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Abstract

Background: Trypanosoma cruzi, the etiologic agent of Chagas disease, is currently divided into six discrete typing
units (DTUs), named Tcl-TcVI. Tcll is among the major DTUs enrolled in human infections in South America southern
cone, where it is associated with severe cardiac and digestive symptoms. Despite the importance of Tcll in Chagas
disease epidemiology and pathology, so far, no genome-wide comparisons of the mitochondrial and nuclear
genomes of Tcll field isolates have been performed to track the variability and evolution of this DTU in endemic
regions.

Results: In the present work, we have sequenced and compared the whole nuclear and mitochondrial genomes of
seven Tcll strains isolated from chagasic patients from the central and northeastern regions of Minas Gerais, Brazil,
revealing an extensive genetic variability within this DTU. A comparison of the phylogeny based on the nuclear or
mitochondrial genomes revealed that the majority of branches were shared by both sequences. The subtle
divergences in the branches are probably consequence of mitochondrial introgression events between Tcll strains.
Two T. cruzi strains isolated from patients living in the central region of Minas Gerais, S15 and S162a, were clustered
in the nuclear and mitochondrial phylogeny analysis. These two strains were isolated from the other five by the
Espinhaco Mountains, a geographic barrier that could have restricted the traffic of insect vectors during T. cruzi
evolution in the Minas Gerais state. Finally, the presence of aneuploidies was evaluated, revealing that all seven Tcll
strains have a different pattern of chromosomal duplication/loss.

Conclusions: Analysis of genomic variability and aneuploidies suggests that there is significant genomic variability
within Minas Gerais Tcll strains, which could be exploited by the parasite to allow rapid selection of favorable
phenotypes. Also, the aneuploidy patterns vary among 7. cruzi strains and does not correlate with the nuclear
phylogeny, suggesting that chromosomal duplication/loss are recent and frequent events in the parasite evolution.
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Background

The protozoan parasite Trypanosoma cruzi is the etiologic
agent of Chagas disease, a chronic debilitating illness that
is endemic in Latin America, affecting ~5-8 million
people and accounting for 662,000 disability adjusted life
years [1-3]. Due to its extreme genomic and phenotypic
variability, 7. cruzi is currently divided into six discrete
typing units (DTUs), named TcI — TcVI [4, 5]. The inclu-
sion of a new DTU, Tcbat, which comprises bat-restricted
trypanosomes, is still under debate [5, 6]. From the six
DTUs, Tcl, Tcll, TcV and TcVI are usually involved with
the domestic cycle of Chagas disease, accounting for the
majority of the human infections [5]. Human infections
caused by Tcl strains are more prevalent from Central
America to Bolivia, while TcIl, TcV and TcVI human infec-
tions are more common in the Southern cone of South
America, encompassing countries as Argentina, Chile,
Paraguay, Bolivia and Brazil [5, 7-9]. Recently, several
TcVI parasites were isolated from humans and vectors in
Colombia, suggesting that the distribution of this DTU
could be broader than previously speculated [10]. Al-
though the division in six DTUs is well accepted, there are
four major proposed models to explain T. cruzi evolution-
ary history [11-14]. Even though these models disagree
about the ancestral strains and the number of
hybridization events during T. cruzi evolution, they all
agree that TcV and TcVI are hybrids, originated from par-
ental TcIl and TclII strains. It is still unknown if these hy-
brids arose from a single hybridization [15] or from
multiple independent recombination events [14, 16, 17].
Molecular dating suggests that these two hybrid lineages
evolved recently; reinforcing the assumption that genetic
exchange could still be driving the emergence of T. cruzi
recombinant isolates [15, 16].

The prevalent hypothesis that 7. cruzi replication is
mostly clonal [18—-20] is been confronted by several recent
findings suggesting that recombination events are fre-
quent in T. cruzi populations from close geographic re-
gions [14, 21-24]. The majority of field evidences suggest
that recombination in 7. cruzi is a non-obligatory, but
common feature, and that parasexual mechanisms could
be involved in genetic exchange processes in this parasite
[16, 17, 21, 25, 26]. In fact, the presence of Chromosomal
Copy Number Variation (CCNV), the duplication or loss
of whole chromosome sequences, in T. cruzi [27, 28]
could be a result of a fusion of diploid parasite cells
followed by genome erosion, in a similar way as the Can-
dida albicans parasexual cycle [17, 29-31]. According to
this model, during the mammalian stage of the infection,
the nucleus of two parasite cells fuse, resulting in a poly-
ploid progeny, which may lose some supernumerary
chromosomes resulting in different degrees of chromo-
somal aneuploidies [17, 32]. This assumption is further
supported by the subtetraploidy found in T. cruzi
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experimental hybrids [23, 30], and by the ~70% higher
DNA content in hybrids when compared to parental
strains [33, 34]. Recent experiments based on tiling arrays
[27], or whole genome sequencing [28], have showed that
CCNV vary among and even within 7. cruzi DTUs, sug-
gesting that aneuploidy is a common feature in this para-
site. However, the extent of chromosomal variation in
close-related field isolates, or even the rate in which these
chromosomal duplication/deletion events occur in T.
cruzi is still unknown.

T. cruzi belongs to Kinetoplastida order, which is char-
acterized by having the mitochondrial genome composed
by ~ 30 copies of 20-50 kb maxicircles and thousands of
copies of ~ 1 kb minicircles, which together comprise the
kinetoplast DNA (kDNA) [26, 35]. Maxicircles are the
functional equivalent of eukaryotic mitochondrial DNA,
encoding genes that in these parasites can be edited by the
RNA editing machinery that lead to U-insertions/deletions
directed by minicircle sequences to correct frameshifts
and premature stop codons [36—39]. Minicircle sequences
are highly heterogeneous even within a single clone [40],
while maxicircle sequences are relatively homogeneous, at
least within their coding regions which represent ~ 63% of
the T. cruzi maxicircle genome [26]. Phylogenetic analyses
of T. cruzi maxicircles lead to the identification of three
mitochondrial clades: clade A comprising Tcl maxicircles;
clade B comprising Tclll, TcIV, TcV and TcVI maxicircles;
and clade C comprising Tcll maxicircles [11, 26].
Although maxicircle sequences are usually conserved
within a DTU, several studies have showed evidences of
intra-lineage mitochondrial introgression, where the
maxicircle genome from a DTU is associated with a
non-recombinant nuclear genome of a different DTU
[11, 17, 25, 26, 41]. Besides introgression, the occur-
rence of minor heteroplasmy, a presence of heteroge-
neous mitochondrial genomes in an individual cell,
has also been reported in the 7. cruzi Sylvio X10 strain
[17, 26]. The mechanism behind both processes as well as
their importance to T. cruzi evolution is still unknown,
however these processes could be important to satisfy the
necessity to escape Muller’s ratchet, the irreversible accu-
mulation of deleterious mutations resulting from clonal
reproduction [17, 23].

The majority of Tcll infections occur in South Ameri-
can countries, such as Brazil and Argentina, being re-
sponsible for severe acute infections and by chronical
mixed symptomatology with megaesophagus/megacolon
and chagasic cardiomegaly [5, 11, 42]. Despite the im-
portance of Tcll in Chagas disease epidemiology and
pathology, so far, no genome-wide comparisons of Tcll
field isolates have been performed to track the variability
and evolution of this DTU in endemic regions. In the
present work, we have sequenced the whole nuclear and
mitochondrial genomes of seven TclI strains, which were
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recently isolated from chagasic patients with the indeter-
minate or cardiac forms of Chagas disease. These iso-
lates where originated from the central and northeastern
regions of Minas Gerais state, Brazil, an endemic region
for T. cruzi Tcll infection. We evaluated and compared
the phylogeny of these TclI field isolates, as well as from
strains from the Tcl, Tcll, TcIll and TcVI DTUs, based
on nuclear and mitochondrial conserved genes to iden-
tify correlations among geographic and phylogenetic
data. We also used SNP calling and Read Depth Cover-
age (RDC) analysis to estimate nuclear CCNV and mito-
chondrial heteroplasmy, revealing large divergences
among TclI field isolates.

Results

To evaluate the genomic diversity among the T. cruzi
TcIl DTU within close geographic regions, we se-
quenced, de novo assembled and compared the nuclear
and mitochondrial genome sequences of seven TcII field
isolates. The assembly statistics for the nuclear genomes
are available in the Additional file 1: Table S1. These
parasites were isolated from chagasic patients from the
central (S15 and S162a) and northeastern (S11, S23b,
S44a, S92a, S154a,) regions of the Minas Gerais state,
Brazil (Fig. 1a).

T. cruzi nuclear and mitochondrial phylogeny

From a total of 1,563 nuclear single copy genes that are
conserved among the CL Brener Esmeraldo and
Non-Esmeraldo-like haplotypes [28], 794 were partially
de novo assembled in all seven TcII field isolates
(Additional file 2: Table S2), while the other 769 genes
were absent in at least one of the assemblies. From these
794, 701 genes were partially recovered after the Gblocks
analysis (Additional file 3: Table S3), totalizing 558,587
nucleotides, which were used to estimate the nuclear
maximum likelihood phylogeny of these strains. To bet-
ter classify the Tcll field samples, other strains from the
DTUs Tcl (Arequipa, Colombiana and Sylvio), TcIl (Y
strain and clones - Ycl2, Ycl4, Ycl6 - and Esmeraldo),
Tclll (231), and TcVI (CL Brener Esmeraldo-like
haplotype and CL Brener Non-Esmeraldo-like haplo-
type) were also included in this analysis (Fig. 1b). All the
evaluated TclI strains/isolates clustered together and sep-
arated from the Tcl and TcllI strains. As expected, the CL
Brener (TcVI) Esmeraldo-like haplotype, which is derived
from a Tcll ancestor, clustered together with Tcll strains.
Similarly, the CL Brener (TcVI) Non-Esmeraldo-like
haplotype, derived from a TclIl ancestor, clustered with
the 231 (TcIlI) strain. Concerning the TclI field isolates,
two pair of samples, S15-S162a and S11-592a, which were
isolated from close geographic regions, were also clustered
in the phylogenetic analysis, suggesting that for these iso-
lates, genomic diversity correlates with geographic
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distances. On the other hand, the strains S11 and S154a
that were isolated from the same locality had a distant
phylogenetic relationship, suggesting that although
geographic distance may correlate with Tcll genomic di-
versity, there are different strains simultaneously coexist-
ing in the same area (Fig. 1b). A principal component
analysis (PCA) of all the differential nuclear SNPs found
in the seven TclI field isolates also clustered together S15
- S162a and S11 - S92a and indicated S154a as a
distantly-related isolate among the studied field samples
(Fig. 10).

Comparison of the gene conservation among the 19
newly assembled maxicircles, showed substantial differ-
ences in the kDNA sequences among 7. cruzi DTUs
(Fig. 2a). The CL Brener maxicircle shares higher identity
(bit score >40,000) with sequences from Tulahuen, 231
and 9280; an intermediate identity (bit score >19,000 <
40,000) with Tcl strains (Arequipa, Colombiana and Syl-
vio) and a lower identity (bit score > 4,000 < 19,000) to
Tcll strains (S15, S23b, S44a, S154a, S162a, S11, S92a,
Esmeraldo, Y clones and Y population) (Fig. 2a). Next, we
compared the variability within Tcll DTU kDNAs, using
as root the Esmeraldo maxicircle (Fig. 2b). This analysis
showed differences among Tcll maxicircle sequences,
where Esmeraldo sequence was closely related to the Tcll
field isolates, specially S44a, S154a and S23b (bit score >
37,000), and less similar to the Y clones and population
(bit score > 18.000 < 37,000). On the other hand, when
only Tcl maxicircles were evaluated, we found that they
shared equally most of their sequences (Fig. 2c). Phylogen-
etic analysis of the 19 T. cruzi strains based on maxicircle
coding genes separate the DTUs in a similar way to what
was found with the nuclear phylogeny, with well-defined
TcI and TclI clusters. Also, maxicircle analysis clustered
TcV and TcVI strains closer to TcllIl, reinforcing that the
mitochondria from the hybrids DTUs TcV and TcVI were
originated from the TclII ancestor (Fig. 2d). As seen in the
nuclear phylogeny, the two pairs of Tcll strains from close
geographic regions, S15-S162a and S11-S92a, also clus-
tered in the maxicircle-derived phylogeny, while the
strains from the same locality, S11 and S154a, had a dis-
tant phylogenetic relationship.

A comparative tanglegram between the nuclear and
mitochondrial T. cruzi phylogeny showed large corre-
spondences in most of the branches between both meth-
odologies (Fig. 3), however, some discordances were also
observed. Based on the maxicircle phylogeny, the sister
group of the Y strain is the S11/S92a clade, while in the
nuclear phylogeny, the Y sister group was S44a. The
Esmeraldo sequence clustered with S154a in the nuclear
based phylogeny, while clustered with S44a, but not with
S154a, in the mitochondrial phylogeny. Finally, the four
Tcll isolates S15, S162a, S11 and S92a clustered together
in the nuclear phylogeny but not in the maxicircle
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evaluated, five were isolated from the northeast region of Minas Gerais: S11 (Itaipé - 17.3339° S, 41.6411° W), S154a (ltaipé - 17.3339° S, 41.6411°
W), S23b (Porteirinha - 15.7032° S, 43.0583° W), S44a (Turmalina — 17.2856° S, 42.7269°), and S92a (Tedfilo Otoni - 17.8600° S, 41.5091° W): while
two were obtained from the central region of Minas Gerais: S15 (Felixlandia - 18.7136° S, 44.9253° W) and S162a (Congonhas do Norte - 18.8242°
S, 43.6759° W). b Maximum likelihood phylogenomic analysis of the Tcll field isolates and previously sequenced T. cruzi from different DTU,
based on 794 nuclear single copy conserved genes. The colored circles correspond to the geographic localization in which each Tcll isolate was
obtained. The numbers correspond to the percentage of bootstrap replicates that supported each branch, where 100% corresponds to the 1,000

replicates ¢ PCA plot based on the SNPs present in the seven Tcll field isolates. Ync =Y strain non-cloned population; CLB-Esmo = CL Brener
Esmeraldo-like haplotype; CLB-Nonesmo = CL Brener Non-esmeraldo-like haplotype

phylogeny. These discordances between nuclear and
mitochondrial phylogeny could be caused by mitochon-
drial introgression events, where a parasite could inherit
the mitochondria and nuclear genomes from different
strains, resulting in discordant nuclear and mitochon-
drial phylogenies.

To search for evidences of mitochondrial heteroplasmy
within TclI field isolates, we re-mapped the kDNA reads
from each T. cruzi Tcll sample in its reference-based
assembled maxicircle sequence, and searched for hetero-
zygous SNPs positions (Additional file 4: Figure SI1). A
total of 38, 46, 33, 29, 4027, 36, 16, 17 and 21



Reis-Cunha et al. BMC Genomics (2018) 19:816 Page 5 of 17

3
3 8
g &

eueiquioio)

Tulahuen Tcl
a Pw
ogL Brener TC”
100 9280

Tclll
A231
Colombiana TCV
4| 100
100 Arequipa TCV|
Sylvio

Fig. 2 T. cruzi maxicircle phylogenetic analysis. Circos plot of the similarity along the assembled maxicircle sequence between: a T. cruzi strains from
different DTUs using the CL Brener maxicircle sequence as reference; b Only Tcll strains, using Esmeraldo maxicircle as reference; ¢ Only Tcl strains, using
Colombiana maxicircle as reference. The colors represented in the circos plot are ranked from red to blue and are related to the best hits based on their
BLAST bit-scores. d Maximum likelihood phylogenetic analysis of the maxicircle sequence among the Tcll field isolates and T. cruzi maxicircles from
different DTUs. The colored circles correspond to the geographic localization in which each Tcll sample was obtained as represented in Fig. 1a). The
numbers correspond to the percentage of bootstrap replicates that supported each branch, where 100% corresponds to the 1,000 replicates Ync =Y strain
non-cloned population

Maxicircle phylogeny Nuclear-genes phylogeny
S23b.

Yclé
Ycl2
Ycl4
Ync
s44a@
Esmeraldo
S154a Esmeraldo——
100 5, CL Brener OS154a£'
—émla CLB-Non-esmo — =
100 o 9280 A231 = 100
A231 | Sylvio’
Sylvio }\

I — / \ CO|UIIIUId'IId
Arequipa \qupd
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heterozygous SNPS were found, respectively, in the strains
S11, S154a, S15, S162a, S23b, S44a, S92a, Ycl2, Ycl4, Ycl6
(Additional file 4: Figure S1A). The majority of these SNPs
were localized in non-coding or repetitive regions
(Additional file 4: Figure S1 B and C).

Chromosomal copy number variation

Analysis of chromosome copy number variation
(CCNV) revealed large differences in the chromosomal
duplication/loss events, highlighting the extensive ploidy
variability found in this DTU (Fig. 4). The isolates S11,
S154a and S162a presented more than 5 chromosomal
duplication/losses, while S15 and S92 presented 5 and 4,
and S23b and S44a had 3 or less aneuploidies with stat-
istical significance (Fig. 4a, Additional file 5: Figure S2
and Additional file 6: Table S4). Interestingly, the phylo-
genetically close S15 and S162a isolates presented a
similar chromosomal duplication/loss pattern, especially
in the chromosomes 3, 7, 27 and 31 but a variable pat-
tern in others, such as the chromosomes 6, 13, 22, 34,
38 and 39, suggesting that the duplication/loss of chro-
mosomes is an ongoing process in 7. cruzi evolution
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(Fig. 4c). Similar results were obtained for the closely re-
lated S11 and S92 strains, which share expansions in the
chromosomes 13 and 31, but not in the 6, 11, 21 and 27
chromosomes. To determine the overall genomic ploidy
of each T. cruzi Tcll field isolate, the allele frequency of
heterozygous SNP in the whole genomes was estimated.
The allele frequency distribution peak of 0.5 for all the
strains reinforces the predominance of diploid chromo-
somes in T. cruzi (Fig. 4b).

To compare the CCNV pattern of the TcII field isolates
with other DTUs, the chromosomal duplication/loss pat-
tern in all 19 T. cruzi strains evaluated by this work was
estimated, showing several distinct patterns among and
within DTUs, with some chromosomes being consistently
duplicated or deleted (Fig. 5). The chromosome 31 was
supernumerary in most of the strains from the five evalu-
ated DTUs, while the chromosomes 6, 13, 27 also had an
overall tendency to polyploidy, but in a lower extent than
chromosome 31. There is also evidence for loss of chro-
mosomes, as chromosomes 2, 7 and 38, which were in a
haploid state in several T. cruzi strains. Next, to evaluate if
the CCNV also vary within a given parasite population, we
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Fig. 5 Chromosomal copy number variation among the T. cruzi DTUs
and field isolates. The CCNV for each T. cruzi strain was performed
based on the median coverage of all T. cruzi genes, excluding those
belonging to the largest multigene families, normalized by the
genome coverage. In this heatmap, a dark-blue, light blue, yellow,
orange and red boxes correspond to, respectively, ~ 1; ~2; ~ 3; ~ 4
and ~ 5 chromosomal copies. Each line corresponds to one T. cruzi
chromosome, numbered from 1 to 41, while each column represents a
T. cruzi strain/isolate, in this order: Tcl: Arequipa, Colombiana, Sylvio;
Tcll: S11, 515, S23b, S44a, S92a, S154a, S162a, Ycl2, Ycl4,Ycl6, Ypop,
Esmeraldo; Tclll: 231; TcV: 9280; TcVI: CL Brener, Tulahuen

compared the chromosomal duplication/loss pattern in Y
strain and three clones derived from this strain: Ycl2, Ycl4
and Ycl6. All the Y clones had a similar pattern of CCNV
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with each other and with the Y strain (non-cloned
population), indicating that the CCNV pattern may be
constant within a population (Fig. 5). Interestingly,
the Y strain chromosome 11 had a drastic change of
RDC starting at the 248-kb position, as seen in
Reis-Cunha 2015 [28], resulting in an initial haploid
and a terminal diploid state. To investigate if this
difference is a result of mosaic aneuploidy in the
population, where some cells have a complete
chromosome 11 and others have a deletion of the ini-
tial 248 kb, or if within individual cells one homolog
chromosome have a complete and the other one a
truncated copy, we compared RDC along the entire
chromosome in the Y strain and clones. The initial
248 kb of the three Y clones presented half of the
RDC from the remaining chromosomal sequence, in a
similar way to what was found in the Y strain
(Additional file 7: Figure S3). This suggests that in
individual parasites of Y strain, one copy of the CL
Brener chromosome 11 is complete and the other one
has an arm loss, resulting in a haploid state in its ini-
tial 248 kb sequence. Another possibility is that in Y
strain, the corresponding CL Brener chromosome 11
is divided in two smaller chromosomes, a monosomic
chromosome that correspond to the initial 248 kb
and a disomic chromosome that corresponds to the
remaining CL Brener chromosome 11 sequence.

A hierarchical clustering analysis based on the Euclidian
distances of the predicted ploidy of each chromosome in
the 19 T. cruzi strains showed that the CCNV events do
not follow the parasite phylogeny, as Tcl, TcV and TcVI
strains were clustered within TcII strains (Fig. 6). Interest-
ingly, the Esmeraldo (TcIl) and 231 (TclIIl) strains
presented the most divergent CCNV pattern among the
evaluated strains/isolates. Sequencing of additional TcIII
isolates are required to evaluate the extent of ploidy
variation within this DTU. The TclI field isolates that were
clustered together in the nuclear and mitochondrial phyl-
ogeny, S15-S162a and S11-S92a, also clustered together
based on the CCNV profile.

Discussion

T. cruzi population genetics analysis are usually based
on multilocus sequence typing of nuclear or mito-
chondrial markers, and therefore the comparison of
the parasite variability is restricted to a number of
genomic regions [10, 21, 26, 43-45]. On the other
hand, the use of next generation sequencing (NGS)
reads provides a wide genomic characterization of the
parasite variability, allowing not only a comparison
based on a broader set of genes, but also the correl-
ation of chromosomal amplification/loss patterns with
the parasite phylogeny. Most of the T. cruzi molecular
studies are focused on the Tcl DTU, the oldest and
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Fig. 6 Dendrogram of the hierarchical analysis based on T. cruzi chromosomal copy number variation patterns. The hierarchical clustering analysis
based on Euclidean distances of the predicted ploidy of each chromosome of the 19 T. cruzi samples was performed using the R package Pvclust. Two
bootstrap resampling methods were employed to assess the uncertainty in the hierarchical cluster analysis: approximately unbiased (au) in red and
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most widespread genetic lineage of the parasite, which
is responsible for the majority of human infections from
the Central America to Bolivia [5, 24, 26, 44—46]. There
are, however, fewer studies concerning the variability, dis-
tribution and intercrossing of Tcll, one of the most rele-
vant 7. cruzi subgroups related to human infection in the
South America southern cone [5, 21, 47, 48]. Although
the correspondence between DTU and clinical course is
still unclear, some evidences point toward Tcll association
with severe manifestations of Chagas disease, presenting
both cardiac and digestive manifestations, highlighting the
importance of Tcll for Chagas disease clinical outcomes
(5, 24, 49]. To further explore the TcllI variability, we se-
quenced the whole nuclear and mitochondrial genome of
seven Tcll isolated from patients from different loca-
tions in the Minas Gerais state, Brazil (Fig. 1la), and
compared these isolates with each other and with ref-
erence strains from different DTUs. This is the first
study to evaluate genome wide variation in 7. cruzi

isolates from close geographic locations, based on
NGS.

Nuclear and mitochondrial phylogeny

The first step to estimate correlations among evolution,
chromosomal duplication/loss and recombination within
isolates from T. cruzi Tcll DTU was the assessment of
their phylogeny based on a set of nuclear conserved sin-
gle copy genes as well as based on all mitochondrial
genes [28]. Single copy genes are ideal molecular
markers to infer phylogeny due to their uniqueness and
conservation across and within species groups. Especially
in analysis based on short Illumina reads, as de novo
assembly or mapping of these small reads to repetitive
regions (as microsatellites) could result in artefactual
variations. However, the use of single copy genes
prevents mapping errors and false SNPs that could com-
promise phylogenetic conclusions. Even though single-copy
genes do not diverge as often as microsatellites, the use of a
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large dataset provided enough resolution to separate Tcll
from other DTUs and allowed inferences of phylogenetic
proximity among these field samples (Fig. 1b). The simul-
taneous evaluation of nuclear and mitochondrial markers
allows a thorough evaluation of a lineage evolutionary his-
tory, due to the different inheritance patterns and mutation
rates presented by these two genomic sequences. T. cruzi
hybrid strains present uniparental inheritance of its mito-
chondrial DNA and bi-parental inheritance of its nuclear
genome, as seen in CL Brener (TcVI) where the mitochon-
dria was originated from the TclII ancestor and the nuclear
genome is composed by sequences derived from TcIl and
Tclll ancestors [50, 51]. Besides, events of mitochondrial
introgression and heteroplasmy have already been de-
scribed in T. cruzi [26], which could be a consequence of
intra or inter-DTU-hybridizations events.

A comparison of the phylogeny based on the nuclear
single copy genes and the mitochondrial genes revealed
that most of the branches are shared by the maximum
likelihood phylogeny estimations by markers from both
sequences (Fig. 3). The two samples from the central re-
gion of Minas Gerais, S15 and S162a, clustered together
with high bootstrap value (100%) in both nuclear and
mitochondrial phylogenetic analysis as well as in the
PCA plot based on whole genome SNPs (Figs. 1b, ¢ and
2d). These two samples are separated from the other five
Tcll field isolates by the Espinhaco Mountain, a moun-
tain range extending from the central region of Minas
Gerais to the northern region of the Bahia State, Brazil.
This geographic barrier could restrict the transit of in-
sect vectors, separating 7. cruzi populations from the
central and north/northeastern regions of the state. The
S154a sample was the outgroup of all TclI field samples
based on the single copy genes phylogeny, clustering to-
gether with Esmeraldo (Fig. 1b) and presented the most
divergent SNP pattern based on PCA analysis of whole
nuclear genomic SNPs from the seven TclI field isolates
(Fig. 1c). This suggests that S154a lineage could have en-
dured several recombination events, being the most mo-
saic sample from the TcII isolates evaluated, or that it
have diverged early from the other TclI field isolates. To
date, the majority of field evidence supports that T. cruzi
is not strictly clonal, and that recombination is a nono-
bligatory yet common event [16, 17, 21, 23, 26, 44]. The
occurrence of recombination among 7. cruzi populations
was documented in Tcl from Bolivia [45, 46], Colombia
[22] and Brazil [44], as well as among TcII strains from
Brazil [21], based on samples from close geographic re-
gions. T. cruzi strains were also capable of genetic re-
combination in laboratory, presenting fusion of parental
genotypes, loss of alleles, homologous recombination
and uniparental inheritance of kinetoplastid maxicircle
genome [30]. Although T. cruzi-related parasites Leish-
mania sp. and T. brucei appears to undergo meiotic
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events in the insect vector [52-54], T. cruzi genetic
exchange appears to occur in the mammalian host and
is independent of an meiotic stage [16]. However, the
rate in which these events occur in 7. cruzi and whether
recombination may also occur within insect vector is
still unknown.

There were some divergences among the phylogeny of
Tcll field isolates, based on nuclear or mitochondrial
genes (Fig. 3). The sister group of the Y clones/strain
was S44a based on the nuclear single copy genes, and
S11/S92a based on the mitochondrial genes (Fig. 3 - Red
line). However, the bootstrap values supporting this nu-
clear branching was low. Similarly, Esmeraldo strain
clustered with S154a based on nuclear markers and with
S44a based on the maxicircle phylogeny (Fig. 3 — Blue
line). This difference in the nuclear and maxicircle phyl-
ogeny are probably caused by mitochondrial introgres-
sion events, as recombination and gene exchange
appears to be a common event in 7. cruzi [20, 44]. Mito-
chondrial introgression was already been documented in
some T. cruzi strains isolated from North and South
America [10, 11, 25, 26]. Although the biological impli-
cations of mitochondrial introgression are still unknown,
its occurrence reinforces the reliability of recombination
inferences among 7. cruzi strains. To search for mito-
chondrial heteroplasmy, the presence of heterogeneous
mitochondrial genomes in an individual cell, we
re-mapped the mitochondrial reads of each TcII strain to
its reference-based maxicircle assembly and looked for
heterozygous SNPs (Additional file 4: Figure S1). Only a
few number of heterozygous SNPs were identified in the
mitochondrial genome of Tcll strains/isolates, and most
of them were localized in repetitive regions, not support-
ing the occurrence of mitochondrial heteroplasmy. To
date, reported levels of mitochondrial heteroplasmy in T.
cruzi are scarce [26]. Heteroplasmy was already observed
in the Sylvio X10/1 (TcI), based on re-mapping of its
KkDNA reads to the reference Sylvio X10/1 maxicircle,
resulting in a total of 74 SNPs in eight genes and three
intergenic regions [26]. In our analysis, we found only
1-3 heterozygous SNPs in coding genes, not providing
enough support for heteroplasmy inferences. However,
the absence strong evidence of heteroplasmy in our sam-
ples could be an underestimation resulting from low
coverage (~60X), when compared to 163x coverage used
in the Sylvio X10/1 study [26], as only 12.2% of the reads
corresponded to the minor variant SNPs in Sylvio [26].

Chromosomal copy number variation

Chromosomal copy number variation appears to be well
tolerated in the trypanosomatids T. cruzi [27, 28] and
Leishmania [55-61]. In the present work, we compared
the CCNV pattern of seven TclI field samples with each
other (Fig. 4), as well as with previously sequenced
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strains from the TcI, Tclll, TcV and TcVI DTUs (Fig. 5).
It is well known that T. cruzi strains have distinct pro-
files of chromosomal bands based on Pulse Field Gel
Electrophoresis analysis, and therefore a variable karyo-
type among DTUs. These differences where mainly at-
tributed to expansion/retraction of multigene families
clusters, or to events of chromosomal fusion/break dur-
ing T. cruzi evolution [34, 51, 62—65]. Despite these vari-
ations, the housekeeping genes clusters are highly
conserved and syntenic among the parasites strains and
therefore represent an adequate source for sequence
normalization in CCNV analysis [27, 28, 34, 66-68]. A
hierarchical cluster dendrogram based on the CCNV pat-
tern of the 19 T. cruzi strains from different DTUs grouped
Tcl, TcV and TcVI samples within Tcll clusters, showing
that the chromosomal duplication/loss events do not follow
the phylogeny based on nuclear single copy genes or mito-
chondrial markers (Fig. 6). In fact, all the TcII strains evalu-
ated had a different pattern of CCNV, with low (S23b,
S44a) medium (S15, S92a) or high (S11, S154a, S162a)
number of aneuploidies (Fig. 4), in accordance with which
was previously observed between the Tcll strains Esmeraldo
and Y [28]. This suggests that chromosomal gain/loss is
frequent in 7. cruzi, and occurs in a higher rate than DTU
branching events, varying among and within DTUs
[27, 28]. The aneuploidy pattern also varies within
close geographic populations of Leishmania donovani
[55], reinforcing that both parasites are naturally an-
euploids [69]. Based on FISH analysis, CCNV was
identified within the same population in several Leish-
mania species and strains [57, 58, 70]. To explain this
observation, a model based on miss segregation or
stochastic replication of chromosomes was proposed
in Leishmania [57, 58, 70]. In this model, there is an
asymmetric replication and allotment of chromosomes
during mitosis, resulting in polyploid and haploid
cells. For this reason, the Leishmania population
present a “mosaic aneuploidy”’, where cells from the
same population presented different patterns of aneu-
ploidies, and the most prevalent genotype within a
population was estimated as ~ 10% of the cell counts
[57, 58]. To evaluate if the aneuploidy pattern in T.
cruzi also varies in a similar rate, we have cloned and
sequenced the whole genome of three clones derived
from Y strain, based on RDC. All the three Y clones
as well as the Y strain [28] presented a similar aneu-
ploidy pattern (Fig. 5), suggesting that although
CCNV in T. cruzi varies among and within DTUs, it
seems constant within a given population, different
from what is observed in Leishmania. This data is in
accordance with pulse field gel electrophoresis assays
denoting that the chromosomal bands from the D11
clone from the G strain of T. cruzi was stable in con-
tinuous culture isolates over several years [34, 71].
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Similarly, the L. donovani strain BPK282/0 cl4
presented a stable aneuploidy pattern for at least 32
passages after genome sequencing [55]. However, this
unaltered pattern of aneuploidies could be a conse-
quence of the normalized sum of the CCNV from the
entire population, precluding the identification of
aneuploidy patterns from single cells. In fact, several
T. cruzi strains had estimated chromosomal ploidies
with intermediated values (as between 2 and 3), which
could be a consequence of a mixed cell population with di-
somic and trisomic chromosomes [28, 72]. A process that
could explain the generation of polyploid cells in T. cruzi is
the fusion of two parental diploid or polyploid cells
followed by a progressive reduction of the chromosome
number, in a similar way as the parasexual cycle of Candida
albicans [17, 29, 73]. In this model, the fusion of ‘parental’
cells is followed by karyogamy and reductional mitotic div-
ision, which would lead to aneuploid daughter cells with
different genomic/genetic contents [17, 58]. FACs analysis
of T. cruzi hybrid isolates revealed an increase of ~70% in
their DNA content when compared to parental strains [33].
The subsequent prolonged maintenance of experimental
hybrids in axenic cultures lead to a gradual and progressive
reduction in DNA content [17, 33], further supporting the
parasexual model as basis to the generation of aneuploidies
in T. cruzi.

Although structural variability and aneuploidies are
usually associated with detrimental phenotypes in com-
plex eukaryotes [74-76], some unicellular eukaryotes
rely on aneuploidy as a mechanisms to allow rapid adap-
tation to changing environments, suggesting that the
variation in chromosome number could also have a posi-
tive fitness effect in stress conditions [73, 77, 78]. Aneu-
ploidy it is a common feature in trypanosomatids,
described in several T. cruzi strains and Leishmania
species [28, 55, 56, 79], however it appears to be absent
in T. brucei [80]. As T. cruzi and Leishmania have their
genome divided in a large number of fragments (~ 34 to
47 putative chromosomes) [50, 51, 67, 81, 82], altering
the copy number of specific chromosomes would alter
the dosage of a restrict set of genes, avoiding detrimental
consequences of large-scale dosage alterations. On the
other hand, the diploid parasite 7. brucei has its genome
divided in eleven megabase-sized chromosomes [67, 81],
suggesting that aneuploidies would be better supported
in organisms that have its genome dispersed in a large
number of chromosomes. However, the evaluation of a
CCNV in a broader set of unicellular eukaryote species
is necessary to confirm this hypothesis. Copy number vari-
ation is a well-documented mechanism to alter gene ex-
pression and enhance variability, especially in parasites that
mostly regulate its gene expression post-transcriptionally as
trypanosomatids [83-85]. Miss-segregation of chromo-
somes or the parasexual cycle could alter the copy number
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of several genes within a few generations, which may enable
heteroxeneous parasites to rapidly adapt to the transition
between the mammalian and invertebrate hosts [17, 60, 61,
72]. This hypothesis have been recently confirmed in Leish-
mania, where a shift in the pattern of duplicated/loss chro-
mosomes was described as the parasite change from
culture cells to insect vectors and to the mammalian host
[61]. This shift in chromosome duplication patterns also
impacted RNA levels, showing a higher expression of genes
derived from polysomic chromosomes [61]. Alternatively, if
a polysomic state is stable for long evolutionary periods it
could allow the accumulation of mutations and consequent
evolution of new functions for the duplicated genes, as the
ancestral copy would still be present in the genome [72].
The gain or loss of a whole chromosome was already asso-
ciated with increased fitness in stress conditions and drug
resistance in Saccharomyces cerevisiae, Candida albicans
and carcinomatous lung cancer cells [77-79, 86], and could
also be explored by the parasites to allow natural selection
of favorable phenotypes. In fact, CCNV was also associated
with drug resistance in L. major and L. infantum based on
transcriptional profiling using microarrays, southern blot
and comparative genomic hybridization, where these chro-
mosomes reverted to disomy in the absence of drug pres-
sure [79, 87]. However, Downing 2011, based on RDC
analysis found no clear link between aneuploidy and drug
resistance in L. donovani clinical isolates [55]. Drug selec-
tion also appears to promote gene amplification and trans-
location in T. cruzi [88], showing that genomic expansion is
a widespread process employed by trypanosomatid para-
sites to survive to environmental changes.

The chromosome 31 was the only one supernumerary
in the majority of the T. cruzi evaluated strains, been
consistently polyploid among isolates from different
DTUs (Fig. 5), as previously seen in a more restricted
number of strains [28]. This chromosome is enriched
with genes related to glycoprotein biosynthesis and gly-
cosylation processes, especially with genes related to
mucin glycosylation and biosynthesis, as the enzyme
UDP-GIcNAc-dependent glycosyl-transferase [28, 89].
Mucins are highly glycosylated proteins that covers the
whole surface of the parasite, which are directly involved
in its survival in both invertebrate and vertebrate hosts
[89, 90]. One of the possible explanations for the expan-
sion of chromosome 31 in 7. cruzi could be the need to
glycosylate the 2 x 10° mucins that covers the parasite
surface [28, 89, 90].

Conclusions

Next generation reads from whole genome and mitochon-
drial sequencing allows the simultaneous evaluation of
phylogeny, aneuploidy and allele frequencies in the same
population of cells, providing a genome-wide evaluation
of the variability among closely geographic field isolates
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[28, 55, 69]. Phylogenetic analysis of the TcIl DTU sug-
gested the occurrence of genomic recombination events
during T. cruzi evolution in Minas Gerais, with possible
mitochondrial introgression events. The discordance be-
tween the nuclear/mitochondrial phylogeny and the
CCNV suggests that chromosomal gain/loss are more fre-
quent than DTUs branching events in T. cruzi, and could
be explored by the parasite to allow rapid selection of fa-
vorable phenotypes. Besides, the highly variable pattern of
aneuploidies found within TcII field samples and the con-
cordant pattern of CCNV within Y clones suggest that the
parasexual cycle could be the major mechanism enrolled
in genetic exchange and aneuploidy generation in geo-
graphically close T. cruzi isolates [17]. However, the miss
segregation or stochastic replication of chromosomes, as
proposed to Leishmania [57, 58], could also be a driving
force in T. cruzi CCNV. To further address CCNV within
a T. cruzi population, single-cell genome sequencing based
analysis could provide a new level of resolution, compar-
ing the whole chromosomal pattern of single parasites
isolated from the same population. Aneuploidy constitutes
a large source of adaptability, throughout gene dosage al-
terations and shaping of genetic heterogeneity [69], which
could be important to the rapid adaptation and for the
interchange between the invertebrate/mammal hosts in
heteroxeneous parasites. Finally, the expansion of the
chromosome 31 in a larger number of isolates/strains
highlights the importance of the glycosylation to the T.
cruzi survival.

Methods

Genome sequencing and read libraries processing

A total of 19 T. cruzi whole genome sequencing read
libraries containing samples from TcI, Tcll, TclIll, TcV
and TcVI DTUs were used in this study. Eleven of these
sequences were generated in this work using Illumina
Hiseq2000 sequencer, with ~60x coverage, generating
pair-end read libraries with 100 bp read size and insert
size of 350 bp. They consisted of seven Tcll strains
recently isolated from the central (S15 and S162a) and
northeastern (S11, S23b, S44a, S92a and S154a) regions
of Minas Gerais state, Brazil; three clones from the Y
strain (Ycl2, Ycl4, Ycl6); and one sample of the CL
Brener (TcVI) strain. Other five T. cruzi whole genome
and mitochondrial read libraries were generated by our
group in a previous study [28] consisting of samples of
Tcl (Arequipa, Colombiana and Sylvio), Tcll (Y strain)
and TcIlI (231). The remaining three samples were
downloaded from the National Center for Biotechnology
Information Sequence Read Archive (NCBI-SRA),
consisting of samples from the Tcll (Esmeraldo), TcV
(9280) and TcVI (Tulahuen) DTUs. The detailed de-
scription of each read library is summarized in the
Additional file 8: Table S5.
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The quality of each read library was evaluated with the
FASTQC tool (http://www.bioinformatics.babraham.a-
c.uk/projects/fastqc/) and filtered using Trimmomatic
[91]. The phred filtering threshold was a minimum of 30
for Illumina reads and 20 for the 454 and Ion Torrent
libraries, using a five nucleotide sliding window, as well
as a minimum read size of 50 nucleotides.

The whole genome assembly contigs from all CL
Brener Esmeraldo-like and Non-esmeraldo putative
chromosomal sequences and unassigned contigs version
26 were downloaded from the TriTrypDB [92]
(Additional file 9: Table S6).

Parasite cloning and DNA isolation

For cloning the T. cruzi Y (Tcll) strain, 10° epimasti-
gotes were plated into a semi-solid medium (low--
melting agarose 0.75%, brain heart infusion 48.4%,
liver infusion tryptose (LIT) 48.4%, 2.5% defibrinated
blood, and 250 pg/mL penicillin/streptomycin) and
incubated at 28 °C for 35 days. Single clones were
obtained and transferred to 25 cm?® culture flasks
with 5 mL of LIT medium and 10% fetal bovine
serum. After cloning, the three Y clones (Ycl2, Ycl4
and Ycl6) epimastigote cultures where briefly cul-
tured before DNA extraction. To isolate the parasite
genomic and mitochondrial DNA, a total of 1x 10® Y
epimastigotes were centrifuged at 3000 g for 10 min
at 4 °C. The parasites where washed three times with
ice-cold PBS, suspended in PBS with 300 pg/mL pro-
teinase K and incubated at 25 °C for 10 min. The
genomic DNA was obtained with the Wizard® Gen-
omic DNA Purification Kit (Promega), following the
manufacturer instructions. The extracted DNA was
submitted to a genotyping protocol using three
different previously described markers to confirm the
DTU identity [11, 93, 94].

Nuclear genome assembly

The genome assemblies of Esmeraldo, 231 and Sylvio
strains, as well as the CL Brener Esmeraldo-like and
Non-Esmeraldo haplotypes were downloaded, respect-
ively, from the European Nucleotide Archive, NCBI and
TriTrypDB (Links in the Additional file 9: Table S6). The
genomes of the seven Tcll field isolates, three Y clones, Y
strain, Arequipa and Colombiana were de novo as-
sembled, using Velvet optimizer with velvet version
1.2.10 [95, 96] for the Illumina, or using Celera 8.3
[97, 98] for the 454 read libraries. The NCBI acces-
sion numbers for the nuclear genome assemblies are
listed in the Additional file 10: Table S7.

kDNA assembly and sequence similarity visualization
To select the most suitable mitochondrial sequence to
be used in reference-based maxicircle assemblies, the
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read libraries for each of the T. cruzi strains were com-
petitively mapped to all three publically available
maxicircle references using BWA-mem [99, 100]. The
available mitochondrial genomes with their respective
NCBI accession numbers were: Tcl Sylvio (FJ203996.1),
Tcll Esmeraldo (DQ343646.1) and TcVI CL Brener
(DQ343645.1). The reference with the highest coverage
for each strain was selected as a template. Based on this
analysis, Sylvio maxicircle was selected as reference for
Arequipa and Colombiana strains, Esmeraldo maxicircle
was selected as reference for all the Tcll field isolates, as
well as for Y strain and clones and the CL Brener maxi-
circle was selected as reference for 231, 9280 and Tula-
huen strains (Additional file 11: Figure S4). The final
FASTA consensus maxicircle genome sequence was gen-
erated by submitting the BAM files to a pipeline using
SAMTools mpileup, disabling probabilistic realignment
for the computation of base alignment quality, reducing
the chance of false SNPs caused by misalignments (-B),
bcftools view using the minimum allele count of sites
and including all sites with one or more genotypes (-cg),
vcfutils.pl to convert the bcftools vcf output file to a
consensus fastq file (vcf2fq) and seqtk fq2fa to convert
the fastq output to a final consensus fasta file [101]. The
NCBI accession numbers for the maxicircle sequence as-
semblies obtained in this study are listed in the
Additional file 10: Table S7. The maxicircle assemblies
of the T. cruzi strains Sylvio (TcI), Esmeraldo (TclI) and
CL Brener (TcVI) were downloaded from the aforemen-
tioned databases. To visualize the similarity patterns and
differences between each one of the maxicircle
sequences, a BLASTn search [102] between all sam-
ples with an e-value cutoff of le *° was performed
and submitted to Circoletto [103], a Circos program
package [104].

Phylogenetic analysis

The nuclear phylogeny of 17 from the 19 T. cruzi sam-
ples was determined based on 1,563 CL Brener
esmeraldo-like haplotype single copy nuclear genes
described in Reis-Cunha 2015 [28]. These sequences
were recovered from the assembled contigs of the afore-
mentioned samples using BLAT [105], where only genes
that were identified in all the assembled genomes where
kept and used in the phylogenetic analysis. Tulahuen
and 9280 strains were excluded from this analysis as
their hybrid origin hampered the quality of the nuclear
genome de novo assembly. For the kDNA phylogeny, all
the 19 T. cruzi samples were used, including Tulahuen
and 9280. For both nuclear and mitochondrial genomes,
each one of the recovered genes were aligned using
MUSCLE [106] and the poorly aligned or gaps regions
were eliminated using Gblocks [107]. The best fitting
nucleotide substitution model for the phylogenetic


http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Reis-Cunha et al. BMC Genomics (2018) 19:816

analysis was determined using Jmodeltest [108]. The
maximum likelihood phylogenetic tree was built using
the PhyML [109], with the Generalized Time Reversible
(GTR) model 1,000 bootstrap replicates, 0.9 proportion
of invariable sites, 0.93 gamma distribution for the nu-
clear and 0.27 gamma distribution for the mitochondrial
genome. The final phylogenetic tree images were built
using FigTree v.1.4.2 software (http://tree.bio.ed.ac.uk/
software/figtree/). A comparative tanglegram based on
the nuclear and mitochondrial markers were generated,
using the program Dendroscope [110].

Principal component analysis

To estimate the distance among the seven TclI field iso-
lates based on whole genome differential SNPs, a con-
sensus nuclear genomic sequence was generated to each
sample, using the GATK FastaAlternateReferenceMaker
(https://software.broadinstitute.org/gatk/documentation/
tooldocs/current/org_broadinstitute_gatk_tools_walk-
ers_fasta_FastaAlternateReferenceMaker.php). Then, a
distance matrix based on differential SNPs was gener-
ated and loaded in the R caret package to generate the
PCA plot (http://topepo.github.io/caret/index.html).

Chromosomal copy number variation

The estimation of the copy number of each chromosome
from each strain was based on the median coverage of
all genes present in a given chromosome excluding those
that belong to the largest T. cruzi multigene families
(trans-sialidase, MASP, TcMUC, RHS, DGF-1 and GP63)
and the ones that had an outlier coverage based on
Grubb’s test. Briefly, T. cruzi CL Brener chromosomal
reference sequences version 26 were downloaded from
the TriTrypDB [92]. Then, the read libraries from the
Tcl and Tclll strains where mapped to the
Non-Esmeraldo-like chromosomes, while strains from
the Tcll, TcV and TcVI were mapped to the
Esmeraldo-like chromosomes [50] using BWA MEM
[100]. The mapped reads were filtered by mapping qual-
ity 30 using SAMtools v1.1 [101], the RDC of each pos-
ition in each chromosome was determined with
BEDtools genomecov v2.16.2 [111] and in-house Perl
scripts. For each chromosome, genes with outlier cover-
ages were excluded, based on iterative Grubb’s test, with
p<0.05. The median RDC of all non-outlier genes in
each chromosome was normalized by the genome cover-
age (estimated as the mean RDC of all single-copy genes
in all chromosomes for each strain) and assumed as the
chromosomal somy (Additional file 12: Figure S5A). Finally,
the statistic support that a given chromosome somy was
lower than 1; 1.5 or higher than 2; 2.5; 3; 3.5; 4; 4.5 or 5 was
performed based on Mann-Whitney-Wilcoxon tests, with
one-way analysis of variance and a significance of p < 0.05,
using R. A list containing all the genes used to estimate

Page 13 of 17

each chromosome somy of all seven TcllI field isolates can
be seen in the Additional file 13: Table S8.

Single-nucleotide polymorphisms (SNPs) of the
mapped reads from all the T. cruzi strains were obtained
using SAMtools mpileup function [101]. To be consid-
ered as a reliable SNP, the position RDC must be at least
10. For each chromosome, the proportion of read depth
in alleles in each predicted heterozygous site was ob-
tained and rounded to the second decimal place. Base
frequencies were rounded in one hundred categories,
ranging from 0.01 to 1, and an approximate distribution
of base frequencies for each chromosome was obtained
by Perl scripts and plotted in R (www.r-project.org, R
Development 2010) (Additional file 12: Figure S5B). To
estimate the overall ploidy of each genome, the same
methodology was applied, but the heterozygous posi-
tions from all CDSs from all chromosomes were
employed simultaneously.

Aneuploidy pattern dendrogram

A hierarchical clustering analysis based on the predicted
CCNV in all T. cruzi strains was performed with the R
implemented Pvclust package [112]. A distance matrix
was built with pairwise Euclidean distances between the
strains, and the dendrogram was generated by complete
linkage method. To assess the uncertainty in hierarchical
clustering analysis, we used two bootstrap resampling
methods implemented in Pvclust: bootstrap probability
(BP), the ordinary bootstrap resampling; and the
approximately unbiased (AU) [113] probability, from
multiscale bootstrap resampling. Both methods were cal-
culated with 10,000 iterations.

Additional files

Additional file 1: Table S1. T. cruzi nuclear genome assembly statistics.
(XLSX 10 kb)

Additional file 2: Table S2. T. cruzi CL Brener single-copy gene IDs from
the 794 genes recovered from all genome assemblies. (XLSX 20 kb)

Additional file 3: Table S3. T. cruzi CL Brener single-copy gene IDs from
the 701 genes used to estimate nuclear genomic Maximum Likelihood
phylogeny. (XLSX 19 kb)

Additional file 4: Figure S1. Maxicircle heterozygous SNPs. To test for
evidences of mitochondrial heteroplasmy, we evaluated the occurrence
of heterozygous SNPs in the whole maxicircle sequence of all seven Tcll
field isolates and three Y clones. A) Total heterozygous SNP count in the
maxicircle sequence. B) SNPs localized in the mitochondrial coding
genes. C) SNPs distribution throughout the maxicircle sequence. In each
box, the blue lines represent SNP positions, while the black line below
corresponds to the whole maxicircle sequence, from 0 to 22,292 kb. In
this line, each coding gene is represented by a black box, and the
repetitive region is represented by a red box. (DOCX 332 kb)

Additional file 5: Figure S2. Boxplot of the predicted ploidy of T. cruzi
Tcll field isolates. The predicted ploidy of each chromosome from the T.
cruzi field isolates S11, S15, S154a, S162a, S23b, S44a and S92a using as a
reference the 41 CL Brener chromosome sequences, was estimated
based on the median coverage of all T. cruzi genes, excluding those
belonging to the largest multigene families, and represented in boxplots.
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In this image, the predicted ploidy of each of the 41 chromosomes is
represented by the median, first and third quartile, as well as maximum and
minimum values. (A) Representation by strain. In this image, each quadrant
corresponds to a Tcll strain, containing the predicted ploidy of all 41
chromosomes. (B) Representation by chromosome. In this image, each
quadrant corresponds to a chromosome, comprising the predicted ploidy
of this chromosome in all seven Tcll evaluated strains. (PPTX 4680 kb)

Additional file 6: Table S4. Ploidy estimations and statistic validation of
all 41 chromosomes of the seven Tcll field isolates, S11, S15, S154a,
S162a, S23b, S44a and S92a. The mean, median and standard deviation
of the predicted ploidy of each chromosome of each strain, based on the
coverage of all genes in a given chromosome is shown. The evaluation if
the predicted ploidy of each chromosome was lower than 1; 1.5 or
higher than 2; 2.5; 3; 3.5; 4; 4.5 or 5 was performed based on Mann-
Whitney-Wilcoxon tests, with one-way analysis of variance and a
significance of p < 0.05, using R. Significant values are highlighted in red.
(XLSX 46 kb)

Additional file 7: Figure S3. Read Depth Coverage of the chromosome
11 in the Y strain and clones. In this picture, the blue lines correspond to
the normalized RDC of each position of the chromosome 11, estimated
by the ratio between the RDC and the genome coverage. The red line
corresponds to the 248 kb position in the chromosome. Below, the
protein-coding genes are depicted as rectangles drawn as proportional
to their length, and their coding strand is indicated by their position
above (top strand) or below (bottom strand) the central line. Cyan and
black rectangles represent multigene families and hypothetical/house-
keeping genes, respectively. The initial 248-kb in this chromosome had a
smaller RDC when compared to remaining sequence in the Y strain as
well as in all three Y clones evaluated. (DOCX 226 kb)

Additional file 8: Table S5. T. cruzi read libraries description. (DOCX 14 kb)

Additional file 9: Table S6. Links to download T. cruzi reference
genomes. (DOCX 12 kb)

Additional file 10: Table S7. NCBI accession numbers of the T. cruzi
genomes and maxicircle assemblies. (DOCX 14 kb)

Additional file 11: Figure S4. Competitive mapping of the
mitochondrial reads to the three available maxicircle templates. The
percentage of mitochondrial genome reads from the 16 T. cruzi read
libraries that mapped preferentially with each of the maxicircle sequence
templates, Sylvio (Tcl), Esmeraldo (Tcll) and CL Brener (TcVI with
mitochondria sequence derived from Tclll) is shown. The Tcl strains
mapped preferentially with the Sylvio template, while Tcll strains mapped
preferentially with the Y strain and the Tclll, V and VI strains mapped
preferentially with the CL Brener maxicircle sequence. (DOCX 235 kb)

Additional file 12: Figure S5. Methodology for T. cruzi CCNV
estimations. (A) The CCNV estimations were performed using the median
coverage of all T. cruzi genes, excluding those belonging to the largest
multigene families in each one of the CL Brener 41 putative
chromosomes as an estimate of its chromosome copy number. In brief,
the median RDC of the selected genes in each of the 41 CL Brener
chromosomes were generated by PERL scripts and normalized by the
genome coverage. The genome coverage was estimated as the mean
RDC of all single-copy genes in all chromosomes for each strain. (B) Het-
erozygous SNPs between the CL Brener chromosome and the mapped
reads for the T. cruzi stains were obtained from the filtered SAMtools mpi-
leup results. To be considered as a reliable SNP, the position RDC must
be at least 10, with 5 reads supporting each variant. For each chromo-
some, the proportion of the alleles in each predicted heterozygous site
was obtained and rounded to the second place. Base frequencies were
rounded in ten categories, ranging from 0.01 to 1.00, and an approximate
distribution of base frequencies for each chromosome was plotted in R.
Disomic chromosomes have a peak in 0.50, while trisomic chromosomes
have peaks in 0.33 and 0.66. Tetrasomic chromosomes have combination
of peaks of 0.20, 0.80 and 0.50. (DOCX 120 kb)

Additional file 13: Table S8. List of genes used to estimate the
chromosomal ploidy of the seven Tcll field isolates, after the exclusion of
genes with outlier coverages based on iterative Grubbs' tests. Each
isolate, S11, S154a, S162a, S15, S92a, S23b and S44a is represented in a
different sheet. (XLSX 1150 kb)
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