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Abstract

Background: When genomics researchers design a high-throughput study to test for differential expression, some
biological systems and research questions provide opportunities to use paired samples from subjects, and
researchers can plan for a certain proportion of subjects to have paired samples. We consider the effect of this
paired samples proportion on the statistical power of the study, using characteristics of both count (RNA-Seq) and
continuous (microarray) expression data from a colorectal cancer study.

Results: We demonstrate that a higher proportion of subjects with paired samples yields higher statistical power,
for various total numbers of samples, and for various strengths of subject-level confounding factors. In the design
scenarios considered, the statistical power in a fully-paired design is substantially (and in many cases several times)
greater than in an unpaired design.

Conclusions: For the many biological systems and research questions where paired samples are feasible and
relevant, substantial statistical power gains can be achieved at the study design stage when genomics researchers
plan on using paired samples from the largest possible proportion of subjects. Any cost savings in a study design
with unpaired samples are likely accompanied by underpowered and possibly biased results.
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Background
When a genomics research team is planning a study that
will involve testing multiple biomarkers (or features) for
differential expression, many important decisions must
be made at this study design stage. Previous literature
has addressed replication and statistical analysis plans
(see, for example, [1–6]). Often the test for differential
expression is between two conditions (say tumor and
normal tissue) that can be, but are not always, sampled
within each subject. When a given subject provides sam-
ples from both conditions, it can be said that this subject
has paired samples. In cancer genomics research studies,
the proportion of subjects with paired samples can be as
high as 1 [7, 8] or reasonably close to 1 [9], but is most
often zero or essentially zero [10–12], as has been dis-
cussed previously [13].

At an extreme, normal tissue sample expression from
a database [14] could be compared to expression in
study-derived tumor tissue samples. Such an approach
would certainly introduce the risk of substantial batch
effects, the statistical consequences of which have been
addressed previously [15]. Specifically, the tumor vs.
normal comparison of interest would be completely con-
founded with the study vs. database batch effect. Even if
some normalization approach were able to successfully
remove or account for these batch effects, the corre-
sponding data would still be comprised of entirely
unpaired samples.
Over the past several years, the genomics literature

has included attention to principles of good experimen-
tal design for a variety of genomics platforms [5, 16, 17].
However, the design-stage choice of the proportion of
subjects with paired samples has not received attention
in the genomics literature, despite its potential impact
on overall statistical power of the study.
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Statistical power in this context refers to the prob-
ability that truly differentially expressed features will
be called statistically significant. Higher statistical
power can be achieved through a combination of
good study design and appropriate statistical analysis
plan [5, 16–18]. One element of study design is the
choice of a proportion of subjects with paired
samples.
The purpose of this manuscript is to draw attention

to (and to quantify) the statistical value of paired sam-
ples in genomics studies where such paired samples
are feasible. We use a hypothetical (but realistically
recurring) scenario of a genomics research team that,
with the reality of limited resources, has determined
that they can afford to run N samples for a given
study. In designing this study, the team can collect
paired samples on some percentage of subjects in the
study; for the sake of conciseness, we assume the
remaining subjects with unpaired samples will be
evenly split between conditions (tumor and normal,
for example), for a total of N samples. (Such balance
is known to generally provide higher statistical
power.)
We evaluate the statistical power in tests for differ-

ential expression, under a variety of scenarios
(number of samples N and percent of subjects with
paired samples), for both count (such as RNA-Seq)
and continuous (such as microarray-based) expression
data. The power evaluations are made using the char-
acteristics of microarray-based miRNA and RNA-Seq-
based gene expression data from a large colorectal
cancer (CRC) study (over 2000 miRNAs on each of
approximately 2000 subjects, and over 17,000 genes
[using RNA-Seq] on each of over 200 subjects) that
included a majority of subjects having paired samples
(both tumor and normal). This colorectal cancer
study and the power evaluation approaches are
described in the Methods section below.
We highlight the role of possibly confounding

subject-level factors, which are subject characteristics
that affect expression values in both normal and
tumor samples. Examples of such possible confound-
ing factors include dietary or lifestyle factors.
Additionally, tissue samples may vary between hospi-
tals in how they are handled during processing as
well as pathological observations, introducing
additional sources of potential bias in non-paired
data. We demonstrate that in the presence of such
confounding factors, a higher proportion of subjects
with paired samples leads to a considerable gain in
statistical power. In addition, using our CRC data we
demonstrate the substantial power gain that we
observe when comparing an analysis of paired sam-
ples to an analysis of unpaired samples.

Results
Figure 1 visualizes approximate power contours for
count expression data (as for RNA-Seq data), and Fig. 2
visualizes approximate power contours for continuous
expression data (as for microarray data). In both data
types, the strength of the confounding factor is related
to the variance of the subject effect in an appropriate
generalized linear mixed model (as described in the
Methods section below). The power evaluation in Figs. 1
and 2 is based on detecting a fold change of 1.25 in
RNA-Seq data and 1.5 in microarray data, respectively.
These fold change values as well as the figures’ ranges of
the strength of the confounding factor are based on ob-
served estimates from the colorectal cancer study data,
as described in the Methods section. (When alternative
fold change values were used, the same basic trends
were seen as in Figs. 1 and 2; only results for fold change
values of 1.25 in RNA-Seq data (Fig. 1) and 1.5 in micro-
array data (Fig. 2) are reported, in order to focus the
presentation and discussion of results.) The blank re-
gions at the far left in Figs. 1a-b and 2a-b result from
numerical problems for lower sample sizes when very
low proportions of subjects have paired samples; for
these cases no power approximations could be made.
Similar numerical problems result in no power approxi-
mations in Fig. 2 for some scenarios with very low
strengths of subject-level confounding factors.
While the overall power in Figs. 1 and 2 increases for

larger numbers of samples (as would be expected), the
central message of these results is that power also gener-
ally increases for a higher proportion of subjects with
paired samples, for any given number of total samples.
One unexpected result in Figs. 1 and 2 is that as the pro-
portion of subjects with paired samples increases from
zero, there can be a slight dip in power when only
around 5 % of subjects have paired samples. This is
addressed in the Discussion section below.
Figures 1 and 2 also show that statistical power (to de-

tect the treatment effect) decreases as the strength of
the subject-level confounding factor increases; this is
due to a larger subject-level confounding factor effect-
ively obscuring the true treatment effect. This loss of
power is especially noticeable for lower sample sizes and
for lower proportions of subjects with paired samples.
Figures 1 and 2 illustrate that for any given strength of

confounding factor, and for a given total number of sam-
ples, the highest statistical power is obtained when all
subjects have paired samples. Having fewer than all sub-
jects with paired samples results in a loss of power, even
for larger sample sizes, and particularly for greater
strength of subject-level confounding factors. Even for
the largest sample sizes considered here, there is a clear
power gain with a higher proportion of subjects with
paired samples. While the gain may appear less for some
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lower strengths of subject-level confounding factors (as
in Fig. 1e and f), it is important to keep in mind that
each gene can have its own subject-level confounding
factors (as subject-level lifestyle and genetic factors can
affect expression of specific genes), and it is not known
a priori what the strength of their effect is. As such, it
cannot be known which genes will experience the great-
est (or least) statistical power boost by having a higher

proportion of subjects with paired samples, but it is clear
that overall, there is a (often substantial) statistical
power gain to be had in study designs with higher pro-
portions of subjects with paired samples.
The power approximations in Figs. 1 and 2 are

based on the probability distribution method using
properties of previous RNA-Seq and microarray stud-
ies (see Methods section and code in Additional files 1
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b

Fig. 1 Approximate power contours for count data, such as RNA-Seq. The power range varies with sample size, as indicated in the legend to the
right of each sub-figure
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and 2). Similar power contours as well as general
control of the false discovery rate (FDR) [19] were
obtained from the simulation method (see Methods
section) in Additional files 3 and 4, for continuous
expression data.
Figure 3 gives a glimpse at the power gain by paired ana-

lysis in our CRC study. Local point density is represented
by color in Fig. 3, with darker colors corresponding to

greater density; this was achieved using the grDevices
package in R [20]. Compared to the analysis of a fully-
paired design (horizontal axis in all Fig. 3 panels), the two
unpaired designs considered here exhibited a clear loss of
statistical power (evidenced by the abundance of points
above the reference line of equality in Fig. 3a-d). In
general, the paired design resulted in more significant tests
(smaller FDR-adjusted p-values). In particular, whereas the
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Fig. 2 Approximate power contours for continuous data, such as microarray-based. The power range varies with sample size, as indicated in the
legend to the right of each sub-figure
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paired design resulted in 8856 (of 17,462) features called
significantly differentially expressed at FDR .01, unpaired
designs 1 and 2 resulted in 6865 and 7076 significant
features, respectively. Accounting for covariates did miti-
gate the loss of power somewhat in unpaired design 1,
resulting in 7192 significant features; but accounting for
covariates in unpaired design 2 actually resulted in only
6755 significant features.
Figure 4 illustrates another advantage of the paired

design over the unpaired designs in our CRC study,
beyond statistical power. When a simple fold change
threshold is considered, the paired design tends to
result in greater fold changes, in the sense that a
higher proportion of genes will have fold changes
above a given threshold in the paired design than in
the unpaired designs considered. This systematic
trend in Fig. 4 becomes clearer for larger fold change
thresholds. “Fold change” here is in absolute magni-
tude, so that both up- and down-regulation are repre-
sented. This modest underestimation of magnitude of
fold change in the unpaired designs is mitigated
somewhat by accounting for covariates.

Discussion
The only exception to the “higher proportion of sub-
jects with paired samples yields higher statistical
power” result seen in Figs. 1 and 2 occurred for
around 5 % of subjects with paired samples in some
figure panels, when there was a low strength of
subject-level confounding factor. This is likely due to
a degree of freedom issue. When there are no sub-
jects with paired samples, then there are no random
subject effects to estimate in the model. For every
subject with paired samples, a random subject effect
must be estimated, which effectively costs one degree
of freedom. In general, losing these degrees of free-
dom reduces overall statistical power somewhat. How-
ever, when a large enough proportion of subjects have
paired samples, the confounding factors are effectively
estimated out, leaving a clearer picture of the true
underlying treatment effect, and so statistical power is
increased. When only a small handful of subjects
(such as around 5 %) have paired samples, then the
degrees of freedom must be spent to estimate their
subject effects in the model, but it seems that, at

a
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b

Fig. 3 Comparison of FDR-adjusted p-values in RNA-Seq data from colon cancer study, for paired design and two unpaired designs, considering
without covariates (a-b) and with covariates (c-d) in the analysis of the unpaired designs. All axes’ tick marks are spaced on the log scale
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such a low proportion of subjects with paired sam-
ples, there is not yet sufficient information on the
confounding factors’ effects to effectively estimate
them out, leaving the treatment effect still somewhat
obscured. This degree of freedom expense (and its
negative effect on power) appears to be mitigated
when at least 10 % of subjects have paired samples,
or when the strength of the subject-level confounding
factor is higher.
If fewer than about 10 % of subjects have paired

samples and there is very weak subject-level con-
founding, then from a statistical power perspective it
may be tempting to drop one of each subject’s paired
samples, and run an analysis on fully unpaired data.
However, this will lower the effective sample size,
further reducing statistical power. Without clear a
priori knowledge of the magnitude of subject-level
confounding in a planned study, the best strategy
would be to plan for as high a proportion as possible
of subjects with paired samples, and use all valid
samples (even if unpaired) that are available.
The comparison of paired and unpaired designs in

our CRC data yielded clear evidence that having all
subjects with paired samples results in a gain in
statistical power compared to having all unpaired
samples. For example, the adjusted p-values in the
paired design analysis tended to be systematically

smaller than in the unpaired designs’ analyses (Fig. 3),
resulting in more significantly differentially expressed
features (over 8800 in the paired design compared to
about 6800–7200 in the unpaired designs considered).
Somewhat surprising was the discrepancy in power
loss mitigation when accounting for subject-level
covariates in an unpaired design. While accounting
for a few covariates did result in a modest gain in
power for unpaired design 1 (going from 6865 signifi-
cant features without covariates to 7192 with covari-
ates), such accounting actually reduced the number of
significant features in unpaired design 2 (from 7076
to 6755). This suggests that depending on the
situation (and available subject-level covariates), even
when several subject-level covariates are available,
accounting for them may or may not increase statis-
tical power, but in any case it does not seem likely
that using subject-level covariates could achieve the
same statistical power gains that are possible with the
simple strategy of pairing samples for a high propor-
tion of subjects. In addition, a major limitation of
accounting for subject-level covariates with unpaired
data is that it is usually not known which diet,
lifestyle, or genetic factor(s) may be confounding for
any given gene.
Another potential risk in an unpaired design is the

underestimation of the magnitude of differential

Fig. 4 Proportion of genes exceeding given fold change (FC) thresholds in RNA-Seq data from colon cancer study, for paired design and two
unpaired designs, considering without covariates (solid red/blue) and with covariates (dashed red/blue) in the analysis of the unpaired designs.
Vertical axis’s tick marks are spaced on the log scale
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expression (Fig. 4). In our CRC data there were a num-
ber of genes with fold changes greater than 1.5 in an
analysis of paired data, but that had fold changes less
than 1.3 when analyzed as unpaired data. While the
majority of our focus is on the statistical power gains to
be had for higher proportions of subjects with paired
data, we also point out that from the perspective of
using a “meaningful difference” threshold in addition to
statistical significance, even moderate underestimation
of magnitude of fold change (as in an unpaired design)
could result in (design-preventable) false negative find-
ings. Increasing the sample size will not eliminate this
bias, but using a higher proportion of subjects with
paired samples will, particularly if all subjects have
paired samples.
There is an extreme possible study design scenario

where normal tissue sample expression is obtained
from a database, such as The Cancer Genome Atlas
(TCGA) [14] or Genomic Data Commons (GDC)
[21], to be compared to expression in study-derived
tumor tissue samples. Such an approach would actu-
ally be worse than simply using unpaired data, due to
the risk of substantial biasing batch effects [15],
which could include platform, laboratory, and tissue
ascertainment differences. While some normalization
approaches may be able to successfully remove these
batch effects, the corresponding data would still be
comprised of entirely unpaired samples, with an
accompanying loss of statistical power compared to a
study design with a higher proportion of paired
samples.
Figures 1 and 2 demonstrate that, particularly for higher

levels of subject-level confounding, a higher proportion of
subjects with paired samples results in higher statistical
power, even so much that in many circumstances, a fully
paired design with N/2 subjects can achieve higher statis-
tical power than a totally unpaired design with N subjects.
To understand how this can happen, a simple visual
example with continuous data (Eq. 2 in Methods) using
N = 20 should suffice. Figure 5a shows hypothetical
expression data (both t = tumor and n = normal) for a
given biomarker in each of 20 subjects. The tumor effect
(i.e., the difference t-n in Fig. 5a, or TRT1-TRT2 in terms
of Eq. 2) is clear, and there is very little subject-level con-
founding (i.e., both the tumor expression levels and the
normal expression levels are relatively consistent across
subjects) in Fig. 5a. Based on the same hypothetical data
as in Fig. 5a, Fig. 5b shows the distribution of expression
data that would be seen in a hypothetical design using
normal expression (n) from subjects 1–10 and tumor
expression (t) from subjects 11–20 (i.e., a fully unpaired
design with N = 20 subjects); it also shows the distribution
of the tumor-normal differences (t-n) that would be used
in a hypothetical design using tumor and normal

expression from subjects 1–10 (i.e., a fully paired design
with N/2 = 10 subjects). Figure 5c and d (as well as Fig. 5e
and f) are similar to Fig. 5a and b, but with increasing
levels of subject-level confounding.
When subject-level confounding (σ2Subj in the notation

explanation following Eq. 2) is low (as in Fig. 5a), the
tumor and normal expression distributions (Fig. 5b) are
clearly separated enough that a test of significance would
be likely to detect differential expression. As subject-
level confounding increases (Fig. 5c, where the tumor
effect is clear but the tumor and normal expression
levels are less consistent across subjects than in Fig. 5a),
the shift between the tumor and normal distributions in
the unpaired design (Fig. 5d) becomes less clear (and so
a statistical conclusion of differential expression is less
certain). For even higher subject-level confounding
(Fig. 5e), the unpaired design could very well fail to
identify differential expression (Fig. 5f ). On the other
hand, in this visual example, for every level of
subject-level confounding, a fully paired design with
N/2 = 10 subjects would reliably detect differential
expression, since the t-n distributions in Fig. 5b, d,
and f are consistently different than the dashed refer-
ence line at 0.
The key message (as visualized in Fig. 5) is that in

a fully paired design, the subject-level confounding
can be estimated out, leaving a clearer picture of the
true underlying differential expression. Returning to
Fig. 1 as an example, if the sample size is large
enough and the amount of subject-level confounding
(the vertical axis) is low enough, there is relatively lit-
tle to gain (power-wise) by having higher proportions
of subjects with paired samples (a similar conclusion
to Fig. 5b). However, as the amount of subject-level
confounding increases, the power impact of having a
higher proportion of subjects with paired samples be-
comes clearer (as seen in Fig. 5d and f ).

Conclusions
There are certainly many biological systems and
research questions for which paired samples are not
feasible or not relevant. However, for the many bio-
logical systems and research questions where paired
samples are feasible and relevant, there is clear
evidence that substantial statistical power gains can
be achieved at the study design stage when genomics
researchers plan on collecting and using paired sam-
ples from the largest possible percentage of subjects.
Failing to do so will compromise results (in terms of
statistical power as well as accuracy of fold change),
making it less likely that those genomics researchers
will be able to detect truly differentially expressed fea-
tures with meaningful fold changes. Any cost savings
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in a study design with unpaired samples are likely
accompanied by biased and underpowered results.
The greatest statistical power is achieved by having
paired samples on all subjects; i.e. whenever paired
samples are feasible and relevant, if the researcher
can afford to run N samples, they should obtain
paired samples on N/2 subjects.

Methods
Colorectal cancer study design
Study participants include all incident colon and
rectal cancers between 30 and 79 years of age, who
were living along the Wasatch Front in Utah or were
members of the Kaiser Permanente Medical Care Pro-
gram (KPMCP) in Northern California, and with
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Fig. 5 Visual example using hypothetical data to demonstrate the effect of subject-level confounding on the relative power (ability to identify a difference
between t = tumor and n = normal expression) of a fully unpaired design with N = 20 subjects and a fully paired design with N/2 = 10 subjects
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primary adenocarcinoma diagnosed between October
1991 and September 1994 for colon, and between
June 1997 and May 2001 for rectal. The study was
approved by the Institutional Review Board of the
University of Utah and at KPMCP, and all participants
provided written informed consent. Numerous demo-
graphic, dietary, lifestyle, and tumor characteristic
covariates were recorded for study participants, as
reported previously [22, 23].
miRNA from both carcinoma and adjacent normal

samples for study participants were processed (and
total gene signal normalized) as described previously
[22, 24], with expression quantified using the Agilent
Human miRNA Microarray V19.0. miRNA expression
data were thus obtained for 2006 miRNAs of which
1394 miRNAs were expressed in colorectal tissue for
1893 subjects each with paired carcinoma and adja-
cent normal samples.
A subset of colon cancer study participants were

chosen for gene expression measurement using RNA-
Seq, as described previously [25]. RNA-Seq expression
data were thus obtained for 17,462 protein-coding
genes, for 378 samples. These samples represent 169
subjects with paired samples, and due to QC checks,
18 normal-only subjects and 22 tumor-only subjects.

Count expression data (RNA-Seq)
Model for count data
A log-linear negative binomial model is often used
for biomarker count data, such as from RNA-Seq [5,
18, 26]. For a given biomarker in subject j under
treatment i, the model for the count (Yij) of mRNA
fragments mapping to the biomarker can be parame-
terized as follows:

Yij � NegativeBinomial Nij; pij
� �

log E Yij
� �� � ¼ log Nij 1‐pij

� �
=pij

� �

¼ log Nij
� �þ log 1‐pij

� �
=pij

� �

¼ log Nij
� �þ μþ TRTi þ CONj þ Subj j

Here, Nij is the total number of counts (across all
biomarkers) from subject j under treatment i, and is
used as an offset (or sort of normalizing constant) to
account for different total amounts of genomic mater-
ial collected from different samples. The parameter pij
represents the probability that any given mRNA frag-
ment in the sample from subject j under treatment i
would map to the biomarker. μ is an intercept term,
TRTi is the effect due to treatment level i, and Subjj
is the effect due to subject j.

Each subject j has a possibly confounding factor (or
combination of factors, CON) that will affect the
value of both their normal and their tumor expres-
sion values. (This confounding factor effect is critical,
and could result from a combination of dietary, life-
style, genetic, and other unknown factors, all with
biomarker-specific confounding effects.) This factor is
confounded with the Subject effect in the model, so
the model can be rewritten as

log E Yij
� �� � ¼ log Nij

� �þ μþ TRTi þ Subj j ð1Þ

TRT is a fixed effect (with only two levels of inter-
est, say tumor and normal), and Subj is a random
effect (with many subjects of interest, including those
not in the study). The presence of both fixed and
random effects makes this a “mixed” model, and the
non-normal distribution of F with a linear model for
the expected value of Y (after log link function trans-
formation) makes this a “generalized linear” mixed
model.
Because Subj is a random effect, the values of Subjj

are assumed to be independent and identically distrib-
uted Normal(0, σ2Subj ). If there is a greater confound-

ing effect (such as perhaps some subjects’ diet or
lifestyle factors affect their expression values), this will
result in larger Subjj values (positive or negative) for
those subjects in Eq. 1 above. These larger values
(i.e., larger subject effects) will be reflected by a larger
variance among the subject effects, and quantified by
a larger value of σ2

Subj . In this way, the strength of

the confounding factor is quantified by the
between-subject variance component σ2

Subj . This vari-

ance component, along with treatment effect size and
a model “scale” parameter, need to be estimated to
obtain useful power approximations. (Regarding the
scale parameter, the glmer.nb function in R produces

what it calls θ̂ , and PROC GLIMMIX in SAS usesffiffiffî
k

p
¼ 1=

ffiffiffî
θ

p
; see lme4 [27] and GLIMMIX [28] docu-

mentation for details.)

Estimates from previous count data
A negative binomial model for biomarker count data
can be fit by popular R packages such as DESeq2
[18] and edgeR [26]; while these packages feature
pooling of information across biomarkers and have
been shown to be powerful, they do not allow for
random effects. Instead, model (1) above was fit using
the glmer.nb function of the lme4 package [27] for R
[20], for each of 17,462 protein-coding genes in our
CRC data, because this approach is specifically
designed for both fixed and random effects. (This
took 54 h computation time, optimized to about 3 h
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real time using the batch computing resources of the
Center for High Performance Computing at the
University of Utah.)
In these data, many thousands of genes were signifi-

cantly differentially expressed (even after multiplicity
corrections), but those are not of greatest interest in
this manuscript. Instead, it is most relevant to note
that even for very small TRT effects, statistical signifi-
cance was noted. Based on the results for our CRC
data, a range of σ2

Subj values from 0.5 to 2.5 (on the

10th root scale) was considered most reasonable.
(The 10th root transformation of σ2Subj was chosen for

visualization purposes as the strength of the
subject-level confounding factor in Fig. 1; less than 2
% of genes had subject variance component estimates
of zero.) While there was also a range of scale esti-
mates, the effect of the scale parameter on statistical
power is actually closely tied to that of the treat-
ment effect TRT (which is the log of the fold
change; holding other variance parameters constant,
the scale parameter and the fold change go
hand-in-hand: for a larger scale parameter, it takes a
larger fold change to achieve the same statistical
power). For this reason, we set the scale parameter
value at 1.15 in our power approximation (which
was the approximate average for the scale parameter
for significantly differentially expressed genes), and
focus on statistical power results for detecting a
subtle fold change of 1.25 (equivalent to a TRT
effect, or log fold-change, of 0.22).

Power approximation for count data
The probability distribution method [29] is a very
flexible tool for approximate power calculations in
mixed models. It is implemented using PROC GLIM-
MIX in SAS, and takes as arguments the variance
components for model (1) above as well as an “exem-
plary” data set exhibiting a given TRT effect for a
given study design (including total number of samples
N and percent of subjects with paired samples). The
SAS code with the implementation of this method for
this manuscript is included as Additional file 1.
The probability distribution method was chosen

after attempts at the simulation method for power
approximation [29] for count data proved to be com-
putationally unfeasible. Briefly, the generalized linear
mixed model is more computationally expensive than
a simple general mixed model, so much so that simu-
lating sufficient data to approximate power on the
scale needed for this manuscript would have taken
several months’ worth of real computation time, even
after utilizing batch computing resources. By compari-
son, while the actual SAS code in Additional file 1

took some time to develop and debug, the probability
distribution method requires only 5–10 min’ worth of
computation time to produce the contour plots in
Fig. 1 (depending on the number of samples N).

Continuous expression data (microarray)
Model for continuous data
A linear mixed model can be used for continuous ex-
pression data, such as for cDNA [30], mRNA [31–
33], or miRNA [34] microarrays, as well as for
RT-PCR data [35]. For a given biomarker in subject j
under treatment i, the log-scale expression level of a
given biomarker can be parameterized as follows:

Yij ¼ μþ TRTi þ CONj þ Subj j þ εij

Here, i = 1,2 (for two ‘treatment’ conditions such as
tumor and normal), and j = 1, …, #subjects. This
model assumes that the data have been appropriately
preprocessed and normalized. As in the model for
count data above, each subject j has a possibly
confounding factor (or combination of factors, CON)
that will affect the expression of both their normal
and their tumor expression values. This factor is
confounded with the Subject effect in the model, so
the model can be rewritten as

Yij ¼ μþ TRTi þ Subj j þ εij ð2Þ

If the biomarker is not differentially expressed, then
TRT1 = TRT2 = 0. The random subject (or confound-
ing factor) effects are assumed to follow a Normal(0,
σ2Subj) distribution (with σ2Subj representing the strength

of the confounding factor effect), and the random
error terms are assumed to follow a Normal(0,σ2)
distribution.

Estimates from previous continuous data
Using the lmer function of the R package lme4 [27],
model (2) was fit to each of 1394 miRNAs in our
CRC data. (This took less than 3 min on a desktop
computer.) From this model fit, variance components
σ2Subj and σ2 were both estimated, along with the

treatment effect. The estimated σ2Subj essentially

ranged from 0 to 1.5 (the strength of the subject-level
confounding factor in Fig. 2 is σ2Subj ), and σ2 was

roughly linearly associated with σ2Subj , with a slope of

1.73. There was no real association between either of
the variance components and the TRT effect, which
ranged to ±2, but with a majority ranging to ±0.5. A
fold change of 1.5 was chosen as a desired target for
power approximation, corresponding to a TRT effect
(or log fold-change) of approximately 0.41.
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Power approximation for continuous data
The probability distribution method [29] was used for
approximate power calculations across a range of σ2Subj
values, and for various percentages of subjects with paired
samples, using the parameter estimate ranges described in
the previous paragraph. The SAS code with the imple-
mentation of this method for continuous data in this
manuscript is included as Additional File 2.
In addition, the simulation method [29] was implemented

to verify the general trends in the power contours (shown
for the probability method in Fig. 2) as well as false discov-
ery rate (FDR) control [19]. Briefly, this method involves
simulating many data sets exhibiting the variance compo-
nents and treatment effects of interest, and then fitting the
appropriate model to those data sets. The power is approxi-
mated by averaging across the many data sets’ results. Using
different combinations of N (total number of samples to be
run; 50, 100, 200, and 500), σ2Subj (strength of confounding

factor; ranging from 0 to 2), and percentage of subjects with
paired samples (ranging from 0 to 100), we simulated data
according to model (2). At each combination setting, 1000
biomarkers were simulated 100 times; each time there were
20 biomarkers selected to be differentially expressed, with
non-zero TRT effects randomly drawn between 1 and 2.
Within each set of 1000 biomarkers simulated, the FDR was
controlled at .05 in the test of differential expression (testing
the TRT effect in the model). Across the 100 simulations at
each parameter combination, the estimated power and FDR
were averaged. These simulations took about 38 days com-
putation time, optimized to about 6 h real time using the
batch computing resources of the Center for High
Performance Computing at the University of Utah.

Paired vs unpaired design: RNA-Seq power comparison in
colon cancer study
For demonstration purposes of the practical effect of
full vs. partial (or no) pairing, we randomly selected
100 subjects (from 169) with paired samples in the
RNA-Seq data, and fit model (1) on each of the
17,462 protein-coding genes. The test for differential
expression (of the TRT effect) in this fully paired
design (with 200 total samples) yielded a p-value for
each feature, and these were adjusted to control the
false discovery rate (FDR) [19].
Unpaired design 1 consisted of using the same data

as in this paired design, for the same 100 subjects. A
variation of model (1) was fit, excluding the subject
random effect, which is equivalent to ignoring the
pairing. Again FDR-adjusted p-values were obtained
for each of the 17,462 protein-coding genes.
Unpaired design 2 used data for the same 100 subjects,

but with 50 of those subjects randomly selected to be

tumor-only and the other 50 to be normal-only (i.e., only
their tumor or only their normal samples were used).
Then of the subjects not among those 100, 50 others
were randomly selected (from the 22 normal-only and
the 69 unselected paired) to be tumor-only and another
50 (from the original 18 normal-only and those still not
selected of the 69 paired) to be normal-only. Data for
these 200 total samples were used to fit a variation of
model (1), excluding the subject random effect (due to a
total lack of pairing in this design), and again
FDR-adjusted p-values were obtained for each of 17,462
protein-coding genes.
One way to look at these three designs is as

follows. The paired design is intended to represent
the ideal, with every subject providing paired samples
and the analysis accounting for the pairing. Unpaired
design 1 is intended to represent partially lost poten-
tial, with every subject providing paired samples but
the analysis not accounting for the pairing. Unpaired
design 2 is intended to represent fully lost potential,
with no paired samples for any subject.
To demonstrate the potential impact of accounting

for subject-level covariates in an unpaired design, we
again ran a variation of model (1) on both unpaired
design 1 and unpaired design 2, but instead of the
subject random effect we included a few covariates as
fixed effects (or continuous covariate in the case of
age at diagnosis). The covariates included tumor site
(proximal or distal colon), tumor SEER summary
stage (distant, local, regional, insitu, or unknown), age
at diagnosis, MSI tumor status, and sex. These covari-
ates were chosen only for demonstrative purposes as
potential subject-level confounding factors that have
previously been shown to be associated with expres-
sion levels in colorectal cancer [23]. Table 1 summa-
rizes these covariates in the paired and two unpaired
designs.

Table 1 Summary of covariates in paired and unpaired designs
for RNA-Seq colon data

Paired Design and
Unpaired Design 1

Unpaired Design 2

Tumor Site Proximal: 100
Distal: 100

Proximal: 100
Distal: 100

SEER stage Distant: 24
Local: 72
Regional: 102
Unknown: 2

Distant: 25
Local: 70
Regional: 103
Unknown: 1
Insitu: 1

Age at diagnosis (years) Mean 63.9, SD 10.0 Mean 64.9, SD 10.1

MSI tumor status MSS: 164
MSI: 36

MSS: 166
MSI: 34

Sex Female: 106
Male: 94

Female: 107
Male: 93

Stevens et al. BMC Genomics          (2018) 19:953 Page 11 of 13



Additional files

Additional file 1: SAS code to implement the probability distribution
method for calculating approximate power with count expression (such
as RNA-Seq) data (SAS 9 kb)

Additional file 2: SAS code to implement the probability distribution
method for calculating approximate power with continuous expression
(such as miRNA) data (SAS 9 kb)

Additional file 3: Approximate power contours for continuous data,
such as miRNA, based on the (computationally expensive) simulation
method. Contours are given for the average and median power across
100 simulations. In an effort to quantify the amount of variability across
the 100 simulations, contours are also given for the standard deviation
(SD) and range (max minus min) of power across the 100 simulations.
(PDF 68 kb)

Additional file 4: Approximate false discovery rate contours for
continuous data, such as miRNA, based on the (computationally
expensive) simulation method. Contours are given for the average and
median FDR across 100 simulations. In an effort to quantify the amount
of variability across the 100 simulations, contours are also given for the
standard deviation (SD) and range (max minus min) of the FDR across
the 100 simulations. (PDF 101 kb)
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