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Abstract

Background: Fusion genes are known to be drivers of many common cancers, so they are potential markers for
diagnosis, prognosis or therapy response. The advent of paired-end RNA sequencing enhances our ability to discover
fusion genes. While there are available methods, routine analyses of large number of samples are still limited due to
high computational demands.

Results: We develop FuSeq, a fast and accurate method to discover fusion genes based on quasi-mapping to quickly
map the reads, extract initial candidates from split reads and fusion equivalence classes of mapped reads, and finally
apply multiple filters and statistical tests to get the final candidates. We apply FuSeq to four validated datasets: breast
cancer, melanoma and glioma datasets, and one spike-in dataset. The results reveal high sensitivity and specificity in
all datasets, and compare well against other methods such as FusionMap, TRUP, TopHat-Fusion, SOAPfuse and JAFFA.
In terms of computational time, FuSeq is two-fold faster than FusionMap and orders of magnitude faster than the
other methods.

Conclusions: With this advantage of less computational demands, FuSeq makes it practical to investigate fusion
genes in large numbers of samples. FuSeq is implemented in C++ and R, and available at https://github.com/
nghiavtr/FuSeq for non-commercial uses.

Keywords: Fusion gene, RNA sequencing, Quasi-mapping, Fusion equivalence class

Background
Gene fusion, one type of structural chromosome rear-
rangements, has been found to play important roles in
carcinogenesis [1, 2]. It is closely associated with an
increase of chimeric proteins, with cancer risk and with
tumor phenotypes, all of which have potentials for clini-
cal translation [2]. Fusion genes are reported in different
types of cancers such as breast cancer [3, 4], lung can-
cer [5], melanoma [6] and glioma [7]. A fusion gene
ETV6-RUNX1 was recently discovered in approximately
20%-25% of childhood acute lymphoblastic leukemia [8].
A further discussion of gene fusion in cancer can be found
in a recent review [2].
The advent of RNA sequencing (RNA-seq) technol-

ogy allows us to efficiently discover novel fusion genes.
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Many tools have been developed for detecting fusion
transcripts using RNA-seq data, and their comparisons
are available in several recent publications [9, 10]. These
methods use various approaches, but generally include
three main steps: (i) read alignment, (ii) fusion candidate
detection and (iii) false positive elimination. Read align-
ment is usually done by standard read alignment methods
in RNA-seq, such as TopHat-Fusion [11], SnowShoe-FTD
[12], EricScript [13], JAFFA [14], or by its own method as
FusionMap [15]. To determine fusion candidates, most of
the methods use discordant reads such as spanning read
pairs and/or split reads. Spanning reads contain one read
located in different genes, while split reads indicates a
single read overlapping on two different genes. The final
step contains filtering and/or scoring systems to remove
false positive fusion candidates. This step varies from
method to method and has been summarized in several
reviews [9, 10].
Most of the current fusion detection methods require

significant computational demands. As reported recently
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[9] for 15 fusion detection methods, including BreakFu-
sion [16], Chimerascan [17], defuse [18], EricScript [13],
FusionCatcher [3, 19], FusionHunter [20], FusionMap
[15], FusionQ [21], JAFFA [14], MapSplice [22], PRADA
[23], ShortFuse [24], SnowShoes-FTD [12], SOAPfuse
[25], TopHat-Fusion [11], they require from 7 to 240 h
to analyse a single prostate cancer sample containing
∼118M 100bp-long read pairs. This makes it impracti-
cal to perform routine fusion gene detection in datasets
with a large number of samples. To address this, we
develop FuSeq, a novel fusion detection method utiliz-
ing a recent quasi-mapping method for alignment that
is substantially faster than traditional alignment methods
[26]. FuSeq consists of two separate pipelines based
on mapped read-pairs (MR) and junction split-reads
(SR) that are combined in the final step. For the MR
pipeline, FuSeq introduces a new concept of fusion-
equivalence class to generate fusion candidates. In the
SR pipeline, fusion candidates are collected from split
reads where two different genes share the same read,
and each gene has at least k-mer mapped bases. In
addition, various filters and statistical tests are applied
to the fusion candidates, primarily for false-positive
reduction. We apply FuSeq to four validated datasets
and show that it outperforms commonly used meth-
ods Tophat-fusion, SOAPfuse and JAFFA in sensitivity,
specificity and discovery operating characteristics, while
FuSeq is orders of magnitude faster in computational
time.

Methods
The pipeline of the proposed fusion detection is presented
in Fig. 1. The key steps are: (i) quasi-mapping to detect
mapped reads and split reads of fusion candidates, and
(ii) statistical tests and filtering, separately for mapped-
read pipeline and split-read pipeline to eliminate likely
false positives. Before exporting the final results, de novo
assembly can be used as an extra step to verify and deter-
mine the fusion sequence. The details of each phase are
presented in the following sections.

Mapped reads and split reads
We utilise the quasi-mapping from Rapmap to generate
mapped reads and split reads for FuSeq. The split reads
and mapped reads in FuSeq are determined depending
on k-mer length k and read-length r used in the quasi-
mapping. A mapped read is from a read-pair where each
read is completely or mostly (with length >= r − k − 1)
mapped to a different gene. In split reads, a single read is
partially mapped in both genes and themapped sequences
must have a length >= k. Additional file 1: Figure S1 intu-
itively demonstrates different cases of mapped reads and
split reads. It is worth noting that, by definition, mapped
reads in FuSeq will span over the fusion junction-break.

Fusion-gene candidates from split reads
In the quasi-mapping of Rapmap, each read is mapped
to a transcriptome stored in a k-mer index system. The
result of a quasi-mapping for a read is a list of k-mers
(ordered from left to right) of the read. For each split
read, we extract the important mapping information of
the k-mers at the first and the last of the list for down-
stream analysis. The information includes mapping direc-
tions, query positions of the k-mers, mapped transcripts
and corresponding genes, mapped positions of the tran-
scripts, and the mapped position of the other read of
the pair. The pair of the split read must be mapped
to the same transcript on either side of the fusion.
Additional file 1: Figure S2 presents the details of the
data structure extracted from split reads. All possible
split reads are collected to input to statistical tests and
filtering steps.

Fusion-gene candidates frommapped read
Since the number of mapped reads are significantly higher
than the number of split reads, to speed up calculation,
we introduce a novel concept “fusion equivalence class” to
organize and generate fusion-gene candidates.

Fusion equivalence class
We first explain the concept of fusion equivalence class,
which is motivated by the transcript equivalence class
used for transcript quantification by Patro et al. [27]. For a
given read pair (r1, r2), using quasi-mapping fromRapmap
[26], we extract T1 and T2 as the sets of transcripts that r1
and r2 map to, respectively. We define S ≡ T1 ∩ T2 as the
concordant transcript set between T1 and T2. We denote
S1 ≡ T1 − S and S2 ≡ T2 − S as the sets of discordant
mapped transcripts of r1 and r2, respectively. From now
on, we define a fusion transcript (ftx) as an ordered com-
bination of two transcripts txu and txv belonging to the
discordant mapped transcript sets:

ftx(u, v) = (txu, txv), (1)

where txu ∈ S1 and txv ∈ S2.
Additional file 1: Figure S3 displays a simple example

where S1 = {tx1, tx2} and S2 = {tx3, tx4, tx5}. From S1
and S2, there are six possible fusion candidates generated
from combination between the transcripts in S1 and the
transcripts in S2: ftx1 = (tx1, tx3), ftx2 = (tx1, tx4), ftx3 =
(tx1, tx5), ftx4 = (tx2, tx3), ftx5 = (tx2, tx4), ftx6 =
(tx2, tx5).
For simplicity here we denote each fusion transcripts

with a single index, but there is no conflict with the nota-
tion in formula 1. We are always able to refer a fusion
transcript to an ordered combination of two transcripts,
for example ftx1 = ftx(1, 3) = (tx1, tx3). Thus, each read-
pair maps to or generates a set of fusion candidates (which
could be empty). Two read-pairs are said to be equivalent
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Fig. 1 FuSeq pipeline for fusion gene detection: quasi-mapping of read pairs to extract mapped reads and split reads; statistical tests and filtering to
eliminate false positive fusion genes; collecting and merging fusion gene candidates from mapped reads and split reads; de novo assembly to verify
and determine fusion sequences; and exporting information of final candidates to files

if (and only if ) they map to the same set of fusion tran-
scripts; this means we can group/partition the read-pairs
into equivalence classes using the corresponding set of
fusion transcripts as the group index. Thus we set up the
fusion equivalence (feq) classes – each indexed by the set
of potential fusion transcripts (ftx1&hellip; ftxn) – such
that every read-pair in a feq must map exactly to all the
fusion transcript candidates that defines the feq.

In the example above, a read pair (r1, r2) belongs to a
fusion equivalence class feq consisting of six fusion transcripts
and contributes one count to that equivalence class.
Naturally, from a single fusion transcript ftx(u, v)we can

also derive a fusion gene (fge) as a combination of two
genes: geneA and geneB as follows:

fge = (
geneA, geneB

) ∼ {(txu, txv)} , (2)
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where txu is a transcript of geneA, and txv is a transcript of
geneB. Thus, a fusion gene is connected to fusion equiva-
lence classes through its corresponding fusion transcripts.
If the transcript pair (txu, txv) belongs to feqj, then we say
feqj supports the fge.
We denote the set of fusion equivalence classes as

FEQ = {
feq1..feqM

}
with a set of corresponding numbers

of supporting read pairs C = {c1..cM}, the set of fusion
transcript as FTX = {ftx1..ftxN } and the set of fusion
gene FGE = {

fge1..fgeK
}
. The FEQ table in Additional

file 1: Figure S3 also shows the relationship between FEQ,
FTX and FGE. The first and the second rows of the table
presents fusion gene and its fusion transcripts. Each fol-
lowing row presents a single fusion equivalence class. The
binary value indicates the absence/presence of ftxi in feqj.
The last column shows the number of fragments support-
ing the corresponding fusion equivalence class. From the
table, we extract the number of fragments supporting a
fusion gene by summing up the cj of its supporting fusion
equivalence classes, that is those feq including any ftx
included in the fgek set as follows

supportCount(fgek) ≡
∑

j
cj, (3)

where summation over all j such that feqj’s support fgek .
We also can compute the number of fragments support-
ing a fusion transcript supportCount(ftxi) by the same
formula with the cj supporting fusion transcript ftxi.
If many fusion genes share the same fusion equivalence

classes then this indicates that the supporting reads from
these fusion equivalence classes are not uniquely mapped
to a single fusion genes. To compensate this issue, we cor-
rect the supporting counts of the fusion genes by adding
weights of fusion genes in the fusion equivalence class. For
simplicity, we set the weights of all fusion genes of a fusion
equivalence class to be equal. Thus, the corrected count is
computed as follows

correctedCount(fgek) ≡
∑

j
cj ∗ wk,j (4)

where wk,j = 1/|feqj| and |feqj| is the number of fusion
transcripts.
We also discard all fragments with a fusion equiva-

lence class containing two transcripts from the same gene.
Finally, a list of fusion-gene candidates is extracted from
the table of fusion equivalence classes for further analysis.
From hereon the term ‘fusion transcript’ is defined in

relation to the fusion equivalence classes, which is not
necessarily a transcript generated from a fusion event. The
‘fusion gene’ indicates a fusion event occurring between
two separate genes, consequently generating a fusion tran-
script. The aim of our method is to detect a fusion event
between two genes, so ‘fusion gene’ is reported as the final
result.

Statistical tests and filtering
Several statistical tests and filtering criteria are applied to
limit false-positive fusion-gene candidates. We divide the
filters into three main categories: (i) general features of
fusion genes; (ii)sequence similarity of constituent genes;
(iii) positional distribution of the supporting reads. The
applications of the filters and tests might be different from
mapped reads to split reads. The details of the filters for
practical implementation in each pipeline are supplied in
the Supplementary report.

General features of fusion genes
We limit fusion genes to common situations, for exam-
ple: in selected chromosomes 1-22, X and Y, constituent
genes coming from protein-coding genes, large enough
distance between constituent genes, and sufficient sup-
porting read count. We also do not allow ’inverted fusion’
that if a fusion gene fge(geneA, geneB) is expressed, the
inverted direction fusion gene fge(geneB, geneA) is not
likely expressed. The inverted fusion gene created by
exchanging the roles between 5-prime gene and 3-prime
gene from one fusion gene. This can create circular
fusions that are likely false positives.

Sequence similarity of constituent genes
Different genes with highly similar sequences are often
listed in fusion-gene candidates but they are likely false
positive. The similarity is frequently observed between a
gene and its paralogs or its known read-through (con-
joined) genes, that can be collected from the reference
database. Since mapped reads do not generally contain
junction-break information, we use strict criteria for the
mapped read pipeline to reduce false positives. In partic-
ular, we do not expect many supporting read pairs to be
shared between fusion genes. Furthermore, we utilize the
equivalence classes to discover all the possible sequence
similarities between two genes that will be used as an extra
paralog reference.
Specifically, we first use RNASeqReadSimulator

tool (http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.
htm) to generate a paired-end simulation sample, where
the expected read counts of all transcripts of the tran-
scriptome are equal and high enough, herein 1000 read
counts. Then, transcript equivalence classes of the sim-
ulation sample are generated using Rapmap [26]. Since
all transcripts are expressed, two transcripts with similar
sequence regions have to appear in at least one equiva-
lence class. Finally, the transcripts are mapped to their
corresponding genes to determine which genes share
similar sequences.

Positional distribution of supporting reads
For each read pair (r1, r2) of mapped reads, we collect
all start positions of r1 and r2 mapped to the annotation

http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.htm
http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.htm
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reference. Thus, for each fusion gene
(
geneA, geneB

)
, we

are able to compute the distributions of the start positions
(startPos) of the supporting reads to geneA and geneB.
Similarly we get the distributions of start positions of
the k-mer sequences mapped to the genes from the split
reads. For simplicity, we call them positional distribution.
If the start positions of two single reads are very close to
each other, they are likely duplicated (quasi-duplicated).
This feature is similar to the criteria of patterns of short
reads mentioned in [3, 13]. Collections of positional dis-
tribution can be used to estimate the fragment length
generating a read pair. Then statistical tests for fragment
length are used to remove outliers and eliminate false
positives. In addition, breaking points and exons infor-
mation of each site can be estimated from the positional
distribution. Thus, FuSeq can allow to check the satisfac-
tions of popular splicing sites such as GT-AG, GC-AG and
AT-AC. Moreover, if the distance between two breaking
points from the same chromosome (junctionDistance) is
too close to each other, the fusion-gene candidate is likely
a false positive.

Other statistical tests and filtering
In general, paralogs can easily produce false-positive can-
didates, but these candidates will have too many sequence
similarities. Thus we check the length of the overlap-
ping mapped sequence between two genes in a split
read based on the first and the last k-mers. Moreover,
a split read is deemed a misalignment if > 85% of
the read sequence is fully mapped to either 3’ tran-
script or 5’ transcript. Finally, the consistency between
expression level of mapped reads and split reads sup-
porting a fusion gene is tested. We also report (but
not eliminate) the genes relating to mitochondrial trans-
lation, cytosolic ribosomal subunit and ribonucleopro-
tein, which are filtered out in some fusion detection
methods [3, 19].

De novo assembly
If the number of supporting read pairs of a fusion gene
is large enough, then it is useful to perform de novo
assembly to build a sequence-contig capturing the fusion.
This step is optional in FuSeq and any denovo assem-
bly tools such as Trinity [28], Oases [29], Trans-ABySS
[30], SOAPdenovo-Trans [31] can be used. To get a com-
putationally efficient procedure, the de novo assembly is
done as follows. First, we extract all read pairs supporting
all fusion-gene candidates from the previous stage of the
pipeline. This produces a small set of reads, so the assem-
bly computation is trivial. These read pairs (both mapped
reads and split reads) are used as input to a de novo assem-
bly tool to construct the contigs; in practice we use Trinity
[28]. Next, we consider these contigs as the reference for
Rapmap [26] and do quasi-mapping for the read pairs to

the reference. From the mapping results we can associate
the contigs to the candidate fusion genes.

Final fusion-gene candidates
The final set of fusion-gene candidates is combined
from the candidate lists of mapped-read and split-read
pipelines. It is worth noting that the fusion gene can-
didates from mapped read might have no supporting
split reads, and vice versa. The score of each fusion
gene is the sum of the corrected count of the sup-
porting mapped-reads and split-reads. In FuSeq, scores
of final fusion gene candidates must be at least 3. In
the final set, fusion genes are ranked according to their
scores.

Implementation
In our implementation, we use the genome reference
and annotation from Ensemble version GRCh37.75. The
method was implemented in C/C++ for extraction of
split reads and fusion equivalence classes of mapped
reads, combined with R language for downstream anal-
ysis. FuSeq software is available for non-commercial use
at https://github.com/nghiavtr/FuSeq. User guides with
practical examples are also provided in the website.

Materials
We illustrate the applications of FuSeq to four publicly
available and validated real datasets.

Breast-cancer dataset
There are 6 samples from 4 breast-cancer cell lines (BT-
474, SK-BR-3, KPL-4 and MCF-7) [3], where BT-474 and
SKBR3 have two samples. The samples contain 14-42M
paired-end reads of 50bp long, using Qiagen PCR purifi-
cation kit in library preparation following sequenced by
1G Illumina Genome Analyzer 2X. There are 27 validated
fusion genes from the original study [3], and extended to
a total of 99 in later publications [3, 4, 14]. For clarity we
will separately call these two validated versions as TP27
and TP99 datasets. They highlight the difficulty in assess-
ing a method when there is no real gold standard. For
example, some fusion candidates that are not validated in
TP27 dataset turn out to be true positives in the TP99
dataset.

Melanoma dataset
This dataset has 6 samples (501-MEL, M000216,
M000921, M010403, M980409 and M990802) from
melanoma patients [6] including 8-16M paired-end
reads of 50bp long. The library was prepared using the
SuperScript Double-Stranded cDNA Synthesis kit (Invit-
rogen) before sequenced by Illumina Genome Analyzer
II. A total of 11 fusion genes has been validated in this
dataset.

https://github.com/nghiavtr/FuSeq
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Glioma dataset
This dataset has 13 patient samples from a glioma study
[7] (SRA accession SRP027383): SRR934744, SRR934746,
SRR934774, SRR934868, SRR934871, SRR934875,
SRR934887, SRR934902, SRR934915, SRR934918,
SRR934929, SRR934930, SRR934947. The glioma dataset
contains 15-35M paired-end reads of 101bp. The library
was prepared using using SuperScript III reverse tran-
scriptase (Invitrogen) and sequenced by the Illumina
HiSeq 2000 platform. A total of 31 fusion genes has been
validated in this dataset.

Spike-in dataset
This dataset contains 9 synthetic spike-in fusion genes
titrated into the cell line COLO-829 [32] with ten dif-
ferent abundances, each abundance has one duplicate.
The final 20 RNA-seq samples have 72-180M paired-
end reads of 100bp long. The library is prepared by
the TruSeq Stranded mRNA LT Sample Prep Kit, later
sequenced using Illumina HiSeq2500. Thus, the strand-
ness of the read is kept in this dataset. In this dataset, sam-
ple SRR1659964 with the medium concentration (–6.17
log10(pMoles)) was compared to other dataset recently
(Liu et al., 2015), so it is also considered in a separate
comparison.

Competing tools and evaluation
We select TopHat-Fusion, JAFFA and SOAPfuse as the
main tools for comparisons. TopHat-Fusion is a widely
used fusion gene detection tool, JAFFA is one of the
most recent and top performing methods, and SOAP-
fuse is the best method in the recent comparison [9]. We
compare the performance in terms of sensitivity, speci-
ficity and computational time. We utilize results from
a recent study [14], because it contains performances
of JAFFA, SOAPfuse and TopHat-Fusion for the breast-
cancer dataset and the glioma dataset. The original study
of the spike-in dataset [32] is used for the comparison of
all 20 samples with TopHat-Fusion. We also use a com-
parative study of fusion detection methods [9], since it
contains information of the melanoma dataset and sample
SRR1659964 of the spike-in dataset. Finally, for compar-
ison of computational time, we select FusionMap [15],
the fastest method from the comparative study, and a
recent method TRUP [5], which demonstrated similar
computational performances to FusionMap and TopHat-
fusion. We use the version of FusionMap migrated in
the Oshell pipeline at http://www.arrayserver.com/wiki/
index.php?title=Oshell since all older versions of Fusion-
Map are inactive. We use version TRUP_2015-21-05 from
the TRUP webpage https://github.com/ruping/TRUP/.
Since the performances of methods depend on the

parameter settings [9], for fair comparisons, we set the
parameters in our method similar to the corresponding

values from the previous comparisons. For example, sim-
ilar to the other methods, FuSeq also depends on the
minimum number of supporting spanning reads (mapped
reads in FuSeq) to remove false positives. Thus, we set
this value as 2 for the comparison of the breast-cancer
dataset, the glioma dataset and all 20 samples of spike-in
dataset, and 3 for the comparison of themelanoma dataset
and sample SRR1659964 of the spike-in dataset. The min-
imum supporting reads is set to 1 as common. We also
implement de novo assembly to verify the true positives
in a few samples from the datasets. Since there are no par-
ticular settings of FusionMap and TRUP for the minimum
number of supporting spanning reads or spliting reads,
these criteria are not applicable. We also used GSNAP
(default) for the mapper of TRUP since it gets more sen-
sitivity than STAR [5]. For other setting parameters of
FusionMap and TRUP, the default values are used. Since
the breast-cancer dataset and the melanoma dataset have
short reads (50 bp), a low value (=1) is set for the param-
eter consisCount (number of consistent read pairs with
discordant mapping) of the step “runlevel 3” as the sug-
gestion of the tool. However, using either the default value
(consisCount = 5) or the suggested value (consisCount = 1),
TRUP reported no fusion gene candidates. Since we are
not sure if this is the proper result, and we could not find
any obvious solutions, we do not report the performance
metrics (“-”) for TRUP for these two datasets (Table 1).
In addition, to be able to generate split reads in FuSeq,

the k-mer length must be less than a half of read length.
The default setting of k-mer length 31 in Rapmap is not
suitable for dataset with short reads (50 bp read long).
Therefore, we set this value as 21 for the short read
datasets (breast-cancer and melanoma datasets with 50bp
read long) and as 31 for long read datasets (gliomas and
spike-in datasets with 100 bp read long).

Results
Illustration
Figure 2 shows one example of a true fusion event involv-
ing AKAP9-BRAF genes in chromosome 7, discovered by
FuSeq in the spike-in dataset SRR1659964. The full data
contains 93.9M read-pairs, and the fusion gene contains
3318bp and 1158bp from AKAP9 and BRAF, respectively.
In Fuseq output, the fusion is supported by 60 read-pairs.
It is a highly confident fusion, as it is also supported by a
contig constructed from the de novo assembly; this contig
is 639bp long with 252bp belonging AKAP9.

Discovery performance
The discovery operating characteristics for the breast-
cancer, melanoma and glioma datasets are presented in
Table 1. The results reported here are pooled from all the
samples of each dataset. We use recall, precision and F1
score for the comparison. Recall or sensitivity is defined

http://www.arrayserver.com/wiki/index.php?title=Oshell
http://www.arrayserver.com/wiki/index.php?title=Oshell
https://github.com/ruping/TRUP/
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Table 1 Fusion discoveries in the cancer datasets. The results for TopHat-Fusion, SOAPfuse and JAFFA are collected from a recent
study [14]

FusionMap TRUP TopHat-Fusion JAFFA SOAPfuse FuSeq

Breast cancer (TP27) Total 47 0 261 42 61 53

TP 12 0 24 20 24 22

Recall 0.44 - 0.89 0.74 0.89 0.81

Precision 0.26 - 0.09 0.48 0.39 0.42

F1 0.32 - 0.17 0.58 0.55 0.55

P-value 0.32 - 9.1e-06 0.71 1 -

Breast cancer (TP99) Total 47 0 261 42 61 53

TP 22 0 35 28 41 36

Recall 0.22 - 0.35 0.28 0.41 0.36

Precision 0.47 - 0.13 0.67 0.67 0.68

F1 0.30 - 0.19 0.40 0.51 0.47

P-value 0.32 - 1.1e-08 1 1 -

Melanoma Total 19 0 29 4 108 21

TP 3 0 4 2 10 7

Recall 0.27 - 0.36 0.18 0.91 0.64

Precision 0.16 - 0.14 0.5 0.09 0.33

F1 0.20 - 0.2 0.27 0.17 0.44

P-value 0.48 - 0.32 0.62 0.02 -

Glioma Total 191 209 308 904 299 188

TP 28 20 29 30 22 29

Recall 0.90 0.65 0.94 0.97 0.71 0.94

Precision 0.15 0.10 0.09 0.03 0.07 0.15

F1 0.25 0.17 0.12 0.05 0.13 0.26

P-value 0.89 0.13 0.09 5.5e-08 0.02 -

We select the best result from the different runs ofcomparison. TP= true positive fusion genes, Total= total discovered fusion-gene candidates, P-value = two-sided p-value of
Fisher’s exact test of the difference in precision between FuSeq vs each of the other methods

Fig. 2 Discovery of AKAP9-BRAF fusion by FuSeq in the spike-in dataset SRR1659964. Also shown are the contig from the de novo assembly and a
sample of 4 read-pairs near the junction break
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as the ratio between the discovered true positives and the
total validated fusion genes. Precision is the ratio between
the discovered true positives and the total fusion candi-
dates discovered by the fusion-detection methods. The
precision conveys the specificity of the methods. F1 score
or F-measurement is a balanced metric between precision
and recall, and is calculated by

F1 = 2 ∗ precision ∗ recall
precision + recall

.

The list of validated true positives in each dataset is
likely incomplete; assuming this list is a random subset
of all true positives, the reported recall is unbiased, but
precision is only a lower bound of the true values.
For the breast-cancer data, FuSeq discovers 22 of 27 val-

idated fusions in TP27, and 36 of 99 extended validated
fusions in TP99. Compared to FusionMap and TopHat-
Fusion, FuSeq discovers more true positives and has a
smaller candidate list. JAFFA has the smallest final fusion-
gene list, but it loses many validated fusion genes. The F1
score of FuSeq is equal to SOAPfuse and slightly smaller
than that of JAFFA in TP27 (0.55 vs 0.58). However,
F1 scores of both FuSeq and SOAPfuse are significantly
greater in TP99 (0.47 and 0.51 vs 0.40). As mentioned
in the “Methods” section, TRUP reported no fusion gene
candidates, thus we consider its metrics as not available
(“-”) for the comparisons in this dataset, and similarly in
the melanoma dataset.
As described in a recent study [9], the melanoma dataset

represents a difficult dataset for fusion-gene detection.
Among 15 competing fusion gene detection tools, most
of them find less than 6 validated fusion genes. Fusion-
Map, TopHat-Fusion and JAFFA report 3, 4 and 2 true
positives, respectively; this is shown in Table 1. SOAP-
fuse discovers most true positives (10) but introduces a lot
of false positive fusion genes (recall=0.09). FuSeq reports
7 true positives and recommends 14 other candidates.
FuSeq also has the best F1 score (0.44) as compared with
the other methods.

In the glioma dataset, except for TRUP and SOAPfuse
(with 20 and 22 discovered true positives, respectively),
all the other methods discover most of validated fusion
genes, 28 for FusionMap, 29 for both TopHat-Fusion and
FuSeq, and 30 for JAFFA. However, FuSeq discovers the
smallest fusion candidate set (188 candidates in total),
which makes the F1 score of FuSeq higher than that of all
other methods.
For the spike-in dataset, due to the huge library sizes

(72-180M read pairs), there are not many available results
from current fusion detection methods for all 20 sam-
ples. The original publication of the spike-in dataset [32]
reports the total number of spike-in fusion genes detected
from TopHat-Fusion and ChimeraScan and SnowShoes-
FTD tools for all 20 samples, but without information of
other fusion-gene candidates. In this study, only 142, 80,
133 and 138 out of 180 true positives are discovered from
FusionMap, TRUP, TopHat-Fusion and JAFFA, respec-
tively (Table 2). As shown in the table, FuSeq obtains a
much better result by missing only one true positive. We
also find out another report [9] of the spike-in dataset, but
only for a single sample SRR1659964 (-6.17 log10(pMoles)
concentration). In the report, all 15 fusion gene detection
tools are not able to detect all 9 spike-in fusion genes.
From that report, JAFFA, SOAPfuse and TopHat-Fusion
detect 5, 4 and 1 true positives respectively (Table 2). From
the table, FusionMap and TRUP also discover 7 and 4 true
positives, respectively. In contrast, FuSeq can detect all 9
spike-in fusion genes, and they are among the top 11 in
fusion ranks (Fig. 3). FuSeq also shows the best F1 score
(0.53) in this dataset.
We further evaluate whether the differences of the pre-

cision values of FuSeq to other methods are statistically
significant. To do this, we collect the number of true
positives (TP) and the total discovered fusion-gene can-
didates (Total) from Tables 1 and 2. Fisher’s exact test
is then applied, comparing the precision between FuSeq
vs each of the other methods. Two-sided p-values are
reported in the tables. The results show that the tests

Table 2 Fusion discoveries in the spike-in dataset. The results for TopHat-Fusion, SOAPfuse and JAFFA for sample SRR1659964 are
collected from a recent study [9]

One sample(SRR1659964) 20 samples

TP Total Precision Recall F1 P-value TP Other P-value

FusionMap 7 26 0.27 0.78 0.40 0.78 142/180 283 0.04

TRUP 4 9 0.44 0.44 0.44 1 80/180 63 0.15

JAFFA 5 13 0.39 0.56 0.46 1 138/180 114 0.12

SOAPfuse 4 13 0.31 0.44 0.36 1 NA NA NA

TopHat-Fusion 1 6 0.17 0.11 0.13 0.66 133/180 925 1.6e-22

FuSeq 9 25 0.36 1 0.53 - 179/180 228 -

TP= true positive fusion genes, Other= unvalidated fusion genes, Total= total discovered fusion-gene candidates, P-value = two-sided p-value of Fisher’s exact test of the
difference in precision between FuSeq vs each of the other methods
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Fig. 3 Comparisons of the operating characteristics in validated datasets. In each panel FuSeq result is given as a solid curve, and other results as
dash curves or points. The results of JAFFA, SOAPfuse and TopHat-Fusion for breast-cancer and glioma datasets and melanoma and spike-in
datasets are taken from Davison et al. [14] and Liu et al. [9], respectively. For purpose of visual comparison, the x-axis of the plots is limited mostly by
the curves of FuSeq

for the precision difference between FuSeq and TopHat-
Fusion are significant in the breast cancer datasets TP27
(9.1e-06) and TP99 (1.1e-08). For the Melanoma data, the
test is significant vs SOAPfuse (p-value = 0.02). More-
over, in the Glioma datasets, the higher precision of FuSeq
is significant vs two methods including JAFFA (5.5e-08)
and SOAPfuse (0.02). There are no significant p-values
vs any methods in sample SRR1659964; this likely due to
the small sample problem. Finally, the higher precision of
FuSeq is significant vs FusionMap (p-value = 0.04) and
TopHat-Fusion (1.6e-22) in the full spike-in dataset.

Evaluation by discovery rates
Since we do not have information on true negatives in the
real datasets, we further evaluate the discovery rates of
FuSeq through the ranks of validated fusion genes. In gen-
eral, the validated fusion genes of each dataset should have
low ranks in the final set. In the breast-cancer, melanoma
and glioma datasets, most of the validated fusion genes are

in the top 10 in the final set of a sample (Additional file 1:
Table S1, S2 and S3). These fusion genes usually contains
a high number of supporting reads (≥ 10).
Additional file 1: Figure S4 presents the ranks of 9 spike-

in fusion genes over 20 samples detected by FuSeq. The
samples in the x axis are ordered by the concentration lev-
els from high to low and replication 2 to replication 1. In
general, all spike-in fusions are on the top of ranks, indi-
cating the stability of FuSeq. Half of samples in the right
side, which have high levels of concentration, reveal all
9 spike-in fusion genes at the top 9 of ranks. This indi-
cates that the spike-in fusion genes have the strong signals
in these samples with high supporting reads (about more
than 50 counts, see Additional file 1: Table S4). The trend
of the ranks of spike-in fusion genes only slightly increases
when the level of concentration decreases. The higher
ranks of spike-in fusion genes in the low levels of concen-
tration might be caused by higher signals of endogenous
fusions in the baseline cell line. The more details of the
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ranks of each spike-in fusion genes crossing over 20 sam-
ples are reported in Additional file 1: Table S5. We also
report candidates for endogenous fusion of the spike-in
dataset in Additional file 1: Table S6. These endogenous
fusion candidates are replicated at least a half of samples
(10 times).
Furthermore, in order to compare to other fusion

detection methods, we plot operating characteristic (OC)
curves in Fig. 3. First, we extract the number of support-
ing reads of all fusion genes in the datasets. Then, we rank
fusion genes and report the number of true positives dis-
covered by FuSeq. For ranking, in a single sample, we sort
fusion genes by their scores in decreasing order. To sum-
marize the information from all samples of a dataset, we
rank fusion genes by the maximum scores across the sam-
ples of the dataset. The results from FusionMap, TRUP,
JAFFA, SOAPfuse and TopHat-Fusion are presented by
crosses, circles, stars, diamonds and triangles in the plots.
For the breast-cancer and glioma datasets, we collect

the list of ranked fusion genes from previous study [14]
for JAFFA, SOAPfuse and TopHat-Fusion to build their
OC curves. For melanoma and spike-in dataset, no rank-
ing information of fusion gene available. The OC curve for
all 20 samples of the spike-in dataset is not reported since
we do not have information of the total number of fusion
genes discovered by the these methods. As shown in the
plots, the points of JAFFA, SOAPfuse and TopHat-Fusion
generally follow the trends of the curves. However, FuSeq
potentially discovers more true positives than JAFFA
and TopHat-Fusion and less false positives than SOAP-
fuse. The OC curves of two methods TopHat-Fusion and
SOAPfuse are worse than both JAFFA and FuSeq. In the
glioma dataset, the OC curve of FuSeq is better than that
of JAFFA. For the breast-cancer dataset, FuSeq are bet-
ter and competitive with JAFFA at the beginning and the
end of the OC curves. Moreover, in both TP27 and TP99
datasets, FuSeq discovers more true positives than JAFFA.

Verification using de novo assembly
We illustrate the de novo assembly for one sample
from each dataset. In each dataset, we select the sam-
ple with the highest number of validated fusion genes
detected by FuSeq: SRR064439 (7.9M read-pairs) from
the breast-cancer dataset, SRR018266 (14.9M read-pairs)
from the melanoma dataset, and SRR934930 (28.7M read-
pairs) from the glioma dataset. For the spike-in dataset,
for consistency with previous works, we select sample
SRR1659964 (93.9M read-pairs). The numbers of sup-
porting read pairs from fusion-gene candidates used as
input into Trinity software are 321, 165, 310 and 481 for
the breast-cancer, melanoma, glioma and spike-in samples
respectively. The results are summarized in Table 3.
The numbers of fusion-gene candidates and the vali-

dated fusion genes discovered by methods are presented

Table 3 Verification of fusion genes by de novo assembly

FuSeq FuSeq + de novo assembly

Breast cancer Total 22 4

TP27 9 3

TP99 16 4

Melanoma Total 10 1

TP 3 1

Glioma Total 28 18

TP 4 4

Spike-in Total 25 12

TP 9 9

TP= true positive fusion genes, Total= total discovered fusion-gene candidates

in rows Total and TP (true positive), respectively. The
results in column ‘FuSeq + de novo assembly’ indicate
the fusion-gene candidates supported by contigs from
de novo assembly. For both breast-cancer and melanoma
datasets, only a few fusion-gene candidates are verified
by the assembly, but all of them are true positive. For the
long read datasets (the glioma and spike-in datasets), all
validated and spike-in fusion genes discovered by FuSeq
are verified again by the de novo assembly. It also intro-
duces the evidences of contigs from 14 and 3 extra fusion
genes for the glioma dataset and the spike-in dataset,
respectively. These examples show that de novo assembly
increases the specificity of the fusion discovery, but a suf-
ficient number of supporting reads is needed to achieve
similar sensitivity as the mapping-based approach.
In general, de novo assembly is a useful step to add

confidence in a fusion event if the fusion gene is associ-
ated with a contig. However, if the number of supporting
reads are too low (low-abundant fusion genes), or there
are no split read input, there might be not enough infor-
mation to build a contig. Therefore, a true positive might
not be supported by a contig. We can also use this result
as an indication that in general a de novo assembly-based
method is not a good detection method for low-abundant
fusion genes.

Computational time
The computational cost of FuSeq comes from two steps
including (i) quasi-mapping and (ii) statistical tests and
filtering. The first step gets the benefit from the excel-
lent efficient performances of the light-weight hash-table-
based quasi-mapping process from Rapmap [26] for speed
and memory usage. The time and memory of the second
step is linear to the number of reads supporting the fusion
genes candidates which is usually proportional to the sam-
ple’s library size. Figure 4 demonstrates that our method
computational time is linear to the number of reads of
samples. Similar to other methods, FuSeq keeps all the
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Fig. 4 Comparison of fusion gene detection methods in
computational time. Four methods JAFFA, SOAPfuse, TopHat-Fusion
and FuSeq are compared according to the average computational
time per sample over a range of sample sizes. Comparison results of
TRUP and FusionMap and FuSeq for sample SRR1659964 from the
spike-in dataset are located at ∼94M of the x-axis. Note that both
axes are in log-scale

reads of fusion candidates that can be helpful for users.
Therefore the storage requirements of FuSeq is also linear
to the number of reads.
Due to the speed advantage of the quasi-mapping step

[26] and the fusion equivalence class structure, FuSeq
shows an excellent performance in computational time,
see Fig. 4 and Additional file 1: Table S7. The time starts
from the processing of the FASTQ file until the produc-
tion of final candidates. For small datasets such as the
breast-cancer and melanoma datasets, it takes 4-6 CPU
hours to finish 6 samples (less than an hour per sample). It
slightly increases to 1.15 h in average to process the long-
read glioma dataset. It takes 45.47 CPU hours to complete
all 20 samples of the big spike-in dataset (an average of
112M 100bp read-pairs per sample), an average of 2.27
CPU hours per sample.
We now compare this to other methods based on a

recent report [9], where they compare 15 fusion detection
methods for a single prostate cancer 171T sample (118M
100bp read-pairs). As reported, these methods require
from 7.3 up to 240 h to analyse the sample. Among those,
TopHat-Fusion, SOAPfuse and JAFFA need 42.7, 148.75
and 154 h respectively. Figure 4 presents the compari-
son between FuSeq and the three methods by the average
computational time per sample over sample sizes. Thus,
FuSeq provides a significant improvement (∼19, 66 and 68

times faster than TopHat-Fusion, SOAPfuse and JAFFA,
respectively) in computational time.
We further compare performace times of FuSeq with

FusionMap [15] known as the fastest methods in the com-
parison study, and TRUP [5] reported with similar total
time compared to FusionMap and TopHat using their
datasets. We select sample SRR1659964 containing 94
million reads and run three methods on this sample. The
results show FuSeq requires 1.83 h, which is more than
2-fold faster than FusionMap (4.08 h), while TRUP
requires a lot more time (136.04 h). These results are pre-
sented in Fig. 4 and details of computational time and
memory usage are given in Additional file 1: Table S8.

Discussion and conclusion
We have developed a novel method called FuSeq for fast
and accurate discovery of fusion genes from RNA-seq
data. The experiments of the method on four differ-
ent real datasets with validated fusion genes reveal that
FuSeq compares well against TopHat-Fusion, SOAPfuse
and JAFFA in terms of sensitivity, specificity and F1 score.
FuSeq also substantially improves on the computational
time compared to the other fusion detection methods.
Overall, FuSeq makes it easier to perform fusion gene dis-
coveries from large RNA-seq datasets, e.g. involving large
numbers of samples.

Additional file

Additional file 1: Supplementary documents. (DOC 450 kb)
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