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Transcriptome analysis of human heart
failure reveals dysregulated cell adhesion
in dilated cardiomyopathy and activated
immune pathways in ischemic heart failure
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Abstract

Background: Current heart failure (HF) treatment is based on targeting symptoms and left ventricle dysfunction
severity, relying on a common HF pathway paradigm to justify common treatments for HF patients. This common
strategy may belie an incomplete understanding of heterogeneous underlying mechanisms and could be a barrier
to more precise treatments. We hypothesized we could use RNA-sequencing (RNA-seq) in human heart tissue to
delineate HF etiology-specific gene expression signatures.

Results: RNA-seq from 64 human left ventricular samples: 37 dilated (DCM), 13 ischemic (ICM), and 14 non-failing
(NF). Using a multi-analytic approach including covariate adjustment for age and sex, differentially expressed genes
(DEGs) were identified characterizing HF and disease-specific expression. Pathway analysis investigated enrichment
for biologically relevant pathways and functions. DCM vs NF and ICM vs NF had shared HF-DEGs that were enriched for
the fetal gene program and mitochondrial dysfunction. DCM-specific DEGs were enriched for cell-cell and cell-matrix
adhesion pathways. ICM-specific DEGs were enriched for cytoskeletal and immune pathway activation. Using the ICM
and DCM DEG signatures from our data we were able to correctly classify the phenotypes of 24/31 ICM and 32/36
DCM samples from publicly available replication datasets.

Conclusions: Our results demonstrate the commonality of mitochondrial dysfunction in end-stage HF but more
importantly reveal key etiology-specific signatures. Dysfunctional cell-cell and cell-matrix adhesion signatures
typified DCM whereas signals related to immune and fibrotic responses were seen in ICM. These findings suggest
that transcriptome signatures may distinguish end-stage heart failure, shedding light on underlying biological
differences between ICM and DCM.
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Background
Heart failure (HF) affects an estimated 6.5 million adult
Americans [1]. Although survival rates have improved
by 10% between 1979 and 2000, the current 5-year mor-
tality rate is still ~ 50% [1, 2]. A long-standing paradigm
is that later-stage heart failure with reduced ejection

fraction (HFrEF) evolves via a “final common pathway”
despite having diverse etiologies and genetic contribu-
tions [3, 4]. Clinical trial results and current guidelines
for HFrEF management reflect this viewpoint and direct
therapy based largely on the degree of left ventricular
dysfunction, assessed by ejection fraction, and clinical
severity using the New York Heart Association (NYHA)
classification [5]. Despite HFrEF due to ischemic cardio-
myopathy (ICM) having a worse prognosis than dilated
cardiomyopathy (DCM) [6, 7], current therapies are rela-
tively indifferent to disease etiology, potentially reflecting
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an incomplete understanding of the heterogeneous bio-
logical mechanisms contributing to HFrEF. Animal and
cell-based HF models have provided key insights into
general HF biology, but have rendered a more limited
contribution into subtypes of HF and into the substantial
variation that is present in patient populations as com-
pared to homogenous strains in animal and cell-based
models. An improved understanding of underlying human
HF biology could provide insight into diverse mechanisms
and pave the way for new precision medicine strategies.
We employed a global transcriptomics approach to un-
cover biological pathways that characterize human HFrEF
of general ICM or DCM etiology.
Prior microarray studies suggested distinct gene ex-

pression signatures between HF etiologies [8–13]; but
others failed to find distinctions [14, 15]. Direct
RNA-sequencing (RNA-seq) provides superior quantifi-
cation of transcripts compared to microarrays and has
been used to identify expression signatures between HF
and non-failing (NF) hearts [16], novel transcriptional
regulators and perturbed miRNA networks in ICM or
DCM [17, 18], pre- and post-LVAD transcriptomes [19],
common HF genes in pediatric cardiomyopathy [20],
and splicing, eQTL, and allelic expression in DCM [21].
Less progress has been made in refining differential ex-
pression between different adult HFrEF etiologies, par-
ticularly in human tissue models where access is often
limited and sample sizes are small. Additionally, prior
studies focused on comparing end-stage diseased hearts
and NF hearts, which allows for little intra-disease reso-
lution. Overcoming the challenges of accessing human

tissues, the previous largest RNA-seq study of HF etiolo-
gies consisted of 13 ICM, 13 DCM, and 10 NF, but the
analyses focused on cytoskeletal and transport genes as
translational targets in HF rather than distinguishing
disease-specific pathways within HF [22–24].
We used RNA-seq in human left ventricles to resolve

distinct etiologies within HF, specifically between ICM
and DCM. Our hypothesis was that etiology-specific
transcriptome signatures exist and can distinguish
disease-specific HF mechanisms. Our analysis gives
insight into a potentially etiology-specific pathogenesis
of HFrEF, providing evidence that a single final common
pathway may not fully characterize HF and that HF can
be sub-classified into etiology-specific expression signa-
tures. We performed RNA-seq on 64 explanted human
hearts, using a multi-analytic approach to demonstrate
there are common HF pathways as well as
disease-specific signatures in DCM and ICM (Fig. 1a).
Our results support shared and unique mechanisms in
heart failure etiologies that contribute to HFrEF.

Results
Clinical characteristics of patients
Sixty-four hearts were investigated: 37 from DCM
patients, 13 from ICM patients, and 14 NF
(Additional file 1: Table S1). Table 1 summarizes clinical
characteristics between the patient groups. The ICM co-
hort had a significantly greater proportion of patients
taking statins (p < 0.0001) and having coronary artery
disease (p < 0.0001), hyperlipidemia (p = 0.005) and dia-
betes mellitus (p = 0.004).

Fig. 1 Schematic of RNA-seq analyses. a mRNA from 64 human hearts was extracted, sequenced, and adjusted for covariates. By comparing DEGs
at an FDR of 5%, three pathway analyses were conducted. Analysis 1 considered all shared DEGs between DCM vs NF and ICM vs NF as HF-DEGs
(green-blue). Analysis 2 considered non-overlapping DEGs as DCM-specific (green) or ICM-specific (blue). Analysis 3 directly compares diseases
(pink). b Principal component analysis of all three cohorts, ICM (blue), DCM (green), and NF (grey). On the first two principal components, each of
the three groups clusters together with overlap between ICM and DCM. ICM clusters further away from NF than DCM
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Principal components of the cohorts
To investigate gene expression differences between HFrEF
etiologies, we performed single replicate poly-A RNA-seq
on left ventricular tissue samples (Fig. 1a, Additional file 2:
Table S2). We used principal component analysis to
broadly understand gene expression relationships between
cohorts and visualize sample clustering for the most vari-
ably expressed genes (Fig. 1b). Using the first two compo-
nents, the samples cluster distinctly between disease and
NF and by disease with some overlap. ICM samples clus-
ter further away from NF than DCM.

Random sample permutation
To test the strength of our disease classifications, we
conducted a random sampling analysis. We show that
our classifications achieve the highest number of DEGs
of any random classifications and are highly significant
within a 99.99% confidence interval. In DCM vs NF
96.4% of combinations had five or less DEGs, and the
maximum combination had 1105 DEGs (compared to
the observed 3649: M = 8.50, SD = 76.03, p < 2.2e− 16;
Additional file 3: Figure S1a). In ICM vs NF, 98.1% of
combinations had five or less DEGs, and the maximum
combination had 1940 DEGs (compared to the observed
4150: M = 9.59, SD = 106.29, p < 2.2e− 16; Additional file
3: Figure S1b). In ICM vs DCM, 96.8% of combinations
had five or less DEGs, with the maximum combination
having 560 DEGs (compared to the observed 874: M= 5.51,
SD = 42.63, p = 4e− 12; Additional file 3: Figure S1c). No
combination produced as many DEGs as our NF and dis-
ease cohorts, suggesting our original clinical classifications
were rigorous.

Multiple linear regression to adjust for covariates
Because age and sex are known to contribute to heart
failure risk, we used multiple linear regression to adjust
the gene expression for these confounding effects. Spear-
man correlation between the samples demonstrated that
following covariate adjustment, the samples clustered
into three distinct phenotypic groups with the NF and
ICM groups being the most dissimilar (Fig. 2). Before
adjustment, DCM vs NF had 3649 DEGs; after applying
the model to adjust the expression for differences in age
and sex, there were 3495 DEGs. A majority (3419; 98%)
were significant before the model. ICM vs NF had 4150
DEGs and 4137 after the model was applied. A majority
(3808; 92%) were significant before the model. ICM vs
DCM had 874 DEGs, 535 DEGs after the model was ap-
plied, and 499 (93%) were significant before the model.
Unadjusted DEGs are included in Additional file 4: Table
S3, and the adjusted gene expression values were used
for the remaining analyses.

Analysis 1: HF-DEGs
There are 2934 HF-DEGs (1472 upregulated, 1462 down-
regulated; Fig. 3a, Additional file 5: Table S4). Many of
these genes agree with previous HF gene expression
literature, including decreased MYH6 (fold change =DCM,
− 1.5; ICM, − 2.0) expression and increased NPPA (fold
change =DCM, 18.1; ICM, 11.2) and NPPB (fold change
= DCM, 15.0; ICM, 22.4) expression (Additional file 5:
Table S4) [25, 26]. The four most significant pathways are
Mitochondrial Dysfunction, Oxidative Phosphorylation,
EIF2 Signaling, and Protein Ubiquitination Pathway
(Fig. 3b, Additional file 6: Table S5). Toxicity annotation
in IPA revealed significant enrichment of well-

Table 1 Clinical characteristics of DCM and ICM cohorts

Characteristics DCM (n = 37) ICM (n = 13) p-value

Male sex, n (%) 30 (81) 10 (77) 0.71

Age at transplant 49 ± 13 56 ± 4 0.10

Race

Caucasian, n (%) 31 (84) 13 (100) 0.32

Black/African American, n (%) 3(8) 0 (0) 0.56

unknown, n (%) 3(8) 0 (0) 0.56

Ethnicity

Not Hispanic or Latino, n (%) 26 (70) 7 (54) 0.32

Hispanic or Latino, n (%) 5 (14) 1 (8) 1.00

unknown, n (%) 6 (16) 4 (31) 0.42

NYHA 3.3 ± 0.6 3.3 ± 1 0.67
aLVEF (%) 18 ± 8 13 ± 5 0.09

Comorbidities

Coronary artery disease, n (%) 4 (11) 13 (100) < 0.0001

Diabetes mellitus, n (%) 6 (16) 8 (62) 0.004

Hyperlipidemia, n (%) 8 (22) 9 (69) 0.005
aHistory of smoking, n (%) 17 (49) 8 (67) 0.33

Hypertension, n (%) 16 (43) 8 (62) 0.34
aBMI ≥ 30, n (%) 5 (16) 2(22) 0.64

Medications

Inotropes, n (%) 11 (30) 3 (23) 0.73

Statins, n (%) 10 (27) 12 (92) < 0.0001

Antiarrhythmics, n (%) 32 (86) 12 (92) 1.00

Amiodarone, n (%) 11 (30) 3 (23) 0.73

Aspirin, n (%) 8 (62) 15 (41) 0.22

Beta Blockers, n (%) 20 (54) 8 (62) 0.75

ACE inhibitor, n (%) 17 (46) 8 (62) 0.52

Device Therapy

ICD, n (%) 32 (86) 8 (62) 0.10

LVAD/BiVAD, n (%) 16 (43) 4 (31) 0.52
aUnknown for some patients. Plus-minus values are means ± one SD. P-values
determined by Mann-Whitney U Test or Fisher’s Exact Test (at significance levels
of 0.05, 2-tailed hypothesis) where appropriate. ICD implantable cardioverter
defibrillator, LVEF left ventricular ejection fraction, LVAD/BiVAD left/biventricular
assist device, NYHA New York Heart Association
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characterized HF pathologies including cardiac fibrosis,
hypertrophy, and necrosis/cell death (Additional file 7:
Table S6). The genes involved in these pathologies that are
dysregulated in the HF-DEGs are illustrated in Fig. 3c.
The fold change direction for HF-DEGs was the same

in both diseases for all genes. When plotting the average
RPKM values for one disease against the other logarith-
mically, R2 = 0.98 (Fig. 3d), indicating correlation of the
relative magnitude of gene expression. This suggests
these genes represent an expression pattern common to
a failing heart irrespective of disease phenotype.

Analysis 2: disease-specific
Identifying disease-specific DEGs
By removing the HF-DEGs from each comparison, DCM
vs NF had 561 DCM-specific DEGs (202 upregulated, 359
downregulated) and ICM vs NF had 1203 ICM-specific
DEGs (814 upregulated, 389 downregulated; Fig. 4a,
Additional file 5: Table S4). To validate the disease specifi-
city of these 561 and 1203 gene profiles, we performed
hierarchical clustering of the combined genes for all sam-
ples to visualize gene expression clustering. The samples
segregate into three large distinct clusters by NF, DCM,
and ICM (Fig. 4b). The NF and ICM samples cluster

relatively homogenously compared to DCM, which clus-
ters into smaller heterogeneous groups.

Disease-specific DEG validation
To independently validate the disease specificity of the
DCM- and ICM-gene profiles, we used four previously
published datasets that are publicly available in the NCBI
GEO database: microarray data from GSE1145 and
GSE1869 and RNA-seq data from GSE55296 and
GSE46224 [10, 18, 19, 23, 24]. From GSE1869 and
GSE46224, only post-transplant data was compared. Sam-
ples from GSE1869 and GSE46224 included ICM (n = 7
and n = 8, respectively) and non-ischemic cardiomyopathy
(NICM) (n = 8 for both GSE1869 and GSE46244), and we
assumed that clinical NICM was largely equivalent to
DCM. We extracted expression values for the 561 and
1203 disease-specific genes from each dataset. Using the
same hierarchical clustering methods, we demonstrated
that this disease-specific expression profile was able to ac-
curately segregate 10/13 DCM and 9/13 ICM from
GSE55296 (Additional file 8: Figure S2a), 8/8 NICM and 5/
7 ICM from GSE1869 (Additional file 8: Figure S2b), 14/15
DCM and 10/11 ICM from GSE1145 (Additional file 8:
Figure S2c), but was not sufficient to accurately segregate
samples from GSE46224 (Additional file 8: Figure S2d).

Fig. 2 Correlation matrix between samples. The heatmap matrix shows the Spearman correlation coefficient between samples for all expressed
genes following adjustment. Samples cluster by phenotype. Cooler colors (blues, greens) represent relationships between samples that are most
similar; warmer colors (reds, oranges) represent samples that are more dissimilar with lower coefficients
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Pathway analysis for DCM-specific DEGs
At p ≤ 0.05, 47 pathways were predicted to be enriched
(Additional file 6: Table S5). Those with p ≤ 0.005 are listed
on the left side of Fig. 4d. The most significantly enriched
pathways are Germ Cell-Sertoli Cell Junction Signaling, im-
plicating involvement of intercellular adhesion, and AMPK,
which aids in monitoring heart energy consumption [27].
Functional annotation of DEGs revealed decreases in adhe-
sion, cell survival, and metabolism of reactive oxygen spe-
cies (Additional file 9: Table S7) The differential expression
of genes involved in the extracellular matrix are predicted
to decrease extracellular matrix adhesion (Fig. 5a).

Pathway analysis for ICM-specific DEGs
At p ≤ 0.05, 153 enriched pathways were predicted (Add-
itional file 6: Table S5). Those pathways with p ≤ 0.005 are

listed on the right side of Fig. 4d. The most enriched path-
ways are ILK and Integrin Signaling and the most signifi-
cantly activated pathways are RhoA and Death Receptor
signaling. Many enriched pathways involve the immune
system, including Antigen Presentation, CD28 in T Helper
Cells, IL-6, CD40, JAK/Stat, fMLP in Neutrophils, and
role of NFAT in Regulation of Immune Response. There is
also enrichment for activation of cytoskeletal regulation
pathways: ILK, Integrin, Rho Family GTPases, RhoA,
RhoGDI, Actin Cytoskeleton, Rac, and Remodeling of Epi-
thelial Adherens Junctions. Functional annotation revealed
increased infection and quantity and migration of multiple
immune cells (Fig. 5b, Additional file 9: Table S7). One
pathway is shared between the disease-specific compari-
sons: EIF2, which is predicted to be activated in ICM and
inhibited in DCM.

Fig. 3 Pathway analysis in HF-DEGs. a Venn diagram of DCM vs NF and ICM vs NF DEGs highlighting 2934 overlapping genes used in this analysis. b
Top 20 enriched pathways. Bars are filled according to z-score: teal indicates higher (activated), orange indicates lower (inhibited). Pathways without a
z-score are grey, and pathways with a z-score of zero are white. The ratio of the number of enriched genes to the number of total genes in the
pathway is listed on the right side. c Circos plot of enriched biofunctions and their corresponding DEGs according to IPA. DEGs are colored by mean
fold change from DCM or ICM vs NF. d Scatter plot of mean RPKM values of DCM against ICM logarithmically (R2 = 0.98) for the 2934 HF-DEGs
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Fig. 4 Pathway analysis in disease-specific DEGs. a Venn diagram of DCM vs NF and ICM vs NF highlighting 561 DCM-specific (green) and 1203
ICM-specific (blue) DEGs in this analysis. b Unsupervised clustering heatmap of DCM- and ICM-specific DEGs. Samples cluster according to etiology. c
Enriched pathways (p≤ 0.005). DCM-specific (left) and ICM-specific (right)
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Analysis 3: ICM vs DCM direct transcriptome comparison
Lastly, we confirmed these results reflected significant
differences in gene expression between the two HFrEF
general etiologies by directly comparing the DCM and
ICM transcriptomes. We identified 535 DEGs (Fig. 6a).
356 (67%) are upregulated in ICM relative to DCM.
Using IPA, 121 pathways are significantly enriched (p ≤
0.05; Additional file 6: Table S5), and Fig. 6b illustrates
the 20 most significant pathways. Thirteen of these path-
ways (Integrin, Clathrin-mediated Endocytosis, Antigen
Presentation, Rho Family GTPases, RhoA, RhoGDI,
CD28 in T Helper Cells, Actin Cytoskeleton, mTOR,
Rac, Remodeling of Epithelial Adherens Junctions, Tight
Junction, and Role of NFAT) were enriched in the

ICM-specific Analysis 2 in the same z-score directions,
suggesting their significance in this comparison is due to
upregulated genes in ICM rather than downregulated
genes in DCM.

Antigen presentation pathway
The Antigen Presentation Pathway was a significantly
enriched pathway in all four analyses. We investigated
its gene expression more deeply. The heatmap in Fig. 6c
depicts the average expression of each significant gene
from the pathway in the three cohorts. It demonstrates a
graded activation of Antigen Presentation Pathway
genes, with relatively low NF expression, moderate
DCM, and high ICM expression.

Fig. 5 Pathway analysis in disease-specific DEGs. a Network of genes involved in the predicted decrease of extracellular matrix adhesion in DCM.
The absolute fold change of each gene is indicated by the size of its oval. b Circos plot of predicted activated biofunctions in ICM for three
categories: quantity, infection, and migration. Connection sizes correlate to the number of genes involved in each sub-category, which are listed
on the outside of the circle

Fig. 6 Pathways enriched in ICM vs DCM. a Diagram highlighting 535 DEGs from ICM vs DCM. b Top 20 enriched pathways. Teal indicates higher
(activated) in ICM relative to DCM, and orange indicates lower (inhibited) in ICM relative to DCM. c Graded activation of Antigen Presentation
Pathway from relative low expression in NF, moderate expression in DCM, and high expression in ICM

Sweet et al. BMC Genomics          (2018) 19:812 Page 7 of 14



Discussion
There is a common HF transcriptome signature characterized
by general metabolic dysfunction
Our HF-DEG analysis confirmed the hallmark fetal gene
expression of HF controlled by β1-adrenergic receptor
signaling [28, 29] and revealed additional critical com-
mon HF pathways supporting overall metabolic dysfunc-
tion in the failing heart. All 2934 HF-DEGs were in the
same fold change direction at similar expression magni-
tudes for both diseases compared to NF, suggesting these
genes are characteristic of a failing heart (Fig. 3d). Many
of these genes also correspond to known heart failure
pathologies (Fig. 3c), The top four pathways enriched in
this gene set were Mitochondrial Dysfunction, Oxidative
Phosphorylation, EIF2 Signaling, and Protein Ubiquitina-
tion Pathway (Fig. 3b). When comparing gene expres-
sion of HF to NF, mitochondrial pathways have
commonly been disrupted, not only in microarrays of
human tissue [30, 31] but also in microarray and
RNA-seq of animal models of HF [32–34]. Insufficient
energy production in the failing heart has long been
known to contribute to left ventricular dysfunction.
Oxidative phosphorylation is decreased in chronic HF
30–50% [35] and decreased mitochondrial enzyme levels
have been associated with HF severity [36] and mortality
[37]. Targeting mitochondrial function in HF has been
recognized as having tremendous untapped potential
and is currently a forefront target for novel HF therapies
[38]. EIF2 signaling is required for translation, but is
inhibited, suggesting decreased protein production. The
Protein Ubiquitination Pathway is enriched, suggesting
an increase in protein degradation due to cell death or
tissue necrosis.

Cell-cell and cell-matrix adhesion is perturbed in DCM
The DCM-specific pathway analysis showed the top
enriched pathway for DCM was Germ Cell-Sertoli Cell
Junction Signaling (Fig. 4d, left side). Germ cell-sertoli
cell junctions in the testis are desmosome-like, com-
prised of many of the same proteins as cardiac desmo-
somes, and are essential for cell-cell adhesion and
intercellular signal transduction [39]. In this pathway,
genes encoding microtubule subunits, or tubulins, are
downregulated: TUBA1B encoding an α-tubulin,
TUBB4B encoding a β-tubulin, and TUBG1 encoding a
γ-tubulin. In NF, TUBA1B and TUBB4B are two of the
three highest expressed tubulins. This agrees with a re-
cent publication reporting that TUBA3D and TUBA3E
were significantly downregulated in DCM [21]. Evidence
suggests microtubules are responsible for transporting
gap junction protein connexin-43 to the cell surface
[40], and gap junction remodeling, including reduced ex-
pression of connexin-43 in myocytes, occurs in DCM
[41, 42]. This junction signaling pathway was also

confirmed as being enriched in the direct comparison
between ICM vs DCM.
Increased expression of MYOC, POSTN, SGCE, and

VCAN (fold changes = 2.1, 2.7, 1.2, 1.7 respectively) and
decreased expression of ADAM9, EMP2, NID1, and SPP1
(fold change = − 1.5, − 1.2, − 1.3, − 3.6, respectively) may
contribute to decreased cell-matrix adhesion (Fig. 5a).
SGCE encodes the epsilon component of the sarcoglycan
transmembrane complex, which connects the cardiomyo-
cyte to the extracellular matrix. MYOC, POSTN, VCAN,
ADAM9, NID1, and SPP1 all reside primarily in the extra-
cellular space. In particular, SPP1 expression plays a pro-
tective role in cardiac dilation, possibly by promoting
fibroblast growth and adhesion [43]. POSTN encodes peri-
ostin, which is known to be highly expressed in HF caused
by DCM. Overexpression of POSTN inhibits myocyte
spreading and fibroblast adhesion, and it contributes to
cardiac dysfunction [44]. Additionally, cell adhesion and
cytoskeletal processes have been previously implicated in
DCM [16, 18] and mutations in cytoskeletal genes are
known to cause DCM [45], potentially through disrupted
mechanotransduction.

The immune system and cytoskeleton are activated in ICM
The ICM-specific pathways can be categorized into two
main types, immune response and cytoskeletal regulation
(Fig. 4d, right side). Involvement of these in ICM may
stem from response to two stimuli, which are not mutu-
ally exclusive: the damaged, infarcted myocardium, to
which the immune system responds through inflamma-
tion followed by fibrotic scar formation, and atheroscler-
osis, which is the buildup of cholesterol on artery walls,
currently believed to be a chronic inflammation of arterial
walls eliciting a similar immune response [46, 47]. Myo-
cardial infarctions are caused by coronary artery obstruc-
tion due to atherosclerosis, buildup of cholesterol-laden
plaques on artery walls and subsequent plaque rupture
with thrombus formation. In both cases, inflammation
from infarcted tissue or plaque buildup and rupture in-
duces proinflammatory cytokines like IL-1ß, TNFα,
CD40LG, and IL-6 [47–49], which are all predicted to be
activated in our IPA regulator analysis (p = 0.001,
z-score = 2.7; p= 0.001, z-score = 4.0; p= 9e− 6, z-score = 1.8;
p= 0.007, z-score = 3.3 respectively, data not shown). The
TNFα membrane receptor is also upregulated
(TNFRSF1B, fold change = 2.2) and CD40 and IL-6 Signal-
ing are predicted to be activated. This cytokine production
stimulates cell adhesion molecules like ICAM-1 (ICAM1,
fold change = 2.9) to translocate to endothelial cell sur-
faces, either at inflamed atherosclerotic plaques or arteries
in proximity to damaged tissue, to recruit and interact
with leukocytes [46, 47]. Leukocyte accumulation involves
a controlled process of tethering to the endothelium and
migrating through the endothelium to infarcted tissue.
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This migration requires Rho signaling activation [48, 50].
RhoA and Signaling by Rho Family GTPases are both pre-
dicted to be activated, and RhoGDI, an inhibitor of these
pathways, is predicted to be inhibited. This is supported
by the IPA functional annotation of DEGs (Additional file
9: Table S7), which showed increased immune cell quan-
tity and migration, specifically lymphocytes and leukocytes
(Fig. 5b). A number of previous studies have shown Rho
kinase inhibitors reduce ischemia/reperfusion injury by re-
ducing infarct size [51], apoptosis, proinflammatory cyto-
kines, and neutrophil response [52, 53]. However, Rho
signaling is also a mechanism in fibrosis, and ROCK1 hap-
loinsufficient and knockout mice demonstrated decreased
fibrosis and fibroblast differentiation following myocardial
stress [54, 55]. These findings are supported by previous
transcriptome studies showing ICM enrichment for extra-
cellular matrix-receptor interaction, actin filament pro-
cesses, chemotaxis, inflammatory response, and cytokine
activity [16, 22].

Validation of ICM and DCM signatures in public datasets
We utilized four previously published datasets to test the
reproducibility of our ICM and DCM signatures. Using
two microarray and two RNA-seq datasets, we validated
our signature in three out of four available datasets by
demonstrating the correct segregation of 24/31 ICM and
32/36 DCM. Our signature was not validated in
GSE46224, a dataset derived from total RNA-seq of LV
apex samples. Reasons for this lack of reproducibility in-
clude differences in RNA-seq approach (total versus
poly-A), different tissues (LV apex versus general LV). The
higher presence of diabetes mellitus (47% in GSE46244
compared to 28% in our data) or other unmeasured vari-
ables may also explain the lack of reproducibility of our
findings in GSE46244 samples. Our signature was con-
firmed in two microarray datasets including GSE1869,
which utilized samples from two distinct institutions. This
demonstrates that our results are reproducible among
multiple institutions and across-platforms.

The ICM transcriptome signature is more distinct from NF
than DCM
Overall, the expression profile of ICM is more extreme
compared to NF than DCM. This is evident in two as-
pects: 1) the principal component plot (Fig. 1b) demon-
strated although the gene expression of ICM and DCM is
distinct from NF, ICM was more dissimilar; this is even
more evident following covariate adjustment (Fig. 2). 2) in
the disease-specific analysis, there were more than twice
as many ICM-specific genes as DCM-specific (1203 vs
561), which demonstrated more genes characterize
ICM-specific expression. This is contrary to transcriptome
comparisons following LVAD support, where mRNA pro-
files between ICM and NICM were not distinct [19]. This

difference may be due to the fact that our samples were
obtained from a later stage of HF or due to our increased
sample size and power to detect differences. We also note
that the DCM samples show greater heterogeneity in their
transcriptomes than ICM samples (Figs. 1b, 2). This het-
erogeneity could be attributed to differences in pathogenic
mutations in the DCM samples; as genotyping was not
performed in this study, the contribution of genetic het-
erogeneity to the transcriptome patterns remains
speculative.
A specific example of this observation that ICM is

more distinct from NF than DCM is related to our con-
sistent discovery of enrichment for the Antigen Presen-
tation Pathway, which was significant in every
transcriptome comparison. Antigen presentation is an
adaptive immune response where cells use Human
Leukocyte Antigens (HLAs) to present endogenous or
exogenous antigens for T cells to recognize. Figure 6c
displays differentially regulated genes within this path-
way. Graded activation from low expression in NF, mod-
erate in DCM, and high expression in ICM suggests this
pathway is important in HF but may play a larger role in
ICM, where additional inflammation, injury, and tissue
necrosis are involved. Transcriptome analyses from earl-
ier microarray studies revealed immune system enrich-
ment for antigen processing and presentation pathways
and HLA gene expression [12, 56]. However, more re-
cent RNA-seq analyses of human tissue have failed to
replicate this finding [22]. Additionally, a variant residing
within a non-protein-coding gene within the chromo-
some six major histocompatibility complex was identi-
fied via GWAS in DCM patients. Presence of this
variant influenced expression of HLA-C, HLA-DRB5,
HLA-DRB1, and HLA-DQB1 [57], all of which were
DEGs in DCM vs NF, ICM vs NF, or both.

Statins, coronary artery disease, diabetes mellitus, and
hyperlipidemia are not associated with strong gene
expression changes
In addition to sex and age, we considered other possible
covariates that may affect gene expression. As noted be-
fore, statins, coronary artery disease, diabetes mellitus,
and hyperlipidemia are statistically significant between
our cohorts. These data are not available for the majority
of the NF controls, which are derived from heart trans-
plant donors; many of whom experience surgical har-
vesting at external hospital sites. Thus, including these
covariates in the overall model is not possible due to
missing data. Considering these covariates in a
DCM-ICM only analysis is problematic because they are
highly correlated with disease group, leading to multicol-
linearity and unstable coefficient estimates. As an alter-
native exploration of the degree to which these may
affect expression, we fit a regression model with age, sex,
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and each potential covariate individually to predict expres-
sion for ICM and DCM subjects. With statins and coron-
ary artery disease, only 15 and 7 genes (FDR ≤ 0.05) were
significantly associated with each respectively. No genes
were significantly associated with diabetes mellitus or
hyperlipidemia. These results indicated that in our data
statin use, coronary artery disease, diabetes mellitus, and
hyperlipidemia were not strongly associated with gene ex-
pression changes.
It is interesting to note 12/13 of our ICM patients

were on statins at time of transplantation, and the most
recent lipid results for most patients were within normal
ranges. Total cholesterol results for the ICM cohort
prior to transplantation ranged from 81 to 168 mg/d
(average = 123 mg/dL), which is within normal
(< 200 mg/dL). LDL cholesterol results for the ICM cohort
prior to transplantation ranged from 22 to 105 mg/dL
(average = 64 mg/dL), which is also within normal
(< 100 mg/dL). Although this would indicate the statins
worked to reduce cholesterol, statins are known to have
anti-inflammatory effects. These include reducing the ex-
pression of genes encoding proinflammatory cytokines
and adhesion molecules, like ICAM1, and reducing down-
stream signaling pathways like Rho [58], all of which are
increased or activated compared to DCM and NF. Perhaps
statins are working in these patients to decrease choles-
terol, but not effective in their anti-inflammatory
properties.

Study limitations
Accessing human cardiac tissue specimens and develop-
ing large tissue banks are time-intensive and costly activ-
ities, circumstances that have likely limited prior
analyses. In our simulation analysis > 95% of random
permutation datasets identified five or fewer DEGs,
strongly supporting that our findings of 3649, 4150, and
874 DEGs are unlikely due to chance (Additional file 3:
Figure S1; DCM vs. NF, ICM vs. NF, and ICM vs. DCM,
respectively). In order to only include only samples spe-
cifically defined as ICM and DCM to compare, our val-
idation of signatures in previous datasets included a
microarray dataset.
Our study of DCM and ICM captured mRNA of the

HFrEF left ventricle in an advanced disease state, which
may be distinct from mRNA at disease onset or
throughout disease progression. Thus, while our data
provides inferences about end-stage HF, the biology of
HF initiation and progression were not directly evalu-
ated in our data. Because clinical cardiac biopsies yield
small tissue volumes, most frequently target the right
ventricle, and are performed in only a subset of HF pa-
tients, studying the transcriptome in early-stage HF and
in HF progression poses additional challenges beyond
those of studying explanted hearts. Furthermore, while

our transcriptome analyses identified statistically signifi-
cant transcriptome differences between NF, DCM, and
ICM, and did not take into account groups of genes that
demonstrate similar directionality without statistical sig-
nificance. The RNA-seq data are limited by lack of suffi-
cient sequence depth to address differences in
alternative splicing the poly-A capture limits interroga-
tion of many noncoding RNAs. Additional studies will
be necessary to identify the key epigenetic, noncoding,
and protein drivers in these pathways.
The NF donor hearts we studied are distinct from nor-

mal healthy hearts as they were harvested from persons
who experienced acute and ultimately fatal events that
rendered them transplant donors. Although a majority
of the cell volume of myocardial tissue is from cardiac
myocytes, the heart is comprised of many different cell
types, and although we macroscopically controlled for
tissues free of overt fibrosis, our results may reflect dif-
ferences in tissue composition or pathways enriched in
specific cell types.

Conclusions
We used RNA-seq and pathway analysis in the largest
cohort of human heart tissue from distinct etiologies,
which is an incredibly rare and unique dataset. We dem-
onstrate that HFrEF in left ventricles of DCM vs ICM
general etiology have a common gene expression signa-
ture but also exhibit disease-specific expression signa-
tures; our results are summarized in Fig. 7. Although the
expression data does not reveal any single drivers of dis-
ease etiology, it does demonstrate that a collection of
dysregulated pathways distinguishes DCM from ICM.
The discovery of these key pathways in each HFrEF clin-
ical etiology are an important step forward in heart fail-
ure genomics, and they set the stage for future
functional research. These data also offer the possibility
of a new taxonomic classification of HF, one of the key
early steps to developing precision medicine paradigms
as detailed by the National Research Council [59].
Potentially, this strategy could yield findings relevant for
monitoring HF progression and designing treatments.

Methods
Tissue collection
Explanted failing hearts were collected from adult patients
undergoing heart cardiac transplantation at the University
of Colorado Hospital as part of the Division of Cardiology
Cardiac Tissue Biobank under a long-standing protocol
approved by the Colorado Multiple Institutional Review
Board (COMIRB, protocol 01-568) where transplant-listed
patients signed written consent for use of their explanted
hearts for research purposes. NF left ventricular samples
were obtained from organ donors whose hearts could not
be placed for transplantation due to size, ABO mismatch
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or other factors. Family members of organ donors signed
written consent for research use of explanted cardiac tis-
sue, obtained by the local organ procurement agency. Im-
mediately on explantation, left ventricular free wall
aliquots of approximately 1 g and remote from tissue scar-
ring or infarcted segments were immersed in liquid nitro-
gen, transported to the laboratory, and stored at − 80 °C.

Patient cohorts
General clinical etiology (DCM or ICM) of patients
transplanted for HFrEF was determined by medical his-
tory, based on the absence or presence of significant pre-
viously documented obstructive coronary artery disease
or myocardial infarction. NF organ donor hearts were
defined by no major cardiac history and a left ventricular
echocardiography-based shortening fraction of ≥25%.
Statistical differences between cohort clinical character-
istics were calculated by either Mann-Whitney U Test
or Fisher’s Exact Test, where appropriate, using a 0.05
significance level and a two-sided p-value.

RNA extraction
Frozen tissue was placed in liquid nitrogen and broken
up using mortar and pestle to obtain a piece approxi-
mately 2 × 2 × 2 mm in size, macroscopically free of fatty
infiltration, fibrosis, and blood. Tissue was placed imme-
diately in TRIzol reagent (Thermo Fisher Scientific,
Waltham, MA) and mechanically homogenized using an
IKA T25 Ultra-Turaxx homogenizer. Tissue was homog-
enized for approximately 60 s, or until no visible chunks
of tissue remained. RNA was extracted using the mir-
Vana miRNA isolation kit (Thermo Fisher Scientific)

enriched for total RNA isolation according to manufac-
turer’s instructions with the exception of replacing the
Lysis/Binding Buffer with TRIzol. All samples were
DNase treated using TURBO DNA-free Kit (Thermo
Fisher Scientific). RNA was quantified at 260 nm using a
NanoDrop1000 (Thermo Fisher Scientific), and RNA in-
tegrity (RIN) was measured using an Agilent 2100 Bioa-
nalyzer with the RNA 6000 Nano Assay (Agilent, Santa
Clara, CA). All samples were required to demonstrate
RIN ≥ 7.0, and ranged from 7.0 to 9.3.

RNA sequencing
PolyA transcripts were isolated from 1 μg total RNA
using oligo-dT beads and the cDNA libraries were con-
structed using the TruSeq Stranded mRNA Library Prep
Kit and protocol from Illumina (Illumina Inc., San
Diego, CA). To minimize lane and batch effects,
bar-coded libraries prepared from DCM, ICM, and NF
samples were mixed and pooled across multiple lanes.
Libraries were sequenced single-read with an Illumina
HiSeq 2500 for 50 cycles at the University of Colorado
Genomics and Microarray Core. The average number of
reads per sample ranged from approximately 36 to 66
million with an average of approximately 48 million
(Additional File 2: Table S2). Reads were filtered for
quality and aligned to the GRchr37/hg19 version of the
reference human genome using gSNAP [60] with an
average of 95% of aligned reads Additional File 2: Table
S2). Expression in terms of RPKM (reads per kilobase of
transcript per million reads mapped) was derived using
Cufflinks [61] and Ensembl’s GRch37.82 GTF. Due to
the high proportion of cardiac mRNA reads known to

Fig. 7 Disease-specific and shared HF pathways. Specific events can lead NF hearts towards DCM or ICM, and both diseases have common HF
responses. Dysregulated cell-cell and decreased cell-matrix adhesion contributes to DCM. An activated innate immune response, activation of
proinflammatory cytokines, and increases in immune cell quantity, movement, and migration are characteristic of ICM. Both DCM and ICM have
responses common to HF, including reduced translation, increased fetal gene expression and antigen presentation, and dysregulated mitochondria
and protein degradation
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map to the mitochondria [19], mitochondrial genes were
removed from the GTF file for a final set of 57,974 an-
notations. Data have been deposited in the GEO data-
base under GSE116250.

Principal component analysis
Principal components were calculated in R using the svd
(singular value decomposition) package and visualized in
ggplot2. Principal components were used to visualize
how the samples cluster for the most variably expressed
genes: those genes with RPKM ≥ 5 and a difference in
RPKM between disease (ICM and DCM) and NF ≥ 5
were included in the analysis.

DEG analysis
Expressed genes were defined as genes with mean
RPKM ≥ 5 in both groups. Differential expression was
analyzed using Linear Model ANOVA in R. Differentially
expressed genes (DEGs) were defined as genes with a
difference in RPKM between groups ≥5 and a p-value
adjusted for Benjamini-Hochberg false discovery rate
(FDR) ≤ 0.05. A multiple linear regression model was
used to adjust for covariates of gene expression in R.
Data was transformed log2(RPKM+ 1). Disease status
and sex were categorical variables and age was a con-
tinuous variable. We identified: 1) genes shared between
DCM vs NF and ICM vs NF, comprising the HF tran-
scriptome signature or “HF-DEGs,” 2) unshared, DCM-
or ICM-specific genes, and 3) DEGs between DCM and
ICM. We used IPA on each gene list to investigate en-
richment for pathways or functions biologically relevant
to each disease. IPA uses up- and down-regulation of
genes to predict activation or inhibition of pathways, so
gene lists were not separated by fold change.
To validate our findings, we downloaded the processed

microarray probe data from GSE1145 and GSE1869,
gene count data from GSE55296, and RPKM data from
GSE46224 on NCBI GEO.

Random sample permutation
For each comparison we randomly permuted groups of
the same size as each cohort, without replacement, and
applied our DEG pipeline, repeating 1000 times. Statis-
tics between the observed and random sample distribu-
tion of DEGs were calculated using a one sample T-test.
To graph the permutation counts logarithmically, a value
of 0.1 was added to each count.

Data visualization
Genes were clustered using Spearman rank correlation
and average linkage in either Cluster 3.0 [62] or using
the “cor” function with the pheatmap package in R.
Clustering results were visualized in either Java

TreeView [63] or pheatmap. Circos plots were created
using the circlize package in R [64].

Pathway analysis
DEGs were interpreted using Ingenuity Pathway Analysis
(IPA; Qiagen, Redwood City, CA). A dataset of Ensembl
gene identifiers and fold changes was uploaded for Core
Analysis.

Additional files

Additional file 1: Table S1. Sample table. Characteristics including sex,
race, ethnicity, age, cause of death (if applicable) and RNA integrity (RIN)
score are listed. (XLSX 15 kb)

Additional file 2: Table S2. RNAseq quality control table. Raw read
counts ranged from ~ 36 to 66 million. Read counts show a 99% retention
after base quality control and a 94–96% alignment rate. (XLSX 16 kb)

Additional file 3: Figure S1. Empirical distribution of FDR values ≤0.05
for 1000 permutations. Histogram with the number of genes in each
permutation that had an FDR less than or equal to 0.05 is in logarithmic
scale on the x-axis with frequency in logarithmic scale on the y axis.
A value of 0.1 was added to each count to display it logarithmically. Red
dotted lines indicate the observed number of DEGs in the comparison
for A) DCM vs NF, B) ICM vs NF, and C) ICM vs DCM. (TIF 10663 kb)

Additional file 4: Table S3. DEGs for unadjusted gene expression. DEGs
at FDR≤ 0.05 in DCM vs NF and ICM vs NF. (XLSX 568 kb)

Additional File 5: Table S4. DEGs for adjusted gene expression. DEGs
for adjusted gene expression. DEGs at FDR≤ 0.05 in HF-DEGs, DCM-specific,
ICM-specific, DCM vs ICM. (XLSX 797 kb)

Additional file 6: Table S5. Enriched IPA Canonical Pathways. IPA
canonical pathways for p≤ 0.05 for Analysis 1 (HF-DEGs), Analysis 2
(DCM-specific and ICM-specific), and Analysis 3 (DCM vs ICM). (XLSX 56 kb)

Additional file 7: Table S6. Enriched IPA Toxicity. IPA toxicity lists for
p≤ 0.05 for Analysis 1 (HF-DEGs). (XLSX 15 kb)

Additional file 8: Figure S2. Disease-specific DEGs clusters samples by
phenotype in publicly available expression data. Expression values for the
disease-specific genes identified in our analysis were extracted from
publicly available datasets: A) GSE1145 (microarray), B) GSE1869 (microarray),
C) GSE55296 (RNA-seq), and D) GSE46224 (RNA-seq). (TIFF 15964 kb)

Additional file 9: Table S7. Predicted biofunctions. IPA biofunctions
predicted to be increased or decreased for Analysis 2 (DCM-specific and
ICM-specific). (XLSX 34 kb)
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