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Abstract

Background: Ruminants play a great role in sustainable livestock since they transform pastures, silage, and crop
residues into high-quality human food (i.e. milk and beef). Animals with better ability to convert food into animal
protein, measured as a trait called feed efficiency (FE), also produce less manure and greenhouse gas per kilogram
of produced meat. Thus, the identification of high feed efficiency cattle is important for sustainable nutritional
management. Our aim was to evaluate the potential of serum metabolites to identify FE of beef cattle before they
enter the feedlot.

Results: A total of 3598 and 4210 m/z features was detected in negative and positive ionization modes via liquid
chromatography-mass spectrometry. A single feature was different between high and low FE groups. Network analysis
(WGCNA) yielded the detection of 19 and 20 network modules of highly correlated features in negative and positive
mode respectively, and 1 module of each acquisition mode was associated with RFI (r = 0.55, P < 0.05). Pathway
enrichment analysis (Mummichog) yielded the Retinol metabolism pathway associated with feed efficiency in
beef cattle in our conditions.

Conclusion: Altogether, these findings demonstrate the existence of a serum-based metabolomic signature
associated with feed efficiency in beef cattle before they enter the feedlot. We are now working to validate
the use of metabolites for identification of feed efficient animals for sustainable nutritional management.

Keywords: Residual feed intake, Nellore, Retinol, WGCNA

Background
The Food and Agriculture Organization of the United
Nations estimates the world population will reach 9 bil-
lion people by 2050 and as a consequence, livestock pro-
duction must double to meet the demand for food [1].
Sustainable livestock production is a field of intense re-
search where ruminants play a great role since they can
transform graze pastures, silage and high-fiber crop resi-
dues into high-quality human food (i.e. milk and meat)
[2]. The goal is “sustainable intensification” [3], meaning
increased productivity while reducing the environmental
impacts. In this context, feed efficiency (FE) has a

particular importance, since it is directly related to prod-
uctivity, greenhouse gas emission intensities, and re-
source use [4, 5].
Due to its importance, more than two dozen feed effi-

ciency measurements have been proposed to select effi-
cient animals and from those, residual feed intake (RFI)
is considered one of the most effective methods [6, 7].
As a complex trait, at least five major physiological
mechanisms contribute to RFI variation: feed intake be-
havior, digestion, physical activity, thermoregulation and
cell anabolism/catabolism [8]. Recently, our group pro-
posed a new biological process associated with FE in
beef cattle: increased hepatic inflammation in less effi-
cient animals probably caused by altered lipid metabol-
ism and/or increased bacterial infection associated with
higher feed intake [9].
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Metabolomics is the systems-scale study of low-mole-
cular-weight biochemicals (< 1500 Da) involved in me-
tabolism, including carbohydrates, lipids, amino acids,
biogenic amines, and organic acids [10, 11]. Due to the
important role of metabolism across all biological pro-
cesses, metabolomics studies have been increasingly
used to understand physiological processes associated
with economically important traits in livestock such as
meat quality in pigs [12], milk production in dairy cattle
[13–15] and growth in beef cattle [16]. Also, metabolo-
mics has been applied to RFI studies, reporting blood
metabolites in beef cattle during feedlot [17, 18].
Currently, there is an urgent need to develop new

ways to predict FE in livestock, since the use of the com-
mercially available genomic markers for genetic selection
is not sensitive enough due to low to moderate heritabil-
ity (ranging from 0.08 to 0.49) of the FE trait [19–22].
Therefore, we hypothesized there are specific serum me-
tabolome signatures that predict feed efficiency in beef
cattle before the feedlot which could be used for feed
management of beef cattle. To this end, we used serum
samples from a previous feeding trial with young Nellore
bulls and performed a metabolomic approach on high
and low feed efficient animals. The resulting data were
used to investigate whether circulating metabolite levels
could predict feed efficiency.

Methods
Phenotypic data collection
All animal procedures were approved by the Institu-
tional Animal Care and Use Committee of the Faculty of
Food Engineering and Animal Science at the University
of Sao Paulo (protocol 14.1.636.74.1). The serum of 98
Nellore young bulls (16 to 20 months old and 376 ± 29
kg BW) born and raised in the University of Sao Paulo
were collected 21 days prior to a 70-d feedlot. Briefly,
the feeding-trial period was preceded by 21 days of adap-
tation to diet and location and before that, the animals
were maintained in a single group on Brachiaria spp.
pastures. On adaptation period, animals received corn
silage (ad libitum), gradually replaced by trial diet (total
mixed ration, including dry corn grain, corn silage, soy-
bean, citrus pulp pellets, urea, calcareous, mineral salt
and potassium chloride) offered at 8:00 h and 16:00 h.
After the experiment, all animals were slaughtered fol-
lowing the guidelines of the Institutional Animal Care
and Use Committee. More details regarding animals,
diet and experimental design can be found in Alexandre
et al. [9] and Mota et al. [23].
RFI was calculated as the difference between the ex-

pected and observed feed intake, considering the average
metabolic weight (MBW) and ADG to predict DMI [6].
The 98 animals were ranked by RFI, and two groups of
8 animals each were selected for further analysis (total of

16 animals): high feed efficiency (HFE, low RFI) and low
feed efficiency (LFE, high RFI). Sire and age effect on
RFI were estimated by completely randomized design on
linear model:

Yijk ¼ μþ βiþ βk þ eij

where Yij is the observation of jth individual, son of
ith sire, with k age; μ is the general mean of the RFI; βi
is the sire effect; βj is the age effect and eij is the random
residual error, ~NID (0, σ2e); and σ2e is the residual vari-
ance. The phenotypic measures included: initial body
weight (BWi), final body weight (BWF), dry matter in-
take (DMI), average daily gain (ADG), feed conversion
ratio (FCR), residual feed intake (RFI), residual body
weight gain (RWG), residual intake and body weight
gain (RIG), initial ribeye area (REAi), final ribeye area
(REAf) and gain of ribeye area (REAg). Normality of
data was tested by the Shapiro-Wilk test. Student’s t-test
was applied to compare the groups for normally distrib-
uted variables and Mann-Whitney-Wilcoxon test for
nonparametric variables using R STATS package. Results
were considered significant when p-value (P) ≤ 0.05. The
RFI values were adjusted using regression model, in
which the age was fitted as a covariate for network ana-
lysis (Additional file 1).

Sample collection
Serum samples were collected 21 days before the start of
the feeding trial (before the adaptation period) by jugular
venipuncture using vacutainer tubes. After 30 min at
room temperature for clot formation, all samples were
centrifuged at 3500×g for 15 min at 4 °C and stored at −
80 °C until further analysis, following the recommenda-
tions of Tuck et al. [24].

LC-MS analysis
Protein precipitation of serum samples was performed at
4 °C by adding methanol (1:4 serum: methanol) and vor-
texing for 120 s at 5000 rpm [10]. The samples were then
centrifuged at 16000 g for 4 min at room temperature,
and the supernatants were dried in a vacuum centrifugal
evaporator for 3 h at 30 °C and stored at − 20 °C prior to
analysis. The samples were reconstituted in 200 μL H2O
and centrifuged at 12000 rpm for 15min. The superna-
tants were transferred to analytical vials for analysis
using a Xevo G2 XS quadrupole-time-of-flight mass
spectrometer (Q-TOF-MS) in positive and negative
modes (Waters Corporation, Milford, MA, USA). Chro-
matographic separation was performed by an Acquity
I-Class UPLC system (Waters Corporation, Milford,
MA, USA) using a Waters Acquity BEH C18 column
(2.1 mm × 100mm, 1.7 μm) (Waters Corporation, Mil-
ford, MA, USA) at 50 °C. The injected sample volume
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was 5 μL. The mobile phase consisted of 0.1% formic
acid-water (eluent A) and 0.1% formic acid-methanol
(eluent B). The gradient elution in positive mode was
performed at a flow rate of 0.4 ml/min, as follows: be-
tween 0 and 1min 0% eluent B; 1–16min increasing up
to 100% eluent B;16–20 min at 100% eluent B and 20–
22min decreasing back to 0% eluent B. The elution flow
rate was 0.36 ml/min in negative mode, with an elution
gradient as follows: 0–2min 0% eluent B; 2–17min in-
creasing up to 100% eluent B; 17–22min at 100% eluent
B and 22–24 min decreasing back to 0% eluent B.
The UPLC was connected to the electrospray

ionization (ESI) interface, operating in negative and posi-
tive modes, with a capillary voltage of − 2.5/+ 3 KV,
source temperature of 150 °C, cone gas flow of 50 L/h,
cone voltage of 40 V, desolvation temperature of 550 °C
and desolvation gas flow of 800 L/h. The spectra were
collected at high resolution (mass resolving power
30,000M/ΔM at fwhm) from 100m/z (mass/charge ra-
tio) to 1200 m/z, collected over 250 ms per spectrum in
centroid mode. To avoid problems due to instrument
drift, the sequence of samples was randomized and
pooled quality-control samples (QC) were injected peri-
odically for use in downstream data processing and cor-
rection [10]. QC samples were prepared by pooling
equal volumes of all samples; these samples were run
after every four sample injections to provide a measure-
ment of the stability and performance of the system.

Data treatment and pre-processing
LC-MS raw data were created and processed and using
Waters MassLynx™ (Waters Corporation, Milford, MA,
USA) Software v4.1 and Progenesis QI (Nonlinear Dy-
namics, Newcastle, UK). Following the manufacturer’s
instructions, a reference run was automatically selected,
and the precursor ion traces were processed for align-
ment, peak picking and normalization with default pa-
rameters. Locally estimated scatterplot smoothing
(LOESS) signal correction based on QC samples was
performed using MATLAB 2016 software with a script
built for this purpose [25].
Afterward, a quality assurance (QA) step was used for

analytical validation: variables with unacceptable repro-
ducibility in QC samples (RSD > 20% in QCs or detected
in less than 50% of QCs) and samples (detected in less
than 90% of QC) were removed from the dataset [10].
The confidence scores of annotated metabolites are 2,
meaning they have matches to a search database [26].

Metabolomics data analysis
Univariate and multivariate analyses were carried out
using Metaboanalyst 4.0 Web Server [27]. Glog trans-
formation [28] and auto-scaling [29] were applied. Dif-
ferences between the groups were investigated using

univariate (UA) and multivariate analysis (MA). For MA,
principal component analysis (PCA) and partial
least-square discriminant analysis (PLS-DA) were used
for detection of outliers and to identify features poten-
tially responsible for variation between the groups [29].
PLS-DA model quality was assessed using the goodness
of fit (R2) and goodness of prediction (Q2) in cross-valid-
ation and using a permutation test with 2000 permuta-
tions [29]. For UA, t-test was used to identify
differentially expressed features, then the p-values were
corrected for multiple tests by Significance Analysis of
Microarrays (SAM-FDR) method [30]. Features with
SAM-FDR q-value < 0.05 were considered different be-
tween groups.

Network analysis
Network and clustering analysis were performed using
the Weighted Gene Co-expression Network Analysis
(WGCNA) R package [31, 32]. Normalized data from
positive and negative acquisition modes were used separ-
ately as described by Fukushima et al. [33], with a soft
threshold of 3, chosen using a scale-free topology criter-
ion (R2 = 0.9). Modules containing at least 20 features
were retained.
To select modules associated with FE, Pearson correla-

tions between each module’s “eigengene” and the RFI
were calculated. The “eigengene” is the first principal
component of a given module and a representative
measure of its metabolic profile. (The term “gene” is
used even for other data types, due to the development
of WGCNA originally for the analysis of transcriptional
data.) Modules with a module-trait relationship magni-
tude (correlation) > 0.5 for RFI (P ≤ 0.05) were consid-
ered significant. Individual features were considered for
further analysis only if they had module membership
(MM) > 0.6 (P < 0.01) and gene significance (GS) > 0.5 (P
< 0.05). GS is defined as the association of features with
RFI, and MM is defined as the correlation of the features
with the module eigengene. High GS and MM scores in-
dicate a feature is a central element of a module and is
significantly associated with the trait [34].

Metabolic pathway analysis
Metabolic pathway analysis was performed using
Mummichog software 1.0.9 with Bos taurus species
(KEGG database) as reference [35]. Using default param-
eters for analyte prediction (mass accuracy 10 ppm) and
for pathway enrichment analysis (1000 permutations).
Features from UA with P < 0.01 were used as input to
mummichog to test for pathway enrichment compared
to random data resampled from the reference list, yield-
ing an empirical p-value per pathway. Pathways with
corrected q-value < 0.05 were considered significant.
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Results
We performed a 70-day feeding trial on 98 Nellore
young bulls to evaluate their feed efficiency [9]. Based
on the linear model (see Methods), there was no signifi-
cant sire effect on RFI and the high feed efficient (HFE)
and the low feed efficient (LFE) groups were statistically
different (P ≤ 0.05) for all FE traits (feed conversion ratio
(FCR), RFI, residual weight gain (RWG) and residual in-
take and weight gain (RIG), dry matter intake (DMI))
and also for average daily gain (ADG). There was also a
significant difference for backfat thickness at the end of
the experiment (BFTf, P ≤ 0.05), which were greater in
the LFE group (Table 1). Therefore, HFE animals in this
experiment are more sustainable since they eat less, are
leaner and have a better ADG than LFE animals.

Metabolome profile and differential analysis
After quality assurance processing, a total of 3598 and
4210 m/z in negative and positive ionization modes, re-
spectively, were used for parallel analyses. For Principal
component analysis (PCA), no separation was observed
for high and low FE animals in the first five principal
components (Fig. 1), which explained 64.5 and 57% of
total variance for negative and positive modes, respect-
ively. PLS-DA was able to distinguish the two groups,
but permutation and cross-validation analyses indicated
the model was overfitted and thus not predictive (Fig. 1).
The univariate analysis yielded one feature with different
abundance between groups in positive mode. The spec-
tra of mass-charge 183.1670 m/z and retention time

v4.00 min on chromatography column (Fig. 2) has a
P < 0.001 (SAM-FDR = 0.03) which is greater on HFE
group. No significantly different m/z were identified
in negative mode.

Pathway enrichment analysis
Pathway enrichment analysis was performed to explore
possible pathways involved in RFI phenotypic variation
prior to the feedlot. Mummichog software identified the
enrichment of retinol metabolic pathway (P < 0.05;
Table 2), as being associated with FE in positive mode
with 2 pathway metabolites annotated in the data. The
putative compounds hit included retinoate (C00777)
and, either the isobaric compounds (molecular weight
284.4357): all-trans-Retinal (C00376) or 11-cis-Retinal
(C02110) (Table 3).

Weighted correlation network analysis
We then used WGCNA co-expression analysis to iden-
tify clusters of analytes that may have a relationship with
the feed efficiency. WGCNA identified 19 and 20 mod-
ules of highly correlated features in negative and positive
mode, respectively.
One of these modules was significantly positively cor-

related with RFI (blue module from the negative mode,
r = 0.55, and P = 0.033), indicating higher levels in LFE
animals. The blue module contains 196 features (Fig. 3a),
of which 65 were identified as important contributors to
this module (Additional file 2). Using mummichog, three
of these features were putatively annotated: (i) 6S,9R-Vo-
mifoliol (compound KEGG C01760) (ii) 2,3, Dihydrofla-
vone (compound C00766); (iii) Limonoate (compound
C01593). The additional file 2 has information of the im-
portant features of blue module on negative mode, in-
cluding mass-charge (m/z), retention time (rt), feature
significance to trait (GS), feature significance to module
(FM), group with highest abundance, putative matched
compound in KEGG and mass difference between fea-
ture and putative compound.
A second module was associated with RFI (blue mod-

ule from the positive mode, r = 0.55, and p-value =
0.033), also indicating higher levels in LFE animals. This
module contains 112 features (Fig. 3b), of which 39 were
identified as highly important contributors to this mod-
ule (Additional file 3). Using mummichog, 5 compounds
were annotated: (i) Phytanic acid (compound C01607);
(ii) all-trans-Retinal (compound C00376); (iii) Progester-
one (compound C00410); (iv) Limonoate (compound
C01593); (v) Stearic acid (compound C01530). The add-
itional file 3 has information of the important features of
blue module on positive mode, including mass-charge
(m/z), retention time (rt), feature significance to trait
(GS), feature significance to module (FM), group with
highest abundance, putative matched compound in

Table 1 Descriptive statistics of high feed efficiency (HFE) and
low feed efficiency (LFE) for phenotypic traits

Trait HFE (±SEM) LFE (±SEM) P value

BWi (kg) ■ 410 ± 16.03 404.3 ± 7.97 0.64

BWf (kg) ○ 563.5 ± 17.35 525.8 ± 9.87 0.07

DMI (kg/d) ■ 10.38 ± 0.39 12.35 ± 0.33 < 0.0001*

ADG (kg/d) ■ 2.194 ± 0.15 1.734 ± 0.08 0.0497*

FCR ■ 4.763 ± 0.17 7.3 ± 0.29 < 0.0001*

RFI (kg/d) ○ −1.384 ± 0.12 1.791 ± 0.12 < 0.0001*

RWG (kg/d) ■ 0.4325 ± 0.07 − 0.3988 ± 0.06 < 0.0001*

RIG ○ 1.815 ± 0.10 −2.188 ± 0.13 < 0.0001*

REAi (cm2) ■ 68.26 ± 2.22 67.23 ± 1.95 0.63

REAf (cm2) ■ 84.94 ± 2.58 82.91 ± 1.65 0.64

REAg (cm2) ■ 19.34 ± 2.83 15.69 ± 1.77 0.99

BFTi (mm) ○ 0.775 ± 0.38 1.975 ± 0.46 0.07

BFTf (mm) ■ 2.975 ± 0.67 5.713 ± 0.64 0.0096*

BFTg (mm) ■ 2.2 ± 0.67 3.738 ± 0.37 0.063

BWi initial body weight, BWF final body weight, DMI dry matter intake, ADG
average daily gain, FCR feed conversion ratio, RFI residual feed intake, RWG
residual body weight gain, RIG residual intake and body weight gain, REAi
initial ribeye area, REAf final ribeye area, REAg gain of ribeye area. *P < 0.05. ■
Student’s t-test. ○Mann-Whitney-Wilcoxon Test
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KEGG and mass difference between feature and putative
compound.

Discussion
Brazilian cattle are mainly raised in pastures, but can
also be kept in feedlot systems with diets composed of
silage or other feedstuffs, such as high-fiber crop resi-
dues or grains (corn and soybean), to improve body
weight gain before slaughter. We used serum samples
collected before the feedlot period to search for a poten-
tial early metabolomic signature for FE, with the intent
to support nutritional management decisions to improve
productivity and sustainability of livestock. Thus, we
performed an exploratory analysis using untargeted
metabolomics coupled with bioinformatics and inter-
pretation tools including Mummichog and WGCNA.
We found one differentially expressed feature between

HFE and LFE animals in these conditions, but most im-
portantly, we also found one enriched pathway and two
sets of highly correlated features significantly associated
with FE, which could be considered a potential molecu-
lar signature of FE in Nellore cattle before they enter the
feedlot period.
A co-expression module associated with a phenotype

provides significant promise for the development of a
molecular signature, clearly more than a single statisti-
cally different feature between two conditions [36]. In
our previous work, the co-expression gene modules and
their gene ontology were far more important results
than the differentially expressed genes [9]. In this con-
text, the hepatic inflammatory response was associated
with feed efficiency in cattle. Here, the WGCNA analysis
indicated two modules of co-expressed features posi-
tively associated with RFI, with equal correlation,

Fig. 1 PCA (a and c, in negative and positive mode, respectively) and PLS-DA (b and d, negative and positive mode, respectively) scores plots
based on LC/MS data of serum samples from HFE (red) and LFE (green). The PLS-DA models discriminated between HFE and LFE groups (R2 of
0.87 and 0.98 in negative and positive mode, respectively) but were not predictive (Q2 of 0.08 and 0.15). Considering a common heuristic for
metabolomics data: R2 > 0.8 and Q2 > 0.5, the model was not overfitted. Consistent with this, a permutation test (2000 permutations) yielded P-values > 0.9
in both modes
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p-values (Fig. 3) and common features, suggesting that
both networks belong to the same molecular signature.
We were able to identify 7 molecules from the

co-expressed modules through Mummichog predic-
tion: Retinal, Progesterone, Stearic acid, Vomifoliol,
2,3 Dihydroflavone, Limonoate and Phytanic acid.
Interestingly, all these molecules have higher levels in
LFE animals which are in accordance with the mod-
ules being positively associated with RFI. In addition,
mummichog software predicted two molecules from
the retinol pathway significantly associated with FE: a
higher level of Retinal and lower level of Retinoate
(C00777) in LFE, which implies the enzymes aldehyde
oxidase and retinal dehydrogenase (that convert Ret-
inal to Retinoate) as probably less active/expressed in
LFE animals. This result is in accordance with Zhao
and colleagues [37] who demonstrate vitamin A (VA)
metabolism is important for feed efficiency in pigs as
key genes of VA metabolism such as ALDH1A2 and
CYP1A1 are upregulated in the liver of HFE animals.

Also, in two transcriptome studies, the retinol path-
way was upregulated in the liver of high-RFI Jersey
steers [38] and over-represented in the small intestine
from high intake beef steers [39]. A GWAS-study
using CNV markers evidenced the RDH5 (an import-
ant gene of the retinol metabolism pathway) as a can-
didate gene associated with feed conversion rate in
Nellore cattle [40]. Therefore, our results agreed with
the literature regarding the importance of the retinol
metabolism pathway for feed efficiency in livestock
animals.
Progesterone (P4) was another feature predicted in

the molecular signature of FE being more present in
the blood of LFE animals. Steroid hormone biosynthesis
was overrepresented in the set of genes in the liver that
were upregulated in the high-RFI (low FE) group of
Jersey cows [38], which is in accordance with our re-
sults. Recently, P4 signaling in broiler skeletal muscle
was associated with divergent feed efficiency [41]. So
far, there is no consensus on the role of P4 on feed

Fig. 2 Univariate differential analysis of features from bovine metabolome. a Univariate analysis corrected by multiple tests (SAM-FDR) results for
positive mode features. b The difference of abundance between the HFE and LFE groups for the m/z 183.1670 peak with a retention time of
4.00 min (positive mode; SAM-FDR≤ 0.05)

Table 2 Metabolic pathways for RFI prior to the feedlot and their size on the positive mode of acquisition

Pathway Pathway size Total Hits Significant Hits Fisher’s P value

Retinol metabolism 17 6 2 0.0237*

Steroid hormone biosynthesis 67 8 1 0.3055

Arachidonic acid metabolism 36 7 1 0.2725
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efficiency in livestock and further studies should be
performed.
The stearic acid is a saturated acid (C18:0) and one of

the end products of the fatty acid biosynthesis pathway
in animals. This fatty acid was found increased in plasma
of steers with least ADG in comparison with greatest
ADG [42], and this result corroborates our finding of a
higher level of stearic acid in the molecular signature as-
sociated with LFE animals since they had less ADG than
HFE in our experiment.
From all predicted molecules, Vomifoliol, 2,3 Dihydro-

flavone, Limonoate and Phytanic acid are molecules pro-
duced exclusively by bacteria or plants and not
mammals. The higher presence of these molecules in
the blood of LFE animals could be due to higher DMI of

these animals in comparison with HFE animals, allowing
the higher presence of these metabolites in the blood.
However, this possibility lacks further evidence since we
did not evaluate the pasture DMI of these animals, i.e.
feed intake before they arrive at the feedlot. From these
4 molecules, the Phytanic Acid could have a role on feed
efficiency. Phytanic acid is a branched-chain fatty acid
formed during the metabolism of phytol [43] by ruminal
bacteria and is a known agonist for the nuclear-recep-
tor-retinoid-X-receptor [44] and the peroxisome
proliferated-activated receptor-α (PPAR-α) [45]. These
two proteins are important nuclear receptors regulating
the expression of several genes in response to environ-
mental factors (i.e. diet) and endogenous molecules.
Interestingly, in rats, agonists of PPAR-α decreased feed

Table 3 Significant analytes predicted by mummichog

m/z Compound adduct mass diff P value HFE/LFE

267.2105 all-trans-Retinal / 11-cis-Retinal M-H2O + H[1+] 0.00017686 0.0075* Down

273.2233 Retinoate M-CO + H[1+] 0.00213163 0.0019* Up

The mass-charge (m/z), compounds hit, mass difference, analyte p-value and FE group association

Fig. 3 Network analysis of co-expressed features in the negative and positive mode of acquisition. Pearson correlation between residual feed intake
(RFI) and the module eigengenes in the negative (a) and positive (b) mode. In each line the color name of modules (ME). The number in each module
is the Pearson correlation between the module and RFI; In brackets the p-value of the correlation
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efficiency [46], and the PPAR signalling pathway was
enriched in the small intestine transcriptome analysis of
high vs. low feed intake cattle [39]. Therefore, agonists
of PPAR-α could reasonably be associated with feed effi-
ciency in cattle, but new evidence should be provided to
confirm this hypothesis.
Our integrated approach using data annotation,

mummichog prediction and WGCNA co-expression
analyses indicated a molecular signature enriched for
biological processes previously associated with FE. The
metabolites in WGCNA modules were also predicted by
mummichog, which supports the validity of the in silico
network analysis since the two different analyses yielded
consistent results. Therefore, we believe metabolomics
based modules associated with FE possibly represent a
molecular metabolic signature of FE. Although we have
not yet been able to identify the majority of the features
in those modules, previous studies on feed efficiency
support the network analysis results. Moreover, we
noted it is possible to have a molecular signature associ-
ated with a phenotype without knowing the function of
the components, just by (for metabolites) tracking m/z
ratio and retention time in a standardized assay. As an
example, this is the case for commercially available gen-
omic selection in dairy cattle using DNA markers, where
the majority of the markers are not functional SNPs.
In our data, we found only one feature statistically dif-

ferent between the FE groups: the feature with m/z
183.1670 and RT of 4.00 min (positive mode) is upregu-
lated in HFE animals. This result along with the
co-expressed module provides evidence of early serum
metabolome differences between high and low FE ani-
mals. Between both the positive and negative ionization
modes and after quality control-based filtering, the
serum metabolome of the animals in this experiment
consisted of approximately 8000 features. One may ex-
pect a priori to identify more than just one different fea-
ture between high and low FE animals using such a
powerful tool. Possible explanations for this result in-
clude, but are not limited to: (1) although the groups are
very distinct phenotypically at the end of the experi-
ment, their baseline metabolic profiles may have been
more similar at the time when samples were collected
(21 days before the beginning of the feeding trial) [9]; (2)
the FE was estimated for feedlot performance and not
for pasture grazing; at the time of sampling all animals
were still on pasture conditions, which may yield more
similar metabolic phenotypes than a high grain diet; (3)
the animals were clinically healthy over the whole ex-
periment. Thus, no major physiological disturb could
lead to large metabolome difference between the FE
groups; (4) the number of sampled animals (8 animals
per group) could limit the statistical power [47] for these
outbred, genetically different animals that may have high

baseline diversity in metabolic profiles. To address this
last issue, one of our ongoing projects is to validate these
results in a cohort with more animals, to develop a fu-
ture technology help establish a framework for future
for FE prediction.

Conclusion
The conclusion from this work is the detection of a mo-
lecular signature for feed efficiency of beef cattle based
on untargeted metabolomics. This molecular signature
indicated the vitamin A metabolism pathway as one of
the important pathways for this phenotype.
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had different ages (P< 0.05). To perform the Network analysis, the phenotype
was adjusted by age, fitted as a covariate. (CSV 905 bytes)
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Module Membership (MM); Feature connectivity within the module
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Mass difference between m/z and matched compound. (CSV 3 kb)
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