregnancy-induced noncoding RNA (PINC) could in-
hibit terminal differentiation of alveolar cells during
pregnancy to prevent abundant milk production and se-
cretion until parturition [29]. The above-mentioned
studies showed that lncRNAs had crucial roles in mam-
mary gland cell proliferation and differentiation, which
would be an important issue in lactation biology. Mam-
mary gland development and regression was directly re-
lated with cow lactation. However, the functions and
profiles of lncRNAs in bovine mammary gland during dry
and lactation period were largely unknown. The objective
of this study was to screen the lncRNAs associated with
lactation by lncRNA-seq analysis in bovine mammary
gland, which would provide a new perspective for
lncRNAs in lactation biology and lay the foundation for
their further function study in milk composition syn-
thesis and secretion.

Methods
Animals and mammary gland tissue collection
Eight healthy Chinese Holstein dairy cows at the third or
fourth parities used in this study were housed in free stall
and had access to water and feed ad libitum at the
Experimental Farm of Northwest A&F University (Yangling,
Shaanxi, China). After intravenous injection of lidocaine
hydrochloride, approximately 4 g of mammary gland tissues
were harvested via repeated biopsies from four cows at the
dry period and four cows at approximately 180 days during
lactation period. The tissues were dissected, frozen in RNA
later (TaKaRa, Dalian, China) and stored at − 80 °C for
further analysis. All experimental and surgery procedures
involved in this study were approved by the Experimental
Animal Manage Committee of Northwest A&F University
(2011–31101684).

Total RNA isolation and quality control for library
construction
Total RNA of mammary gland tissues was isolated using
Trizol reagent following the manufacturer’s instructions
(Invitrogen, CA, USA). The integrity of RNA was detected
using RNA Nano 6000 Assay Kit on the Bioanalyzer 2100
system (Agilent Technologies, Santa Clara, USA). RNA
purity and concentration was measured using Nanodrop
2000 photometer spectrophotometer (Implen, Los Angeles,
USA). The 260/280 ratio for all the samples from mam-
mary gland tissues was about 2.0, and the RNA integrity
number (RIN) was ≥8.0. After the determination of RNA
purity and quality, 3.0 μg RNA per sample was used and
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ribosomal RNA was removed using Epicentre Ribo-zero™
rRNA Removal Kit (Epicentre, Madsion, WI, USA) for
library construction. The RNA from three individuals
in dry and three in lactation stage were pooled, re-
spectively. Subsequently, the libraries were generated
from the rRNA-depleted RNA pools using the NEB-
Next® Ultra™ Directional RNA Library Prep Kit for
Illumina® (NEB, USA) following the manufacturer’s
recommendations. In order to select cDNA fragments
of preferentially 250~ 300 bp in length, the library
fragments were purified with AMPure XP system
(Beckman Coulter, Beverly, USA).

RNA sequencing, transcriptome assembly, and
quantification of gene expression level
The coded samples were clustered using TruSeq PE Clus-
ter reagent (Illumina, CA, USA) according to the manufac-
turer’s instructions on a cBot Cluster generation system.
The libraries were sequenced on an Illumina Hiseq3000
platform and 100-bp paired-end reads were generated after
cluster generation. The schematic of lncRNA-seq analysis
was shown in Fig. 1. Raw data were first processed using
in-house Perl scripts. In this step, clean data were obtained
by trimming reads containing adapter, reads containing
over 10% of ploy-N, and low-quality reads (> 20% of bases
whose Phred scores were < 20) from the raw data. Phred =
−10log10 (e), e is defined as the error probability of se-
quencing for every single base. Q20, Q30 and GC content
of the clean data were calculated. Subsequently, Bowtie
(v2.0.6) [30] and Tophat2 [31] (v2.0.9) was used to align
paired-end clean reads to the reference genome (version
GCA_000003055.5_Bos_taurus_UMD_3.1.1). The default
parameters for Tophat2 were set as ‘-read-mismatches=2

(≤2 mismatches are allowed) and -read-gap-length=2’ (≤2
gaps are allowed). The mapped reads were assembled using
Cufflinks (v2.1.1) in a reference-based approach [32].
Cufflinks was run with ‘min-frags-per-transfrag = 0’ and
‘-library-type’, other parameters were set as default.
Fragments per kb for a million reads (FPKM) of both cod-
ing genes and lncRNAs were analyzed using Cuffdiff
(v2.1.1) [33]. Differential expression analysis between two
groups was performed using the DESeq R package (1.8.3).
The P-values were adjusted using the Benjamini and
Hochberg method [34]. P-adjust (q-value) < 0.05 and the
absolute value of fold change≥2 were set as the
threshold for significantly differential expression.

Identification the annotated and novel lncRNAs
NONCODE database was used to characterize the anno-
tated lncRNAs in bovine from the assembled transcripts.
To identify bovine novel lncRNAs, the steps were followed
as Wang et al. (2017) described [35] with little modifica-
tion. (1) transcripts with length < 200 bp were removed;
(2) transcripts with predicted ORF > 300 were removed;
(3) transcripts were compared with mRNA, rRNA, tRNA,
snRNA, snoRNA and pre-miRNA (https://www.ncbi.nlm.-
nih.gov/) using Cuffcompare v2.1.1 to remove the same or
similar transcripts [32]. (4) transcripts with FPKM < 1
were removed; (5) transcripts that did not pass the
protein-coding-score test were removed using the Coding
Potential Calculator (CPC) [36] and PFAM database [37].

Prediction and functional enrichment analysis of lncRNA
target genes
To reveal the potential function of lncRNAs, their target
genes were predicted in trans and cis. For cis role, it

Fig. 1 The schematic of RNA-seq analysis
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refers to lncRNA’s action on neighboring target genes. In
this study, the coding genes from 100 kb upstream and
downstream of an lncRNA were searched. The trans role
refers to the influence of lncRNAs on other genes at ex-
pression level. RNAplex bioinformatics software (http://
www.bioinf.uni-leipzig.de/~htafer/index.html) was used
to predict lncRNA target genes in trans. Genome distribu-
tion of differentially expressed lncRNAs and mRNAs was
illustrated with Circos (http://circos.ca/). GO enrichment
analysis was performed with DAVID database (https://
david.ncifcrf.gov/). As to KEGG analysis, differentially
expressed genes were analyzed with KEGG online website
(http://www.genome.jp/kegg/). Protein-protein interaction
network between differentially expressed genes were ana-
lyzed by STRING database (https://string-db.org/), and fur-
ther visualized with Cytoscape (http://www.cytoscape.org/).

Prediction of potential miRNAs interacted with lncRNAs
To obtain potential miRNAs interacted with lncRNAs,
PicTar (https://pictar.mdc-berlin.de/), PITA (https://gen-
ie.weizmann.ac.il/pubs/mir07/mir07_prediction.html),
and RNAhybrid (https://bibiserv.cebitec.uni-bielefeld.de/
rnahybrid/) were used to predict the candidate miRNAs
interacted with lncRNAs. The miRNAs shared by the
above three tools were selected as the candidate miR-
NAs to assume the mechanism of lncRNAs interacted
with lactation. The potential target genes of miR-221
were predicted by Targetscan (http://www.targetsca-
n.org/vert_71/), PITA and miRanda. The genes shared
by the above three tools were selected as the candidate
target genes.

Verification of sequencing data using qRT-PCR
To confirm the sequencing results, quantitative real
time PCR (qRT-PCR) method was used to measure
the relative expression of DEGs and DELs. The total
RNAs from the cows used for lncRNA-seq were also
used for qRT-PCR. The first-strand cDNA was obtained
using a PrimeScript RT reagent Kit (TaKaRa, Dalian, China)
following the manufacturer’s instructions. The qRT-PCR
was performed in triplicate using SYBR® Premix Ex Taq™ II
(TaKaRa) on the Bio-Rad CFX96 Touch™ Real Time
PCR Detection System (Bio-Rad, Hercules, CA, USA).
The qRT-PCR protocol was initiated with an incubation
of 3 min at 95 °C, followed by 40 cycles of 95 °C for
12 s and optimized annealing temperature for 40 s. The
relative expression of DEGs and DELs were analyzed
using the 2−ΔΔCt method and normalized by GAPDH
gene [38]. The qRT-PCR primers for DELs and DEGs
were designed with Primer Premier 6.0 (Premier, British
Columbia, Canada) spanning at least one intron and
shown in Additional file 1.

BMECs transfection and expressions of four lncRNAs and
ErBb3
BMECs were cultured in Dubecco’s modified Eagle
medium (DMEM) /F12 containing 10% fetal bovine serum
and 1% penicillin streptomycin (All from Gibco, Grand
Island, NY, USA) at 37 °C with 5% CO2. The cells were
seeded in 24-well plates, then transfected with miR-221
mimic, mimic-NC, miR-221 inhibitor and inhibitor-NC
(GenePharma, Shanghai, China) at approximately 50%
confluence using Lipofectamine 2000 Transfection Re-
agent (Invitrogen, USA) according to the manufacturer’s
instructions, respectively. Briefly, Lipofectamine 2000
Transfection Reagent (1 μL) was diluted in 25 μL of
Opti-MEM (Invitrogen) with miR-221 mimic, mimic-NC,
inhibitor, or inhibitor-NC to yield final concentrations of
20, 20, 40, and 40 nM, respectively. The mixture was incu-
bated at room temperature for 20 min and added to the
BMECs. The transfection efficiency was assessed by fluor-
escence microscopy after 48 h.
Total RNA was extracted from the transfected BMECs

using Trizol reagent (Invitrogen) 72 h after transfection.
Then, the cDNA was obtained as above mentioned
method. qRT-PCR protocol was also performed as above
mentioned. Primers for the four lncRNAs and ErBb3 are
shown in Additional file 1.

Results
Overview of sequencing data in cow mammary gland
A total of 58,411,766 and 69,114,038 raw reads were pro-
duced from cow mammary glands using the Illumina
Hiseq3000 platform in dry and lactation periods, respect-
ively. After discarding adaptor sequences and low-quality
sequences, 54,805,136 and 65,069,892 corresponding clean
reads were obtained, and the percentage of clean reads was
93.83 and 94.15%, respectively (Table 1). The whole expres-
sion feature of transcripts was shown in Fig. 2a. The
expression level of the transcripts in lactation was slightly
higher than that in dry period. Similarly, 64,316 and 61,791
known transcripts, 44,651 and 43,094 known mRNAs were
also obtained in dry and lactation period of cow mammary
gland, respectively. Of those transcripts, 928 were novel in
dry stage and 841 were in lactation, respectively.

Table 1 The information of sequencing data

Items Groups

Dry period Lactation period

Raw reads 58,411,766 69,114,038

Clean reads 54,805,136 65,069,892

Clean reads ratio 93. 83% 94.15%

Total transcripts 64,316 61,791

Novel transcripts 928 841

Total known mRNAs 44,651 43,094
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The genome distribution of clean reads was shown in Fig.
2b. The results revealed that most clean reads in the two
periods were located in exonic region, only few reads were
in intergenic region. And about a quarter of the total clean
reads were in the intronic region of the bovine genome.

GO and KEGG enrichment analysis of DEGs
Totally 2890 differentially expressed genes (DEGs) were
obtained according the fold change≥2 and q < 0.01
(Additional file 2). And 2300 genes were down-regulated,
whereas 590 were up-regulated in lactation compared
with dry period. Then functional enrichment analysis of
the 590 significantly up-regulated genes was performed
based on their relative expression and fold changes. As
illustrated in Fig. 3a, 69 significantly enriched GO terms
(P < 0.05) were identified, such as negative regulation of
cell growth (GO: 0030308), growth factor activity (GO:
0008083), positive regulations of ERK1 and ERK2 cas-
cade (GO: 0070374), and sodium channel complex
(GO: 0034706), etc. ERK1 and ERK2 had been

suggested to play an important role in regulating cell
invasion, cell proliferation, and colony formation in
triple-negative breast cancer cell lines [39]. Growth
factors, especially the epidermal growth factors (EGFs)
and insulin-like growth factors (IGFs), were involved
in development of normal mammary gland and patho-
genesis of breast cancer [40].
Two thousand two hundred eight significantly down-

regulated genes were also selected to carry out the func-
tional enrichment analysis. Forty five terms, including cell
division (GO: 0051301), cell adhesion (GO: 0007155), cell
communication (GO: 0007154), cation transmembrane
transport (GO: 0098655), and cell surface receptor signal-
ing pathway (GO: 0035556), were shown in Fig. 3b. It was
worthy to notice that the process of cell adhesion and
division were closely associated with mammary gland
architecture construction, maintenance, development, and
lactation [41, 42].
Meanwhile, KEGG results from the significantly up- and

down-regulated genes indicated that 53 significantly

a

b

Fig. 2 The genome distribution and relative expression of clean reads and novel transcripts. a The relative expression of novel transcripts and
b the genome distribution of clean reads in cow mammary glands in dry and lactation periods, respectively
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signaling pathways were enriched (Fig. 3c, P < 0.05), such
as cell adhesion molecules (CAMs), PI3K-Akt, PPAR, TNF,
cytokine-cytokine, cell cycle, and Wnt signaling pathways.
Previous studies had determined that Wnt, PPAR, CAMs,
PI3K-Akt, and TNF signaling pathways could regulate
mammary gland development, milk fat synthesis, mas-
titis, BMECs proliferation and apoptosis [43–47]. The
expression pattern of genes involved in PI3K-Akt and
PPAR signaling was displayed in Fig. 3d. The heat map

showed that PIK3R3, CSF3, TNC, TLR2, GNG11, DOIT43,
NOS3, THBS3, IL3RA, FN1, SORBS1, FAPPS, SLC27A,
ACP7, GK, ACSL4 and ANGPTL4 genes expressed higher
in lactation than that in dry period at mRNA level.

DELs and their potential interacted miRNAs involved in
lactation
Totally 23,495 expressed lncRNAs were found in the
two different periods, of which 5893 were novel
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Fig. 3 Functional enrichment analysis of significantly up- and down-regulated DEGs. a Gene Ontology (GO) analysis of significantly up-regulated DEGs.
GO terms revealed that significantly up-regulated genes might relate to lactation-associated processes, including calcium ion binding, negative
regulation of cell growth and proliferation, gene expression, etc. b GO analysis of down-regulated DEGs revealed that those genes might play an
important role in cell division, intracellular signal transduction chemokine-mediated, and cell surface receptor signaling pathways, etc. c KEGG pathway
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receptor interaction, cAMP, calcium, and Wnt, PPAR, PI3K-Akt, TNF, cytokine-cytokine pathways, etc. d Cluster analysis of some lactation-related genes
by using heat map. The genes in red box located in PI3K-Akt signaling pathway. Similarly, the genes in green box were in PPAR signaling pathway
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(Additional files 3 and 4) and 17,602 were annotated
in NONCODE (Additional file 5). A total of 3746 signifi-
cantly differentially expressed lncRNA transcripts were
found in lactation compared with that in dry period, in-
cluding 2732 down- and 1014 up-regulated lncRNA tran-
scripts (fold change≥2, P < 0.05) (Additional files 6 and 7).
The genome wide distribution of DELs and DEGs was
shown in Fig. 4a. It could be seen that the DELs and DEGs
was harmoniously located on autosomes and X chromo-
some. The stage-specific expressed lncRNAs and genes
were shown in Additional files 8 and 9. One hundred forty
five lncRNAs were identified and subjected to further ana-
lysis according their expression fold changes and genomic

locations. The potential interacted miRNAs with the se-
lected 145 lncRNAs were predicted by miRanda, PITA
and RNAhybrid, and partial result was shown in Table 2.
It could be seen that miR-103, miR-21-3p, miR-27a-5p,
miR-107, and miR-24-3p were predicted to interact with
lncRNA TCONS_00120917. The interaction network be-
tween candidate lncRNAs and their potential miRNAs
was constructed (Fig. 4b). It showed that several miRNAs
might interact with multiple lncRNAs, such as miR-221
interacting with lncRNAs TCONS_00032404, TCONS_0
0032444, TCONS_00040268, TCONS_00137654, TCON
S_00071659, TCONS_00143274 and TCONS_00000352.
Coincidentally, it had demonstrated that the expression of
miR-221 was found to be higher in peak lactation than in
early lactation, suggesting a role in the control of
endothelial cell proliferation or angiogenesis which
was closely related with lactation [19], so those above
mentioned lncRNAs could be considered as important
candidates for lactation.

The interaction between lncRNAs and miR-221 as well as
miR-221 and ErBb3
To verify the interaction between lncRNAs and miR-221
and the interaction between miR-221 and ErBb3, overex-
pression and inhibition of miR-221 was employed in
BMECs. Our data showed that the expressions of the
four lncRNAs (TCONS_00040268, TCONS_00137654,
TCONS_00071659, and TCONS_00000352) decreased
with the overexpression of miR-221. On the contrary,
their expressions were increased with the inhibition of

a

b

Fig. 4 DEGs, DELs and its potential interacted miRNAs. a
Chromosome distribution of DELs and DEGs by using Circos. Red
columns represent DEGs, and blue bars represent DELs. b The
interaction network between DELs and their potential interacted
miRNAs. Those lncRNAs were depicted as pink and purple, and
miRNAs as blue and yellow

Table 2 Differently expressed lncRNAs and their potential
lactation-related miRNAs

LncRNAs potential miRNAs interacted with lncRNAs

TCONS_00088220 miR-103, miR-21-5p, miR-138, miR-365-5p,
miR-146b, miR-146a, miR-181d, miR-185

TCONS_00143013 miR-103, miR-181a, miR-30b-3p, miR-181b,
miR-34a, miR-181d, miR-206

TCONS_00120917 miR-103, miR-21-3p, miR-27a-5p, miR-107,
miR-24-3p

TCONS_00115260 miR-30b-3p, miR-34b, miR-34a, miR-185

TCONS_00146492 miR-21-3p, miR-17-3p, miR-24-3p, miR-34a

TCONS_00073062 miR-181b, miR-214, miR-181d

TCONS_00113482 miR-16b, miR-17-5p, miR-152

TCONS_00052219 miR-21-3p, miR-365-5p, miR-504

TCONS_00032444 miR-221, miR-222, miR-17-3p, miR-34c, miR-212

TCONS_00040268 miR-221, miR-222, miR-204, miR-211, miR-425-3p

TCONS_00137654 miR-221, miR-16a, miR-195, miR-193a

TCONS_00071659 miR-221, miR-25, miR-541, miR-370, miR-432

TCONS_00000352 miR-221, miR-151-5p, let-7b, miR-432

TCONS_00032415 miR-103, miR-15a, miR-181d

TCONS_00032449 miR-185, miR-504, miR-940
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miR-221 in BMECs (Fig. 5a), which indicated that
miR-221 could interact with these four lncRNAs; Fur-
thermore, the overexpression of miR-221 could reduce
the expression of ErBb3 gene in miR-221 mimic group
compared with mimic-NC group. While the inhibition
of miR-221 increased ErBb3 gene expression, which
indicated that ErBb3 gene was the target of miR-221
(Fig. 5b).

Interaction network between the candidate lncRNAs and
their potential target genes
To reveal the potential function of these selected
lncRNAs, their target genes were predicted in cis and
trans roles, and we found that the mammary gland biol-
ogy related genes, such as PRLR, FAS, and MAP3K7
genes, could be targeted by several lncRNAs in cis or
trans (Table 3). In addition, the network between
lncRNAs and target genes was constructed. The poten-
tial target genes of those lncRNAs included S100A1,
UPK1B, BARD1, FGF2, IGFBP1, ALOX15, KLH34,
SYT12, WNT10A, SULF1, SLC10A6 and CLE7A (Fig. 6).
Moreover, the expression level of those genes in dry
period were significantly higher than that in lactation
period in our study while the corresponding lncRNAs
were significantly lower, suggesting an opposite expres-
sion trend exists between those genes and corresponding
lncRNAs. Previous data had demonstrated that IL1B
might function as a retinoic acid induced gene and could
inhibit the proliferation of normal human mammary epi-
thelial cells [48]. Therefore, it could be deduced that
TCONS_00075230 might involve in regulating the pro-
liferation of mammary epithelial cells by interacting with
IL1B gene in cow mammary gland.

Fig. 5 The interaction between lncRNAs and miR-221 as well as miR-221 and ErBb3 gene. a The relative expression of 4 lncRNAs
(TCONS_00040268, TCONS_001371654, TCONS_00071659, and TCONS_00000352) changed with the overexpression and inhibition of miR-221
b miR-221 could target ErBb3 gene by transfecting miR-221 mimic and inhibitor in BMECs

Table 3 DELs and their potential target genes involved in
lactation

lncRNAs roles lncRNAs Genes

lncRNA in trans TCONS_00000352, TCONS_00032430,
TCONS_00137654

PRLR

TCONS_00000352, TCONS_00032430,
TCONS_00071659, TCONS_00137654

SLC5A1

TCONS_00041737, TCONS_00047308,
TCONS_00134592, TCONS_00086425

FAS

TCONS_00086425, TCONS_00114561 MAPKAPK5

TCONS_00114561, TCONS_00134592 IGFBPL1

TCONS_00000352, TCONS_00032430,
TCONS_00137654

SLC19A3

TCONS_00000352, TCONS_00032430 S100A1

TCONS_00041737, TCONS_00071659 EIF2

TCONS_00075230 CCNL1

lncRNAs in cis TCONS_00052219 SLC10A7

NONBTAG015998.2 ESRP1

TCONS_00161234, TCONS_00159090 MAP3K7

TCONS_00143059, TCONS_00143062,
TCONS_00143060

PTPN13

NONBTAG007590.2 STAT1

NONBTAT012173.2 CCNB1

NONBTAT017008.2, NONBTAT017009.2 CDK1

TCONS_00112212 CD5

NONBTAT002501.2 CDKN3

NONBTAG020902.1 CXCL12
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GO and KEGG analysis of lncRNAs potential target genes
A total of 47 potential target genes in cis of lncRNAs
(Additional file 10) were selected to carry out functional
enrichment analysis. Our results showed that nine
significantly enriched GO terms focused on the nega-
tive regulation of JAK-STAT cascade (GO: 0046426),
positive regulation of transcription from RNA polymer-
ase II promoter (GO: 0045944), cytokine-mediated sig-
naling pathway (GO: 0019221), and positive regulation
of phosphorylation (GO: 0042327), etc. (Fig. 7a, P < 0.05).
Previous study had suggested that JAK-STAT pathway
made a marked contribution to dairy milk production traits
[49]. In addition, phosphorylation regulation of mammary
S6 K1 and eIF2 genes could control milk protein yield [50].
Similarly, a total of 459 potential target genes in trans

of lncRNAs (Additional file 11) were selected to perform
functional enrichment analysis (Fig. 7a, P < 0.05). These
terms were protein glycosylation (GO: 0006486), positive
regulation of cell division (GO: 0051781), DNA-directed
RNA polymerase III complex (GO: 0005666), and growth
factor binding signaling pathway (GO: 0019838), etc. It
was worth mentioning that cell division signaling pathway
had been demonstrated to be closely associated with
mammary gland architecture construction and mainten-
ance [42]. Additionally, protein glycosylation in mammal
membrane played important roles in milk quality and
biomodulator properties [51].

Meanwhile, the KEGG results from the target genes of
candidate lncRNAs in trans and cis illustrated 15 path-
ways (Fig. 6b). Among these pathways, PI3K-Akt and
MAPK pathways had been confirmed to be associated
with cow lactation [43, 52].

Interaction network of protein-protein
Combine the bioinformatics analysis of DEGs and target
genes of DELs, the interaction network between proteins
was produced using String software (Fig. 8). The results
revealed that protein-protein interaction focused on CCN
(CCND1, CCNA1, CCNB2, CCNA2, CCNB1, CCNE1,
and CCNE2) and CDC protein family (CDC6, CDC20,
CDC25B, CDC25C, and CDCA8). CCN and CDC protein
families had been demonstrated to be involved in cyclin
and cell division cycle, respectively [53, 54].

qRT-PCR
Seven lncRNAs and five genes, which were significantly
differentially expressed between the two periods, were
selected to verify the transcriptome sequencing data
using qRT-PCR. The seven lncRNAs were selected based
on maximal fold change (and P < 0.05) and location of
the genome. For the five genes, they were selected
because of their fold change (and P < 0.05) and potential
function in lactation. The results showed that the relative

Fig. 6 The interaction network between candidate lncRNAs and their potential target genes. The red boxes indicated up-regulated candidate lncRNAs.
And the blue boxes were down-regulated lncRNAs. The up- regulated genes in the dry period were depicted as green and down-regulated genes
as,yellow, respectively

Yang et al. BMC Genomics  (2018) 19:605 Page 9 of 14



expression of the selected lncRNAs and genes was consist-
ent with their sequencing data (Fig. 9).

Discussion
Increasing data had shown that lncRNAs could regu-
late gene expression both at transcriptional and post-
transcriptional levels, including the regulation of splicing,
mRNA processing, and translation [55]. It had been dem-
onstrated that some lncRNAs implicated in breast normal
development and cancer based on their expression pat-
tern, function and localization in human and mouse

[56, 57]. However, limited researches had been reported
the regulation mechanism of lncRNAs on bovine lacta-
tion. Koufariotis et al. (2015) identified and annotated
novel lncRNA transcripts in the bovine genome across
18 tissues (including mammary gland) via RNA sequen-
cing. In addition, they found most lncRNA in bovine
mammary gland were downregulated compared with
other tissues [58]. Tong et al. (2017) identified 36 lincRNAs
located in milk related quantitative trait loci (QTL) from
five RNA-seq datasets of bovine mammary glands whereas
one lincRNA was within clinical mastitis QTL region,
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Fig. 7 Functional enrichment analysis of lncRNAs target genes in cis and trans. a Gene Ontology (GO) analysis of lncRNAs target genes in cis and
trans. The results indicated that those genes seem to play an essential role in lactation-related pathways, including phosphorylation, protein
glycosylation, cytokine-mediated, and positive regulation of cell division signaling pathway, etc. b KEGG pathway enrichment analysis of lncRNAs
target genes in cis and trans. These KEGG terms were lactation-associated pathways, including NF-kappa B, MAPK, PI3K-Akt, prolactin, Toll-like
receptor, and CAMs signaling pathway, etc.

Yang et al. BMC Genomics  (2018) 19:605 Page 10 of 14



which indicated that these lncRNAs were involved in many
biological functions including susceptibility to clinical mas-
titis as well as milk quality and production [59]. In our
study, lactation-related lncRNAs were assessed by directly
lncRNA-seq from cow mammary glands at the dry and
lactation period, respectively. Given the functional enrich-
ment analysis of lncRNAs target genes, 24 lncRNAs were
identified to have potential role in lactation (Table 3).
Previous study had suggested that lncRNAs could regulate
biological processes by sponging miRNAs [28], so 15
lncRNAs interacted with lactation-associated miRNAs
were also considered as potential regulators for lactation
(Table 2). Among those lncRNAs, five lncRNAs were
shared by the above two prediction methods.

LncRNAs might regulate expression of lactation-associated
genes in trans or cis
It was well recognized that a series of genes involved in
lactation initiation, maintenance as well as mammary
gland growth, development and breast cancer by direct
or indirect regulation [8, 9, 11, 60]. In this study, the
DEGs functional enrichment results showed that these
genes were related to some biological processes, including
cell division, adhesion, cycle, ERK1 and ERK2 cascade,
PI3K-Akt, PPAR, and TNF pathway, which were closely
associated with lactation [43–46].
LncRNAs can regulate neighboring gene expression,

therefore high expression correlations exert between

lncRNAs and mRNAs (known as in cis) [61]. LncRNAs
also can change the expression of distant mRNAs through
the pairing of lncRNAs-mRNA (known as in trans). Bio-
informatics analysis of lncRNAs target genes in trans
showed that these genes played an important role in some
pathways, such as MAPK, PI3K-Akt, prolactin, NF-kappa
B, and Toll-like receptor signaling pathways, which played
important roles during mammary gland development and
lactation [4, 8, 62]. Consequently, many lncRNAs might
function through targeting mRNA which played important
roles in mammary gland from non-lactation to lactation
period. For example, lncRNA TCONS_00075230 and IL1B
had an opposite expression trend between dry and lacta-
tion period, and IL1B had reported to inhibit the prolifera-
tion of normal human mammary epithelial cells function
as a retinoic acid induced gene [48]. So TCONS_00075230
might involve in lactation process through altering the
expression of IL1B.

Regulating role of lncRNA-miRNA-mRNA network
It was known that the regulatory networks of lncRNAs,
miRNA, and ceRNAs communicated with each other
to regulate gene expression [28]. LncRNA SNHG7
could accelerate prostate cancer proliferation and cell
cycle progression through cyclin D1 by sponging miR-503
[63]. The axis of lncRNA H19-miR-675-TGFBI had pos-
sible diagnostic and therapeutic potential for advanced
prostate cancer [64]. LncRNA APF could control the

Fig. 8 Protein-protein network was analyzed using the String. Cyclin-associated proteins were depicted as light blue frame, cell division
cycle-associated protein as red oval symbol, cyclin dependent kinase-associated protein as yellow frame. Their associated proteins were
depicted as dark blue
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expression of miR-188-3p, which suppressed myocar-
dial infarction and autophagy by targeting ATG7 [65].
A series of miRNAs had been demonstrated to regu-
late lactation-associated processes, including lactation
cycle, milk fat accumulation, hormone receptor activity,
mammary gland involution and development, and lacta-
tion activity of mammary epithelial cells [14, 66, 67]. In
this study, some candidate lncRNAs, including TCO
NS_00040268, TCONS_00137654, TCONS_00071659,
and TCONS_00000352, could interact with lactation-re-
lated miR-221, and miR-221 could target ErBb3 gene. It
had known that ErBb3 gene could drive mammary epithe-
lial survival and differentiation during pregnancy and lac-
tation [11]. Therefore, these lncRNAs might play an
important role in regulating lactation, which would
provide a new insight into lactation process of cattle.

Conclusion
In this study, 3746 significantly dysregulated lncRNA
transcripts were found in lactation period compared
with that in dry period, including 2732 down- and
1014 up-regulated lncRNA transcripts (fold change≥2,
P < 0.05). Functional enrichment analysis of target
genes and interacted miRNAs prediction of 34 lncRNAs

indicated these lncRNAs might be important regulators
for lactation in dairy cattle. This study would provide a
resource for bovine lncRNA study involving in lactation
biology.

Additional files

Additional file 1: qRT-PCR primers for lncRNAs and coding genes.
(DOCX 21 kb)

Additional file 2: The expression profile of DEGs in the dry and
lactation periods. (XLSX 387 kb)

Additional file 3: The expression profile of novel lncRNAs in the dry
and lactation periods. (XLSX 980 kb)

Additional file 4: The sequence information of novel lncRNAs.
(XLSX 2011 kb)

Additional file 5: The expression profile of annotated lncRNAs in the
dry and lactation periods. (XLSX 1732 kb)

Additional file 6: The expression file of novel DELs in the dry and
lactation periods. (XLSX 230 kb)

Additional file 7: The expression file of annotated DELs in the dry and
lactation periods. (XLSX 224 kb)

Additional file 8: Stage specific expressed lncRNAs in the dry or
lactation periods. (XLSX 41 kb)

Additional file 9: Stage specific expressed genes in the dry or lactation
periods. (XLSX 21 kb)

Fig. 9 Validation of DEGs and DELs in dry and lactation periods by qRT-PCR. Relative expression of DEGs (FGFBP1, IGFBP5, LPO, CXCL10, and SAA3)
and DELs (TCONS_00040268, TCONS_00137654, TCONS_00071659, TCONS_00000352, TCONS_01118313, TCONS_ 00093001 and
NONBTAG0105046.2) were verified by qRT-PCR, and the results indicated that the relative expressions of TCONS_00040268, TCONS_00137654,
TCONS_00071659, TCONS_00000352 and TCONS_ 00093001 in lactation were significantly higher than that in dry stage (P < 0.05). On the
contrary, CXCL10 and TCONS_01118313 in lactation were lower than that in dry stage (P < 0.05). The qRT-PCR results were consistent with the
sequencing data
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Additional file 10: Predicted target genes and mRNAs of DELs (in cis).
(XLSX 24 kb)

Additional file 11: Predicted target genes and mRNAs of DELs (in trans).
(XLSX 84 kb)
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