Wilhelmsson et al. BMC Genomics (2019) 20:95

https://doi.org/10.1186/512864-019-5452-4 B M C G enom iCS

RESEARCH ARTICLE Open Access

Usability of reference-free transcriptome @
assemblies for detection of differential

expression: a case study on Aethionema

arabicum dimorphic seeds

Per K. I. Wilhelmsson'®, Jake O. Chandler’@®, Noe Fernandez-Pozo', Kai Graeber?, Kristian K. Ullrich'®,
Waheed Arshad’®, Safina Khan?, Johannes A. Hofbergerg, Karl Buchta', Patrick P. Edger“, J. Chris Pires’,
M. Eric Schranz®, Gerhard Leubner-Metzger®® @ and Stefan A. Rensing’”"

Abstract

Background: RNA-sequencing analysis is increasingly utilized to study gene expression in non-model organisms without
sequenced genomes. Aethionema arabicum (Brassicaceae) exhibits seed dimorphism as a bet-hedging strategy — producing
both a less dormant mucilaginous (M™) seed morph and a more dormant non-mucilaginous (NM) seed morph. Here, we
compared de novo and reference-genome based transcriptome assemblies to investigate Ae. arabicum seed dimorphism
and to evaluate the reference-free versus -dependent approach for identifying differentially expressed genes (DEGs).

Results: A de novo transcriptome assembly was generated using sequences from M* and NM Ae. arabicum dry seed
morphs. The transcripts of the de novo assembly contained 63.1% complete Benchmarking Universal Single-Copy
Orthologs (BUSCO) compared to 90.9% for the transcripts of the reference genome. DEG detection used the strict
consensus of three methods (DESeq?2, edgeR and NOISeq). Only 37% of 1533 differentially expressed de novo assembled
transcripts paired with 1876 genome-derived DEGs. Gene Ontology (GO) terms distinguished the seed morphs: the terms
translation and nucleosome assembly were overrepresented in DEGs higher in abundance in M* dry seeds, whereas terms
related to mRNA processing and transcription were overrepresented in DEGs higher in abundance in NM dry seeds. DEGs
amongst these GO terms included ribosomal proteins and histones (higher in M™*), RNA polymerase Il subunits and related
transcription and elongation factors (higher in NM). Expression of the inferred DEGs and other genes associated with seed
maturation (e.g. those encoding late embryogenesis abundant proteins and transcription factors regulating seed
development and maturation such as ABI3, FUS3, LEC1 and WRIT homologs) were put in context with Arabidopsis thaliana
seed maturation and indicated that M* seeds may desiccate and mature faster than NM. The 1901 transcriptomic DEG set
GO-terms had almost 90% overlap with the 2191 genome-derived DEG GO-terms.

Conclusions: Whilst there was only modest overlap of DEGs identified in reference-free versus -dependent
approaches, the resulting GO analysis was concordant in both approaches. The identified differences in dry seed
transcriptomes suggest mechanisms underpinning previously identified contrasts between morphology and
germination behaviour of M* and NM seeds.
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Background

RNA-sequencing (RNA-seq) technology is a valuable
tool to investigate gene expression [1], especially in
species where no reference genome is available. With-
out any prior molecular data about a particular spe-
cies, de novo transcriptome assembly of RNA-seq
data offers a unique opportunity to study gene ex-
pression on a transcriptome-wide scale of any trait of
interest. Due to drops in library and sequencing costs,
it is now widely utilized by many scientists to study
traits of particular interest in a wide-range of species.
However, there are limitations to using a de novo
transcriptome assembly compared to a reference-
genome guided approach. Since less sequence infor-
mation is used in the creation of the transcripts in a
de novo transcriptome, in comparison to a reference
genome, low expressed genes are more difficult to de-
tect. De novo assembled transcripts are also more
likely to be fragmented.

Here, we apply a reference-free and a
reference-dependent approach to compare the gene
expression in the dry mature dimorphic seeds of
Aethionema arabicum. This species represents the
sister lineage to all other Brassicaceae, and is a herb-
aceous annual native to parts of Eastern Europe and
the Middle East. It exhibits diaspore heteromorphism
— i.e. the ability to produce multiple morphologically
and physiologically distinct fruit or seed morphs on
individual plants [2, 3]. Ae. arabicum produces two
distinct fruits, a dehiscent (DEH) and an indehiscent
(IND) fruit morph. The dehiscent fruit contains typ-
ically four seeds, shatters on maturity, and disperses
mucilaginous seeds (M"). Conversely, the indehiscent
fruit contains a single non-mucilaginous seed (M")
encased in a pericarp (fruit coat). Upon maturity, the
entire IND fruit detaches, via abscission, from the
parent plant leading to the fruit’s dispersal [3, 4]. In
addition to these morphological differences between
the two morphs, the NM seeds appear to be more
dormant compared to the M" seeds, with NM exhi-
biting much slower germination at 14°C [3]. The pro-
duction of two contrasting seed/fruit morphs is
proposed to constitute a bet-hedging strategy that in-
creases long-term plant fitness in disturbed and un-
predictable extreme environments. However, how this
heteromorphism is reflected at the transcriptomic
level is unknown. With its recently published genome
sequence and its basal phylogenetic position within
the Brassicaceae, Ae. arabicum has potential as a
model species for diaspore heteromorphism [3, 5].

For many other non-model plant species, including
other heteromorphic systems, a reference genome is not
available. Thus, comparing the effectiveness of
reference-free and reference-dependent transcriptome
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analyses is pertinent to future investigations into such
non-model species. Comparison of the transcriptomes of
the two Ae. arabicum seed morphs represents a realistic
and interesting demonstration of both approaches.
There are many genomes with accompanying large
sets of microarray and qRT-PCR data, and it was
early on concluded that de novo assembled tran-
scriptome expression profiles positively correlate with
corresponding microarrays and qRT-PCRs [6-8]. Due
to the potential of RNA-seq, much work has been
done on how to get the best results out of a de novo
transcriptome assembly [9-13]. The Trinity suite
[14] is one of the most cited de novo transcriptome
assemblers exhibiting good performance metrics [13].
In order to generate a representative transcriptome,
sequencing depth is important to be able to recon-
struct as many genes as possible including those
expressed at low levels. The ability to detect weakly
expressed sequences can only be improved by in-
creasing the sequencing depth. This highlights the
diminishing investment returns (sequencing depth) in
relation to yield (sequence resolution) for RNA-seq.
Despite the known limiting factors of transcriptome
assembly, the knowledge gained per investment
makes reference-free gene expression profiling an
obvious choice when working with non-model
species.

To evaluate the knowledge that can be gained with
reference-free gene expression profiling, a reference-
dependent expression profiling was carried out using the
existing genome assembly of Ae. arabicum [5]. To inves-
tigate the seed dimorphism of Ae. arabicum, we con-
ducted a highly robust differentially expressed genes
(DEGs) detection analysis and used it to compare
DEGs derived from a transcriptome-based and a
genome-based mapping approach. The aim of this
study was to find DEGs between Ae. arabicum di-
morphic seeds, and to compare the RNA-seq analysis
performed using two different references, a de novo
transcriptome assembly and the Ae. arabicum genome
sequence V2.5.

Results and discussion

Overview of RNA-seq analysis of Ae. arabicum mature
dimorphic seeds

The mature dimorphic seeds, M" from DEH fruits
and NM from IND fruits (designated NM, for
“non-mucilaginous”, in our RNA-seq analysis), dif-
fered in size and mass but not in seed moisture
content (Fig. 1). RNA was extracted from freshly
harvested mature M™ and NM seeds and the result-
ant RNA samples processed as described in the
Methods section. As shown in Fig. 2, RNA-seq raw
reads were processed and checked using FastQC
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Fig. 1 Fruit and seed dimorphism in Ae. arabicum. Mature infructescence (a) of Ae. arabicum, showing distinct dehiscent (DEH) and indehiscent
(IND) fruit morphs (marked by red arrows). Large DEH fruits (b) contain up to six mucilaginous (M*) seeds, while small IND fruits (¢) contain a
single, non-mucilaginous (NM) seed. Both seed morphs differ in mean seed mass and moisture content. Values shown are means + SEM for n =8
each of 100 seeds (mass), and n =4 each of 30 seeds (moisture content) replicate measurements. Scale bars=4 mm (@), T mm (b and c). FW,

(https://www.bioinformatics.babraham.ac.uk/projects/
fastqc/), Trimmomatic version 0.32 [15] and PrinSeq
[16]. Subsequently, cleaned reads were used for de
novo transcriptome assembly for Ae. arabicum M*
and NM seeds using Trinity [14]. The same set of
cleaned reads was mapped to the gene models of
the reference genome using GSNAP [17]. EdgeR,
DESeq2 and NOISeq [18-20] were wused to
normalize read counts and to detect DEGs in a
strict consensus approach, and Blast2GO [21] was
used to assign Gene Ontology (GO) terms to the
genes. Comparisons were performed between the
transcriptome and the genome (Comparison 1,
Fig. 2), the reads mapped to both the de novo tran-
scriptome and reference-based genes (Comparison 2,
Fig. 2), the DEGs found in both approaches (Com-
parison 3, Fig. 2), and between their GO terms
(Comparison 4, Fig. 2).

Read filtering of RNA-seq raw data
To generate the raw reads, a total of four cDNA li-
braries were sequenced, with two biological replicates

of Ae. arabicum dry mature dimorphic seeds, termed
M"1/M"2 for the M" seeds and NM1/NM2 for the
NM seeds. Raw reads were processed to remove
adapters, organellar, ribosomal RNA (rRNA) and
low-quality sequences (Fig. 3). Adapter sequences
were removed and low-quality sequences were
trimmed using Trimmomatic. Poly-A and poly-T tails
were removed using PrinSeq. This process resulted in
an average loss of 9.6% of all reads for the four li-
braries. To reduce the complexity of the assembly/
mapping, and to check for correct poly-T selection,
all data were filtered to remove reads with plastid,
mitochondrial and ribosomal RNA origin resulting in
an average loss of 12% of the reads for the four li-
braries. Visualization of these quality control steps
provides a good measure of library quality making
possible to see if there are any higher than average
read losses in the individual steps. After passing all
the filters, the sets of cleaned sequences contained
between 20 and 30 million reads (Fig. 3), which is in
the range of read numbers commonly used for
RNA-seq analysis for DEG detection [22].
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Fig. 2 RNA-Seq analysis pipeline. Raw RNA-seq reads were checked for quality control (FastQC) and processed to remove adapters and low-
quality bases (Trimmomatic, PrinSeq). Cleaned reads were either: mapped to the genome (GSNAP); or were used for de novo transcriptome
assembly (Trinity) and mapped to the resulting transcriptome (GSNAP). Transcriptome-mapped and genome-mapped reads were compared at
each stage of analysis: After mapping; after differentially expressed gene (DEG) identification (EdgeR, DESeq2, NoiSEQ), and after gene-ontology

De novo transcriptome assembly

Processed reads from all four samples combined were
assembled de novo using Trinity to reconstruct the Ae.
arabicum dry seed transcriptome. From a total of
30,742,186 reads, 27,407,363 reads (89.15%) could be as-
sembled. This resulted in a total of 62,182 transcripts in-
cluding potential splice variants or fragmentary
sequences. The longest gene sequences from each Trin-
ity gene cluster were selected to reduce redundancy,
resulting in 34,784 transcripts (Additional file 1). To as-
sess the quality and completeness of the Ae. arabicum
dry seed de novo transcriptome, and to compare it to

the gene models from the genome (Comparison 1, Fig. 2),
it was analyzed using the Benchmarking Universal
Single-Copy Orthologs (BUSCO) tool [23] (embryophyta
odb9) which checks for the presence of Embryophyta
“near-universal single-copy orthologs”. For the de novo
assembled transcriptome, 908 transcripts out of 1440 of
the BUSCO genes were complete (63.1%). Of those, 885
were single copy and 23 duplicated. One hundred
sixty-eight transcripts were fragmented and 364 missing
(Fig. 4). The corresponding number of BUSCO com-
pleteness in the 23,594 gene models of the genome was
1309 (90.9%). Of those, 1274 were single copy and 35
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Fig. 3 From raw to filtered reads. Trimming of raw reads with
Trimmomatic removed adapters and low-quality reads. Trimmed
reads were further processed with poly-A / poly-T removal with
PrinSeq. The resulting reads were then filtered to remove
chloroplastic, mitochondrial and ribosomal RNA reads. The total
number of reads left after each step is indicated for samples M* (1),
M* (2), NM (1) and NM (2)

duplicated. Forty-one gene models were fragmented and
90 missing (Fig. 4). To compare these results with a
well-annotated model species, Arabidopsis thaliana
(TAIR10, [24]) was included in the BUSCO analysis. For
A. thaliana, 1431 complete genes were found (99.3%),
1413 were single copy and 18 duplicated; five genes
were fragmented and four missing. The relatively low
number of complete genes in Ae. arabicum transcrip-
tome is to be expected, since dry seeds represent an
atypical tissue that lacks much of the transcription
going on in photosynthetically/developmentally active
tissue. Also, it is common that some genes are frag-
mented in de novo assemblies, as shown in Fig. 5a
which indicates the length distribution of de novo as-
sembled transcripts is skewed towards shorter lengths
compared to the Ae. arabicum mRNAs predicted
from the genome.

Mapping reads to the transcriptome and the genome

To determine read counts for subsequent DEG analysis,
cleaned reads were mapped to the transcriptome and
the genome using GSNAP [17] and counted using
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HTSeq-count [25] with the respective general feature
format (GFF) file. Counted reads for the four samples
are shown in Fig. 5b. This analysis showed that on aver-
age 84% of reads were mapped to the transcriptome and
94% to the genome. The drop from 89.15% of the reads
being used for assembling to 84% mapping is to a large
extent explained by the removal of redundancy keeping
only the longest isoform of each transcript. On average,
the cleaned reads had a read length of 83 bp. Mapping
the reads to the 23,594 genomic gene models, 7814
models had a coverage lower than 1 (where 1 corre-
sponds to an average 1-fold coverage of the gene length;
see Methods for details) and 11,189 gene models had a
coverage lower than 5 (Additional file 2: Table S1). This
highlights the challenges to assemble full-length tran-
scripts. Using reciprocal BLASTN with a coverage cut
off of 50% for both transcriptomic (virtual transcripts)
and genomic coding sequences (CDS), 6745
transcript-gene pairs could be identified (Additional file 2:
Table S2). To compare the expression levels between the
transcriptome- and the genome-based approach (Com-
parison 2, Fig. 2), the 6745 gene-transcript pairs were
considered. Principal Component Analysis (PCA) using
the Reads Per Kilobase per Million mapped reads
(RPKM) of the 6745 genes (Additional file 3: Figure S1)
showed, as expected [9], that replicates from the same
seed morph clustered together and samples from differ-
ent seed morphs are more distant. This is apparent in
both the de novo and reference-genome approach. To
assess gene family completeness, the predicted proteins
of the reference genome and the de novo transcriptome
were screened for Transcription Associated Proteins
(TAPs, comprising transcription factors, TF, and tran-
scriptional regulators, TR) using the TAPscan pipeline
[26]. 1860 (113 unique families) and 1009 (105 unique
families) TAPs were detected in the genome and tran-
scriptome, respectively (Additional file 2: Table S3 and
S4). Finding fewer TAPs in the transcriptome is to be
expected due to the atypical tissue of the transcriptome
in comparison to the whole genome. Genome-wide,
7.6% were multi domain TAPs (defined by more than
one domain), while only 4.2% TAPs were multi domain
in the transcriptome, due to the fragmented nature of
the transcriptome.

Differential gene expression analysis

To learn more about the differences between the mature
dimorphic seeds, gene expression was analyzed using
both references: the de novo transcriptome assembly
and the genome annotation. Since the combination of
several methods minimizes false positives [27], DEGs
were detected in a robust way using the strict consensus
(overlap) of three different DEG analysis programs:
edgeR, DESeq2 and NOISeq. This approach combines
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Fig. 4 BUSCO completeness analysis. cDNA from the Ae. arabicum de novo assembly, Ae. arabicum genome v2.5 and A. thaliana TAIR10 were
compared to 1440 Embryophyta reference orthologs for completeness assessment

two parametric methods to detect DEGs (edgeR and
DESeq2), and a non-parametric method (NOISeq). The
intersection of the DEGs obtained by the three methods
was considered the resulting DEGs (Fig. 6a, b). In all
comparisons edgeR called the most DEGs while NOISeq
was the most restrictive (Fig. 6a, b), thus the NOISeq set
was representing the consensus DEG set best. This ap-
proach resulted in the exclusion of low expressed DEGs
(Additional file 3: Figure S2) below RPKM 2, represent-
ing genes of low abundance that typically cannot be
shown as expressed in a quantitative PCR approach [28].

One thousand five hundred thirty-three and one thou-
sand eight hundred seventy-six DEGs were obtained, re-
spectively, using the de novo transcriptome (Fig. 6a,
Additional file 2: Table S4) and the reference genome
(Fig. 6b; Additional file 2: Table S3). When comparing
common DEGs detected in both approaches (Compari-
son 3, Fig. 2), 561 gene-transcript pairs were found to be
differentially expressed in both. Thus, 561/1533 (37%) of
the de novo transcriptome consensus DEGs were also
well represented by transcripts identified as DEGs by the
genome approach, all of them showing the same direc-
tion of expression (Additional file 2: Table S2). PCA for
the 561 DEGs identified by both approaches showed that
the biological differences between the dimorphic seeds
are much greater than the differences deriving from the
references used (Fig. 6¢). All samples from the same seed
morphs clearly clustered together, independently of the
sequence reference (transcriptome or genome). The
remaining 972 transcripts (63%) of the 1533 transcrip-
tome DEGs did either not pass the 50% coverage cut-off

(405/1533), only had a hit in one direction of the recip-
rocal BLAST (122/1533), their reciprocal hit was not a
DEG in the genome (197/1533) or they did not produce
any significant alignment at all (248/1533). Hence, ap-
proximately 40% of the DEGs from the de novo tran-
scriptome assembly are equivalent to the DEGs found
when a genome reference is available, and 60% of the
DEGs were either fragmented or could not be clearly
paired up with a gene model. This indicates that data for
individual genes might not always be available when
working with de novo transcriptome differential expres-
sion analysis. In cases like this, it might be important to
perform other analyses that study the changes of global
functions occurring in the samples, such as Gene Ontol-
ogy bias. To verify the robustness of the expression pat-
tern between the dimorphic seeds, we performed
qRT-PCR on a selection of DEGs with varying levels of
RPKM values in an independent biological experiment
(Additional file 3: Figure S3). Despite the fact that the
qRT-PCR results are derived from a completely inde-
pendent experiment with different RNA samples, the ex-
pression patterns were confirmed for eight of the ten
selected DEGs.

Gene ontology analysis

The number of GO terms associated with the genome
and the de novo transcriptome, for all transcripts, for
the DEGs and for the overlap between both ap-
proaches is summarized in Table 1 (and in more de-
tail in Additional file 2: Table S5-S6) and is referred
to as a GO-presence list. When comparing
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fdr corrected p value of 0.05), only 12 out of 5584
GO terms were shown to have significant differences
in the number of transcripts associated to them (Add-
itional file 2: Table S5). The GO-presence list of the
DEGs (All DEGs Overlapping GO terms from Table 1)
showed no significant differences at all between the
genome and the transcriptome (Additional file 2:
Table S6). Furthermore, having 1663 common GO
terms present in the GO-presence lists of both DEG
sets (Fig. 7) is a significant over-representation com-
pared to the null hypothesis of selecting 1901 and
2191 GO terms randomly (Chi squared test, p =
2.2e-16). This suggests a biological signal, supporting
that functional analysis of GO terms by transcriptome
de novo assembly resembles the data derived by gen-
omic analysis.

For both the 1256 overlapping GO-terms of the DEGs
GO-presence lists with higher abundance in NM (NM)
seeds (“NM-high”) and 880 overlapping GO-terms of the
DEGs GO-presence lists of with lower abundance in NM
seeds (“NM-low”), none had significantly different quan-
tities of underlying transcripts. The numbers and overlap
of significantly over- and under-represented GO-terms of
each class (Biological Process (BP), Molecular Function
(MF) and Cellular Component (CC)) for all, NM-high and
NM-low DEGs derived from the two approaches are sum-
marized in Additional file 2: Table S7 and in more detail
in (Additional file 4: Table S8) and are referred to as
GO-bias lists. Overall, the NM-high and NM-low BP
GO-bias lists are quite different. In the reference genome
approach, NM-high has 340 unique BP terms, NM-low
has 137 unique BP terms in the respective GO-bias list,
with only 58 BP terms overlapping between both sets.
Some of the most significant overlapping BP terms belong
to high-level categories, such as ‘protein metabolic
process’ and ‘gene expression’ (comprehensive lists of GO
terms associated with the DEG sets are provided in Fig. 7).
In agreement with this, ribonucleoprotein complex is the
most significantly over-represented CC term in the gen-
ome approach, and structural constituent of ribosome is
the most significantly over-represented MF term (Add-
itional file 4: Table S8).

Many of the GO-terms found to be significantly
over-represented and under-represented using the tran-
scriptome approach were also found with the genomic
approach: Out of the 321 BP terms found to be signifi-
cantly over (255) and under (66) represented in the
transcriptome-derived DEG set (GO-bias lists) (Fig. 7b
and Additional file 4: Table S8), 258 (80%) were also
found to be the same in the genome-derived DEG
set (GO-bias lists) (Fig. 7a and Additional file 4:
Table S8. On average, approximately 80% of the sig-
nificantly over- and under-represented GO terms of
the transcriptomic DEG sets (GO-bias lists) were also
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DEGs. Venn diagram of the DEGs called between NM and M* seeds
by the three DEG detection programs (edgeR, NOlseq and DESeq?2)
using the transcriptome (a) and genome (b) approach. Principal
Component Analysis of RPKM (Reads Per Kilobase per Million reads)
of the 561 DEGs common to the transcriptome, T" and genome, ‘G’
(c). Samples M* (circle) and NM (triangles), in black, show the results
for the dehiscent and indehiscent seeds in the transcriptome
approach. Samples M* (circle) and NM (triangles), in white, show the
corresponding results in the genome approach. The percentage
variance explained by each principal component is indicated on
the axes

reported using the genomic approach. So, in com-
parison to the 40% overlap of DEGs on a
gene-transcript pair level, we found a much higher
overlap of differentially expressed functions between
the Ae. arabicumm M' and NM dimorphic seeds using
GO term bias analysis, even though some of the
genes involved in these functions are missing in the
transcriptome DEG dataset. The genomic approach
reports on average 37% more GO-terms to be signifi-
cantly over- or under-represented, which can be ex-
plained by the 22% more DEGs and 10% more
GO-terms per gene. Though a transcriptome de novo
assembly approach gives less information, the infor-
mation that is given overlaps very well with a
genome-based approach. Taken together, this finding
supports the view that analysis of GO terms by tran-
scriptome de novo assembly is a useful tool when no

Table 1 Summary of GO terms associated with both the
genome- and transcriptome-derived transcripts and respective
DEG sets

Transcriptome  Genome
All Transcripts ~ Total number 34,784 23,594

Number with GO terms 18,845 (54%) 18,320 (78%)
GO terms per transcript® 7.1 79
Amount of GO terms 6091 6080
Overlapping GO terms 5584

All DEGs DEGs 1533 1876

(MTHNM)  rount of GO terms 1901 2191

Overlapping GO terms 1663

NM-highP DEGs 745 998
Amount of GO terms 1427 1673
Overlapping GO terms 1256

NM-low* DEGs 788 878
Amount of GO terms 1085 1185
Overlapping GO terms 880

?Average including only transcripts with at least 1 GO term
PDEGs where transcript is more abundant in NM dry seed than M* seed
“DEGs where transcript is less abundant in NM dry seed than M* seed
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genome is available, and resembles the data derived
by genomic analysis.

DEG analysis of mature dimorphic Ae. arabicum seeds
The most significantly over-represented BP terms
unique to the NM-high DEGs GO-bias list (transcripts
with a higher abundance in NM seed compared to M*
seed) include mRNA metabolic process, mRNA process-
ing and response to stimulus. On the other hand, the
most significantly over-represented BP terms unique to
the NM-low DEGs GO-bias lists (transcripts with a
lower abundance in NM seed compared to M" seed) are
translation, ribosome biogenesis and nucleosome assem-
bly (Additional file 4: Table S8). This is also reflected in
the CC and MF terms, with the nucleus CC term and
RNA binding MF term being among the most signifi-
cantly over-represented terms in the NM-high DEGs
(GO-bias list) and the structural constituent of ribosome
MEF term and ribosome CC term being among the most
significantly over-represented terms in the NM-low
DEGs (GO-bias lists; Additional file 4: Table S8). Thus,
it is generally indicative that the transcriptome of the
M" “dry” mature seed morph transcriptome may be rela-
tively more oriented towards translation of RNA and
chromatin assembly, whereas the NM “dry” mature seed
morph transcriptome may be more oriented to
post-transcriptional processing of RNA. It is possible
that these differences may reflect the stage which was
sampled — the dry seed. Thus, transcriptomic differences
may be due to differences in the stage of seed develop-
ment or maturation the seed morphs have reached be-
fore desiccation. For this reason, we put the
transcriptomic differences between Ae. arabicum NM
and M" seed in context of the well-studied seed develop-
ment and maturation of A. thaliana.

The Ae. arabicum M" seed morph as well as A. thali-
ana seeds are both dispersed from dehiscent fruits and
seem to resemble each other in terms of morphology
and physiology [3]. In Fig. 8, we compare the expression
of selected Ae. arabicum key DEGs (which differ be-
tween the dimorphic M" and NM seeds, selected based
on the prominent GO terms and genes with importance
to seed development and maturation) with the expres-
sion of their putative orthologs derived from published
transcriptomes of developing and mature A. thaliana
seeds [29-31]. During the A. thaliana seed maturation
and late maturation phases desiccation tolerance and
dormancy are established in parallel with drying result-
ing in the low-hydrated dispersed seed state (Fig. 8a)
[32, 33].

For the dry mature Ae. arabicum dimorphic seeds, we
found that the abundance of at least 119 (reference ap-
proach) and 113 (de novo approach) ribosomal protein
transcripts were 1.5- to 3-fold higher in M" seeds as
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compared to NM seeds (Fig. 8d, Additional file 3: Figure
S4a). This seems to be a general pattern as there were
no ribosomal protein genes with higher transcript abun-
dances in NM seeds. The abundance of the putatively
orthologous transcripts of these DEGs decreased during
A. thaliana seed maturation (Fig. 8b). A genome-wide
analysis of ribosomal protein gene expression during A.
thaliana and Brassica napus seed maturation revealed
the same temporal pattern [30, 34]. During maturation,
ribosomal activity is required for processes such as seed
storage compound accumulation which deceases upon
late maturation drying. In dry seeds, ribosomes are
mainly present in the monosome form [35]. Ribosomal
profiles change with polysomes being formed during
seed germination and subsequent seedling growth. Inter-
estingly, during these processes, differential expression
of ribosomal protein genes occurs and may affect ribo-
some composition and thereby the selection of trans-
lated mRNAs [31, 35-37]. 35-40% (reference approach)
and ~ 30% (de novo approach) of the ribosomal protein
genes in M" seeds show approximately 2-fold higher
transcript abundances, which suggests that they dry out
earlier during late maturation as compared to NM seeds.
Considering their overall decrease over time during seed
maturation (Fig. 8b), this would explain the higher abun-
dance of transcripts for ribosomal protein genes in dry
M" seeds. Alternatively, M" seeds could have a higher
translational activity with a higher ribosome per seed
content. In the latter case, we would also expect elevated
rRNA biosynthesis in the larger M" seeds as compared
to the smaller NM seeds. This is however not the case,
as evident from the rRNA amounts estimated by filtering
during the RNA-seq workflow (Figs. 2 and 3). We there-
fore conclude that the higher transcript abundance of a
large number of ribosomal protein genes in M" seeds
seems to be due to faster drying of M* seeds during late
maturation. This conclusion is also consistent with the
DEG patterns for histones and other genes as discussed
later. We propose that the earlier drying out may pre-
serve the mature M" seeds in a state with higher ribo-
some content and translational activity compared to the
mature NM seeds. The distinct states are consistent with
the distinct germination and dormancy behavior of the
dimorphic Ae. arabicum seeds [3].

The NM-low DEGs of the reference approach related
to nucleosome assembly include 21 Ae. arabicum his-
tone genes, including seven H4, five H3, four H2B, five
H2A, but no H1 homolog of A. thaliana histone vari-
ants. For the dry mature Ae. arabicum dimorphic seeds,
we found that the abundance of these histone transcripts
were 1.5- to 4-fold higher in M" seeds as compared to
NM seeds (Fig. 8d, Additional file 3: Figure S4b). The
NM-low DEGs of the de novo approach related to nu-
cleosome assembly include nine histone genes, including
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(See figure on previous page.)

Fig. 8 Key processes and differentially expressed genes (DEGs) differ between Ae. arabicum M™ and NM seeds. a Timing of key processes during
development and maturation of A. thaliana seeds. Dormancy and desiccation tolerance coincides with changes in water, abscisic acid (ABA) and
triacylglycerol (TAG) contents, seed weight, nuclear size and chromatin condensation, endosperm proportion and germinability; Data from [32, 41,
55]. b Selected Ae. arabicum DEG putative ortholog expression during A. thaliana seed development and maturation. Cumulative transcript
abundances for A. thaliana putative orthologs of Ae. arabicum 21 histone and 119 ribosomal protein genes (Additional file 3: Figure S4); individual
abundances for RNA polymerase Il large subunit (AtNRPBT), oleosin AtOLE2 (seed storage), heat shock factor AtHSFA9 (longevity), and AtNYET
(chlorophyll degradation); data from Arabidopsis eFP browser [74] and [29-31]. ¢ Expression of late embryogenesis abundant (LEA) proteins, seed
maturation master regulators (AtLECT, AtLEC2, AtABI3, AtFUS3) and WRINKLEDT (AtWRIT), a transcription factor associated with enhanced fatty acid
and TAG biosynthesis during A. thaliana seed maturation; data from Arabidopsis eFP browser and [29-31, 58]. d Expression of selected Ae.
arabicum DEGs for ribosomal proteins, histones, NRPBT (RNAseq) and histone acetyltransferase HACT (QRT-PCR) in M™ and NM seeds. Cumulative
RPKM values presented for 21 histone and 119 ribosomal protein genes of Ae. arabicum (Additional file 3: Figure S4). A * indicates a significant
difference between M* and NM seeds based on using a t-test (p < 0.05); n.s. means ‘not significant’. e Expression of RNA polymerase Il complex
and associated factors [50, 51] that mediate transcription including initiation, elongation and processing of transcripts in Ae. arabicum dry seed
morphs. Red text indicates factor identified as NM-high DEG with expression ratio (NM / M*) indicated. Note core NRPB1/2 transcript abundance
and most factors are several-fold higher in NM seeds. f Seed maturation master regulators expression (RNAseq, ABI3 also by gRT-PCR), oleosins,
NYET and HSFA9 in dry M™ and NM Ae. arabicum seeds. g Selected Ae. arabicum LEA expression in dry M™ and NM seeds (RNAseq and gRT-PCR).
The presented dehydrin is the putative ortholog of At4G39130. Error bars indicate mean + SEM for gRT-PCR experiments. For the plotted RPKM

of significance

values of single genes from the RNAseq data we used the result of the DEG detection pipeline (edgeR + NOISeq + DESeq2) as the indicator

four H3, two H2B, three H2A, with transcript abun-
dance of 1.5- to 4-fold higher in M" seeds as compared
to NM seeds. Like the ribosomal protein DEGs, the tran-
script abundance of the A. thaliana histone homologs
decreased during seed maturation (Fig. 8b). As with the
ribosomal protein DEGs, the approximately 2-fold
higher histone transcript abundance in M" seed could
be due to faster drying of M" seeds during late matur-
ation. However, as these DEGs represent only ca. 20% of
the histones they may serve specific roles which define
distinct processes in the dimorphic Ae. arabicum seeds.
Differential expression of histone variants is linked to
DNA replication and transcriptional regulation in re-
sponse to developmental or environmental cues [38—40].
Histones are major components of chromatin, the
protein-DNA complex involved in DNA packaging,
chromatin remodeling and heterochromatin formation.
A. thaliana seed maturation is characterized by nuclear
size reduction and increased chromatin condensation
(Fig. 8a) [41]. Chromatin condensation and heterochro-
matin formation involves the expression of specific his-
tone H2B, H2A, and H3 variants [42-44], some of
which we found to be Ae. arabicum DEGs with higher
transcript abundance in M compared to NM seeds
(Fig. 8d). In contrast to those histone transcripts which
are NM-low DEGs, genes which modify histones and fa-
cilitate transcription and RNA processing were found
among the NM-high DEGs. Several genes encoding his-
tone acyetyltransferases, deacetylases, and methyltrans-
ferases are among the NM-high DEGs, including for
example putative orthologs of A. thaliana HACI
(At1g79000), HACI2 (Atlgl6710), HDA19 (At4g38130),
EFS (Atlg77300) and a SET7/9 family protein
(At4g17080) (Fig. 8d, Additional file 3: Figure S4b), with
HAC1, HACI12 and EFS putative orthologs being

classified as transcriptional regulators by TAPscan (Add-
itional file 2: Table S3). The NM-high DEGs of the de
novo approach included HACI (Atlg79000), HACI2
(Atlgl6710) and EFS (Atlg77300), with HACI2 and
EFS putative orthologs being classified as transcriptional
regulators by TAPscan (Additional file 2: Table S4).
These histone modifications are involved in regulating
seed maturation and dormancy in response to environ-
mental cues [43]. EFS for example is known to inhibit
seed germination [45], HDA19 to repress seed matur-
ation genes [46], and HACI to affect seed production
and germination [47].

The absence of histone H2B mono-ubiquitination in
the A. thaliana hubl and hub2 mutants leads to altered
chromatin remodeling and reduced seed dormancy [43,
44, 48], but the HUBI/2 putative orthologs were not
among the Ae. arabicumm NM-high and NM-low DEGs.
HUBI/2 interacts with the FAcilitates Chromatin Tran-
scription (FACT) complex, consisting of the SSRP1 and
SPT16 proteins, for which mutants exhibit reduced seed
production [49, 50]. The FACT complex is a histone
chaperone that assists the progression of transcribing
RNA polymerase II (RNAPII) on chromatin templates
by destabilizing nucleosomes. The transcript abundance
of the RNAPII catalytic subunit NRPBI increases during
the late seed maturation of A. thaliana (Fig. 8b). Inter-
estingly, putative Ae. arabicum putative orthologs of
both RNAPII catalytic subunits were among the
NM-high DEGs of the reference approach, with NRPBI
approximately 10-fold and NRPB2 2-fold higher in NM
seeds (Fig. 8d, e). NRPBI and NRPB2 were also present
with similar expression values in the NM-high DEGs of
the de novo approach. Further to this, several key com-
ponents of the RNAPII elongation complex [50-52]
were also among the NM-high DEGs of both
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approaches, including transcripts of subunits of almost
all known factors known to be involved in regulating
RNAPII-mediated transcription initiation, elongation
and processing (Fig. 8e, Additional file 3: Figure S4b). In
contrast to this, there were no such factors among the
NM-low DEGs. Mutants for several of these key compo-
nents are known for their developmental phenotypes in-
cluding seed germination and dormancy traits [43, 48,
49, 52, 53]. Moreover, several other transcripts in down-
stream RNA processing were also among the NM-high
DEGs of both approaches. Examples for this include fac-
tors with RNA binding, splicing and helicase activity
(Additional file 3: Figure S4b). Among them is SMG7
(detected in both approaches) which is involved in
nonsense-mediated mRNA decay (NMD) and regulates
seed number in B. napus [54]. Taken together, these
findings support the view that the transcriptome of NM
seeds seems to be geared towards transcription which is
important for dormancy and persistence. In contrast to
this, seed maturation of M"* seeds lead to a dry seed
transcriptome in which translation is most dominant
and is also most important during germination.

Dimorphic Ae. arabicum seeds differ in their maturation
programmes

Seed-related processes were also amongst the BP terms
significantly over-represented in the DEGs (GO-bias
list), with the terms embryo development, fruit develop-
ment, seed development and seed dormancy common to
both the NM-high and NM-low DEG list (GO-presence
list) (GO terms for each list can be found in Add-
itional file 4: Table S8). However, the BP terms seed mat-
uration, seed germination and seedling development
were specific to the NM-high DEG GO-presence list.
Additionally, the more specific BP terms positive regula-
tion of seed maturation and negative regulation of seed
germination were also identified in the NM-high DEG
list. On the other hand, the term seed oil body biogen-
esis was only identified in the NM-down DEG
GO-presence list. Thus, it appears that the M™ and NM
seed morphs differ in their expression of genes which
determine seed traits during maturation. Seed matur-
ation is associated with abscisic acid (ABA) regulated
storage reserve accumulation such as oil (triacylglycerol,
TAG) which requires gene expression [33, 55-58]. To
achieve this fatty acid and TAG biosynthesis genes en-
coding proteins such as long chain acyl-CoA synthetase
(LACS) and acyl-CoA:diacylglycerol acyltransferase
(DGAT) are upregulated during A. thaliana seed matur-
ation [59]. The TAGs are then transferred and accumu-
lated into oil bodies which are covered on their surface
with oleosins. Oleosins are the most abundant proteins
found in the seed proteomes of oilseeds [57, 58]. Oleosin
gene expression is also upregulated during A. thaliana
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seed maturation (Fig. 8b), but transcript abundances
subsequently decline at the end of late maturation [57].
Their roles include to control oil body dynamics, size,
and total oil accumulation during seed maturation.
Interestingly, while putative orthologs of A. thaliana
LACS7, DGATI, a fatty acid alcohol dehydrogenase and
a lipid transporter are among the NM-high DEGs of the
reference approach (Additional file 3: Figure S4b), two
oleosin homologs, OLE2 and OLE3, are among the
NM-low DEGs (Fig. 8f). In the de novo approach, puta-
tive orthologs of LACS7 and OLE2 are present among
the NM-high and NM-low DEGs respectively, while the
DGAT1 putative ortholog was not detected as DEG and
no OLE3 homolog could be identified. That oleosin and
TAG biosynthesis genes are in distinct DEG groups may
either be due to distinct regulation during late seed mat-
uration with TAG biosynthesis still up while oleosin ex-
pression is declining, or due to more profound
differences between the dimorphic seeds in their matur-
ation processes.

Four master regulators of seed maturation have been
identified in A. thaliana: ABSCISIC ACID INSENSI-
TIVE3 (ABI3, At3g24650), FUSCA3 (FUS3, At3g26790),
LEAFY COTYLEDON?2 (LEC2, At1g28300), and LEAFY
COTYLEDONI1 (LECI, At1g21970) [33, 59, 60]. Whilst
LECI encodes the HAB3 subunit of a CCVAAT-box
binding TF, ABI3, FUS3, and LEC2 are TFs with a B3
DNA binding domain. Corresponding TF classification
was detected in the Ae. arabicum putative orthologs
using TAPscan (Additional file 2: Table S3). In the de
novo approach, orthologs of the ABI3/VP1 TFs ABI3
and FUS3 could be identified, with only FUS3 being
identified by TAPscan, probably because of the shorter
length of the transcriptome based protein (577aa) vs. the
reference based one (701aa) (Additional file 2: Table S4).
These four master regulators control seed maturation
including fatty acid and TAG biosynthesis, as well as
oleosin expression and oil body formation. Enhancement
of fatty acid and TAG biosynthesis by these master regu-
lators is achieved, at least in part, by interaction of the
WRINKLEDI (WRI1, At3g54320) TF of the AP2/EREBP
family [56, 58—61]. The temporal transcript patterns of
these genes during A. thaliana seed maturation is
depicted in Fig. 8c. Consistent with the Ae. arabicum
fatty acid and TAG biosynthesis genes being among the
NM-high DEGs, the putative Ae. arabicum ABI3 ortho-
log is among the NM-high DEGs in the reference ap-
proach, with a putative WRII ortholog also tending
towards higher expression in NM seed (Fig. 8f). It
should be noted that the WRII transcript
(TR24803|c0_gl_il) is not represented by a gene model
in the current genome version, demonstrating that occa-
sionally the de novo transcriptome approach might out-
compete the genomic approach. However, FUS3 and
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LECI are expressed roughly equal in dry M and NM
seeds (Fig. 8f). Also, if earlier drying of M" seeds is the
only difference compared to NM seeds, WRII and ABI3
should be among the NM-low DEGs because their tran-
script abundances decline in A. thaliana during late
maturation (Fig. 8c). It therefore seems that M* seeds
not only dry out earlier, but also mature faster as com-
pared to NM seeds. That M* seed maturation is faster is
further supported by the finding that the Ae. arabicum
NM-low DEG list of the reference approach contains the
putative  orthologs of NON-YELLOWINGI/STAY-
GREEN1 (NYEI/SGRI, At4g22920), HEAT SHOCK
TRANSCRIPTION FACTORY (HSFA9, At5g54070) and
of several Late Embryogenesis Abundant (LEA) protein
genes which are upregulated during A. thaliana seed
maturation (Fig. 8b, ¢) and are among the NM-low
DEGs (Fig. 8f, g). The same findings were made using
the de novo approach except that the HSFA9 was not in
the NM-low DEG list, but only trended towards lower
expression in NM seeds. Efficient chlorophyll degrad-
ation during late seed maturation, in part mediated by
the NYE1 protein, is critical for seed quality, longevity
(storability), dormancy and germination properties [62].
During seed maturation, ABI3, through HSFA9, induces
the accumulation of a subset of heat shock proteins
(HSP) that contribute to seed longevity by protecting
protein molecules and structures in the dry state [33,
63]. Among the Ae. arabicum DEGs, there are indeed
HSF9 and two other HSFs and several HSPs, but differ-
ent HSPs are expressed in either a NM-low or a
NM-high specific manner (Fig. 8f, Additional file 3: Fig-
ure S4b). A more distinctive pattern was obtained for
the LEA proteins which were primarily found among the
Ae. arabicum NM-low DEGs (Fig. 8g), supporting the
view that M" seeds may mature faster and that M" and
NM seeds may differ in their longevity.

Accumulation of LEA proteins is a landmark of seed
maturation and several accumulate only during late mat-
uration drying [33]. The 51 LEA protein encoding genes
identified in A. thaliana cluster into 9 groups including
LEA_1 to LEA_5, Seed Maturation Proteins (SMP) and
dehydrins [64]. In the reference approach we found 13
putative LEA orthologs from all these groups in the Ae.
arabicum NM-low and only two in the NM-high DEGs
list (Fig. 8f, Additional file 3: Figure S4b). In the de novo
approach, six LEA homologs were amongst the NM-low
and only one in the NM-high DEGs list. The cumulative
LEA transcript abundances were higher in M" compared
to NM seeds, and the known most abundant LEA genes
followed this pattern (Fig. 8f). Among them are the pu-
tative orthologs of A. thaliana LEA_1 LEA76
(At5g06760), LEA_4 (At3gl5670), LEA_5 EM6
(At2g40170), the SMP RAB28, and dehydrins which are
also most abundant in mature A. thaliana seeds [65].

Page 14 of 19

The A. thaliana mutant em6-1 is altered in seed hydra-
tion and desiccation tolerance during seed maturation
[66]. LEA proteins are highly hydrophilic and intrinsic-
ally unstructured, and act by protecting proteins and en-
zyme activities in the desiccated state which, together
with HSPs, may lead to maintaining seed longevity dur-
ing dry storage [33, 63, 64]. In addition to their higher
LEA transcript abundance (Fig. 8g), in both approaches,
M" seeds also have higher transcript abundances of en-
zymes involved in detoxifying Reactive Oxygen Species
(ROS) such as superoxide dismutase (SOD) and glu-
tathione-S-transferase (GST) (Additional file 3: Figure
S4b). ROS are produced during a number of seed related
processes: with potentially deleterious effects during
seed maturation, desiccation, ageing and germination;
but also acting by controlling dormancy and germination
[63, 67, 68]. Thus, the two seed morphs may differ in
mechanisms by which seed longevity and dormancy are
established and regulated. Whilst the GO term ‘hormone
metabolic process” was amongst 137 BP GO terms sig-
nificantly under-represented in the reference approach
DEGs (GO-bias list), the putative orthologs of genes in-
volved in ABA and gibberellin signaling (XERICO),
ethylene biosynthesis (S-adenosylmethionine synthetase,
SAMS3) and signaling (EIN3-binding F-box protein,
EBFI), and auxin and brassinosteroid signaling (Auxin
Response Factor 2, ARF2) are amongst the DEGs (Add-
itional file 3: Figure S4b), with all but XERICO also being
among the de novo approach DEGs. The presence of
these genes is consistent with previously observed differ-
ences in seed development and dormancy (described fur-
ther in Additional file 3: Figure S5).

Conclusions

RNA-seq analysis of Ae. arabicuimm M* and NM dry seed
transcriptomes using either a de novo assembled tran-
scriptome approach or reference genome guided ap-
proach showed only a modest overlap in the DEGs
identified, but much greater consistency in the GO
terms identified. Thus, using global functional annota-
tions such as GO terms, the de novo assembled tran-
scriptome approach would result in similar conclusions
being drawn from the data compared to the reference
genome approach. Studying seeds, which are a well char-
acterized biological system, allowed us to identify many
well studied genes and put them into context using both
a de novo assembled transcriptome approach and a ref-
erence genome guided approach. This highlights the po-
tential usefulness of de novo transcriptome assembly in
the study of species that do not have a reference gen-
ome. With the decreasing costs of RNA-seq one should
aim for using at least three replicates, potentially bridg-
ing the gap between a de novo assembly and reference
genome guided approach even further. However, our
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results also highlight the limitations of de novo tran-
scriptome analysis. Namely, if the goal is to pinpoint the
DEGs underlying a trait, then reference based assemblies
perform better.

Major differences in the seed morph transcriptomes
were highlighted by GO analysis. In particular, genes
associated with translation and histone assembly were
more abundant in the less dormant M® dry seed,
whereas genes associated with transcription and
mRNA processing were more abundant in the more
dormant NM dry seed. By putting the M" and NM
dry seed transcriptomes in the context of transcrip-
tomes from developing and maturing A. thaliana
seeds, it was indicated that M" seeds may both desic-
cate earlier (M* has higher histone and ribosomal
protein expression) and mature faster than NM seeds
(compared to NM, M" seed have higher expression of
genes that increase with maturation, such as homo-
logs of LEAs, NYEI and HSFAY, and lower expression
of genes that decrease during maturation such as
ABI3 and WRII). The differences identified align with
the known development and germination behaviour of
the two seed morphs, but hint at other differences
such as in longevity mechanisms (LEAs, ROS detoxi-
fication). However, the difference in longevity of M"
and NM seed are so far unknown. It would also be
valuable to study how the differences in dry seed lead
to differences in transcription and germination physi-
ology in the imbibed dimorphic seeds.

Methods

Plant material and RNA extraction

Aethionema arabicum (L.) A.DC. accession 0000309
(collected from Turkey and obtained from Kew’s Millen-
nium Seed Bank, UK) and ES1020 (collected from
Turkey and obtained from Eric Schranz, Wageningen)
[3] plants were grown on soil under long-day conditions
(16 h light/20°C and 8 h dark/18°C). Freshly matured
seeds from dehiscent (harboring M* seeds) and indehis-
cent (harboring NM seeds) fruits derived from several
plants were harvested. Two replicates of 20 mg fresh dry
M* and NM seeds, resulting in four samples in total,
were pulverized in liquid N, using a mortar and pestle.
RNA extraction was performed according to [69]. RNA
integrity was checked by gel electrophoresis (Add-
itional file 3: Figure S6) followed by quantity and purity
determination with a Nanodrop spectrophotometer
ND-1000 (Peqlab) showing sufficiently low levels of deg-
radation for RNAseq and OD ratios of at least 2 (260/
280 nm) and 1.8 (260/230 nm).

RNA-seq library preparation and sequencing
RNA libraries were prepared following instructions of
the TruSeq™ RNA library prep kit (Illumina) using
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oligo-dT-based mRNA selection. Libraries were se-
quenced using a HiSeq-2000 sequencer (Illumina) gener-
ating 100 bp single-end reads.

RNA-seq data trimming and filtering

The raw RNA sequences were processed with trimmomatic
[15] (ILLUMINACLIP:adaptors:2:20:8,  SLIDINGWIN-
DOW:4:15, TRAILING:15, HEADCROP:12, MIN-
LENGTH:20) to remove poor quality stretches and
adaptors. Poly-A and Poly-T tails were removed using Prin-
Seq [16]. To reduce the complexity of the dataset prior to
mapping our reads to the genome/transcriptome rRNA,
mitochondrial and chloroplast sequences were filtered.
Since Ae. arabicum sequences for rRNA, mitochondria and
chloroplast were not available in public repositories, se-
quences from closely related and well annotated A. thali-
ana were used. GSNAP version 2016-11-07 [17] with
default settings was used to map the reads against the
chloroplast (GenBank: AP000423.1), mitochondria (Gen-
Bank: Y08501.2) and rRNA (GenBank:X52320.1) sequences
from A. thaliana.

De novo transcriptome assembly

Prior to the de novo transcriptome assembly, redundant
duplicate reads, i.e. reads with the exact same length and
sequence, were removed since they might constitute PCR
artefacts. The trimmed, filtered and de-duplicated reads
were assembled into a transcriptome using Trinity [14] with
default settings. For each isoform group, the longest tran-
script was chosen as representative and its longest open
reading frame was translated into protein using a custom
python script.

Evaluation of assembly and comparison to genome
Genome scaffolds and accompanying GFF file of Ae.
arabicum genome version 2.5 [5] was obtained from
CoGe (genome 1d23428, https://genomevolution.org/
coge/OrganismView.pl?gid=23428). The CDS of each
gene was translated into proteins using the R package
biostrings version 2.32.0. The completeness of the
assembled transcriptome and the available genome of
Ae. arabicum was evaluated using the Benchmarking
Universal Single-Copy Orthologs tool BUSCO v3.0.1
[23] and their accompanying dataset of 1440 plant
orthologs (embryophyta odb9). To investigate how well
the assembled transcripts represented and paired up
with the existing gene models from Ae. arabicum gen-
ome version 2.5, reciprocal BLAST (version 2.2.29+,
[70]) searches were carried out. Reciprocal best hits
(RBH) with a minimum query and subject coverage of
50% each were considered as a match and selected for
comparison.
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Read mapping and feature counting

Processed reads were mapped against the assembled
transcriptome and the Ae. arabicum genome version
2.5 using GSNAP with default settings. Reads that
mapped to multiple positions in the genome were
discarded and only uniquely mapped reads were kept.
Mapped reads per feature were counted using
HTSeq-count (version 0.6.1 [25]) with the options “—s
no —t gene —m union”. For the transcriptome a cus-
tom GFF was generated with one feature for each
transcript, while for the gene models the GFF men-
tioned above was used. The average coverage was cal-
culated using the genome reference. The total amount
of mapped reads (all libraries) for each gene was
multiplied by the read length (83) and divided by
gene length (Additional file 2: Table S1).

Differential gene expression analysis pipeline
Differentially expressed genes were identified using R
[71] and the Bioconductor packages DESeq2 version
1.14.1 [19], edgeR version 3.16.5 [18] and NOISeq
version 3.16.5 [20]. It is recommended to discard fea-
tures with low counts for edgeR DEG analysis, so
only genes with at least 10 read counts when sum-
ming up all the sample counts were selected for
edgeR. Default parameters were used for DESeq2,
edgeR (classic approach, “exactTest”) and NOISeq
with normalization method relative log expression for
DESeq2, trimmed mean of M values for edgeR and
RPKM for NOISeq. DESeq2 and edgeR make use of
Benjamini-Hochberg [72] adjusted p-value (q-value)
cut offs which were set to 0.001. For NOISeq, which
uses probabilities of differential expression, a cutoff
value of >0.9 was used. This is higher than the rec-
ommended 0.8 but has been shown to overlap well
with experimental array data, representing a conserva-
tive (specific) selection of DEGs [28]. The overlap
(strict consensus) of the three packages’ outputs was
used for further analysis.

Principal component analysis of expression values

To compare the feature counts of the two approaches
(de novo transcriptome and reference genome), PCAs
were carried out using the built in R package prcomp.
RPKM normalized expression values of the 6745 paired
de novo transcripts and reference genes were calculated
and used as input, as well as the 561 DEGs identified by
both approaches.

Annotation and GO-bias

The transcripts of the genome and assembled tran-
scriptome were blasted against the nr database of
NCBI (nucleotide release 13-05-2015), UniProtKB/
Swiss-Prot (protein release 10-2015) and TAIR 10
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(proteins release 20,110,103). GO-terms were retrieved
using BLAST2GO version 2.5 [21] in combination
with the NCBI nr blast results. GO-bias, ie. over/
under-representation of GO-terms in defined sets of genes
as compared to all genes, was calculated as in [73] using
Fisher’s exact test with FDR correction [72]. Wordle
(www.wordle.net) was used to build word clouds, with
word height proportional to —log10(q-value), significantly
over-represented GO-terms colored green (q<= 0.0001
dark green, q >0.0001 light green) and under-represented
GO-terms colored red (q< = 0.0001 dark red, q >0.0001
light red). Transcripts of the genome and assembled
transcriptome were screened for TAPs using the
TAPscan pipeline [26].

qRT-PCR analysis

For technical as well as biological validation of RNA-seq
derived gene expression data, RNA was extracted from
separate batches of dry fresh mature M* and NM seeds
(five biological replicates each) as described above,
and quantitative RT-PCR analysis of selected candi-
date genes was performed as previously described
[69]. As normalization factor the geometric mean of three
reference genes, Ae. arabicum putative orthologs of
ACTIN2 (ACT2, AA26G00546), POLYUBIQUITINIO
(UBQ10, AA6G00219) and ANAPHASE-PROMOTING
COMPLEX2 (APC2, AA61G00327) was used, which was
found to show comparable stable expression in M* and
NM seeds (Additional file 3: Figure S7). Primers for
qRT-PCR are listed in (Additional file 2: Table S9).

Additional files

N
Additional file 1: de novo transcriptome assembly. The 34,784 longest
gene sequences from each Trinity gene cluster. (FA 28331 kb)

Additional file 2: Gene coverage calculation (Table S1), reciprocal best
BLAST paring (Table S2), full annotation and RPKM tables for the
genome method (Table S3) and transcriptome method (Table S4).
Comparison of abundance of transcripts (genome method vs.
transcriptome method) belonging to: the 5584 GO terms shared
between both methods (Table S5); or the 1663 overlapping GO terms of
the DEG sets (Table S6). Table S7 shows a summary of significantly
under- and over-represented GO terms associated with DEG lists. Table
S9 contains a list of primers used for gRT-PCR. (XLSX 10033 kb)

Additional file 3: Figure S1. PCA of RPKM values for 6745 paired
transcripts (identified in both genome and transcriptome methods) by
method and morphotype. Figure S2. RPKM levels (reference genome
approach) of the overlapping DEGs as well as of the non-overlapping
DEGs called by NOISeq, edgeR and DESeq2. Figure S3. Expression of se-
lected DEGs measured by qRT-PCR. Figure S4. showing abundances of
Ae. arabicum ribonucleoprotein transcripts (a) and transcripts from
selected gene categories (b) and Figure S5. showing the pattern of
expression of select hormonal signaling related genes during A. thaliana
seed maturation. Assessment of RNA integrity and purity (Figure S6.)
and validation of reference genes used for gRT-PCR normalization
(Figure S7.) (DOCX 2738 kb)

Additional file 4: Table S8. Excel document containing GO term
analysis output for BP, CC and MF classes and all DEG lists. (XLSX 347 kb)



http://www.wordle.net/
https://doi.org/10.1186/s12864-019-5452-4
https://doi.org/10.1186/s12864-019-5452-4
https://doi.org/10.1186/s12864-019-5452-4
https://doi.org/10.1186/s12864-019-5452-4

Wilhelmsson et al. BMC Genomics (2019) 20:95

Abbreviations

ABA: Abscisic acid; ABI3: ABSCISIC ACID INSENSITIVE3; BP: Biological Process;
BUSCO: Benchmarking Universal Single-Copy Orthologs; CC: Cellular
Component; CDS: Coding sequence; DEGs: Differentially expressed genes;

DEH: Dehiscent; DGAT: Acyl-CoAdiacylglycerol acyltransferase; FACT: FAcilitates
Chromatin Transcription; FDR: False Discovery Rate; GFF: General feature format;
GO: Gene ontology; HSFA9: HEAT SHOCK TRANSCRIPTION FACTORY; HSP: Heat
shock proteins; IND: Indehiscent; LACS: Long chain acyl-CoA synthetase;

LEA: Late Embryogenesis Abundant; LECT: LEAFY COTYLEDONT; LEC2: LEAFY
COTYLEDON2; M*: Mucilaginous; MF: Molecular function; NM: Non-
mucilaginous; NYE1/SGRT: NON-YELLOWING1/STAY-GREENT1; PCA: Principal
component analysis; RNAPI: RNA Polymerase II; RNA-seq: RNA-sequencing;
ROS: Reactive Oxygen Species; RPKM: Reads Per Kilobase per Million mapped
reads; rRNA: ribosomal RNA; SMP: Seed Maturation Proteins; TAG: Triacylglycerol;
TAPs: Transcription Associated Proteins; WRIT: WRINKLED?1

Acknowledgements
We thank the members of the SeedAdapt consortium for useful discussions
on the biology of Ae. arabicum.

Funding

This work is part of the ERA-CAPS SeedAdapt consortium project (www.seedadap-
teu) and was supported by the Deutsche Forschungsgemeinschaft (grant no. RE
1697/8-1 to SAR); by the Netherlands Organization for Scientific Research (grant
no. 849.13.004 to MES); by the Biotechnology and Biological Sciences Research
Council (grant nos. BB/M00192X/1 and BB/M000583/1 to GL-M); and by a Natural
Environment Research Council (NERC) Doctoral Training Partnership studentship
to WA. (grant no. NE/L002485/1).

Availability of data and materials

Single-ended lllumina raw reads from this study were uploaded to the NCBI
Sequence Read Archive (SRA) and can be found under BioProject
PRINA413671 (https.//www.ncbi.nlm.nih.gov/bioproject/
?term=PRINA413671). The following accession numbers correspond to each
one of the samples: SRR6157646 (Indehiscent: NM seed rep 1, NM1),
SRR6157647 (Indehiscent: NM seed rep 2, NM2), SRR6157648 (dehiscent: M*
seed rep 1, M* 1), SRR6157649 (dehiscent: M* seed rep 2, M™ 2).

Authors’ contributions

KG, MES, JAH and SK prepared Ae. arabicum material and RNA. KG and SK
performed gRT-PCR. JCP and PPE synthesized sequencing libraries. JOC, PKIW,
NF-P, GL-M, SAR, WA and KG prepared figures and wrote the manuscript. KG
and WA provided plant and seed images, mass and moisture content data.
PKIW, NF-P, KKU, KB, KG and SAR assembled RNA-seq data and analyzed data.
GL-M and JOC provided biological interpretation of RNA-seq analysis. All au-
thors read and approved the manuscript.

Ethics approval and consent to participate

The source of the Ae. arabicum seeds were accessions 0000309 (obtained
from Kew's Millennium Seed Bank) and ES1020 (obtained from Eric Schranz,
Wageningen) [3]. This study complies with institutional, national, and
international guidelines.

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

'Plant Cell Biology, Faculty of Biology, University of Marburg, 35043 Marburg,
Germany. “School of Biological Sciences, Royal Holloway University of
London, Egham, Surrey TW20 OEX, UK. Biosystematics Group, Wageningen
University, Wageningen 6708 PB, The Netherlands. “Department of
Horticulture, Michigan State University, East Lansing, MI 48864, USA. °Division
of Biological Sciences, University of Missouri, Columbia, MO 65211, USA.
SLaboratory of Growth Regulators, Centre of the Region Hana for

Page 17 of 19

Biotechnological and Agricultural Research, Palacky University and Institute of
Experimental Botany, Academy of Sciences of the Czech Republic, 78371
Olomouc, Czech Republic. “BIOSS Centre for Biological Signalling Studies,
University of Freiburg, Freiburg, Germany. 8Present Address: Max Planck
Institute for Evolutionary Biology, August-Thienemann-Stral3e 2, 24306 Ploen,
Germany.

Received: 16 May 2018 Accepted: 14 January 2019
Published online: 30 January 2019

References

1. Brautigam A, Gowik U. What can next generation sequencing do for you?
Next generation sequencing as a valuable tool in plant research. Plant Biol
(Stuttg). 2010;12(6):831-41.

2. Mohammadin S, Peterse K, van de Kerke SJ, Chatrou LW, Donmez AA,
Mummenhoff K, Pires JC, Edger PP, Al-Shehbaz IA, Schranz ME. Anatolian
origins and diversification of Aethionema, the sister lineage of the core
Brassicaceae. Am J Bot. 2017;104(7):1042-54.

3. Lenser T, Graeber K, Cevik OS, Adiguzel N, Donmez AA, Grosche C,
Kettermann M, Mayland-Quellhorst S, Merai Z, Mohammadin S, et al.
Developmental control and plasticity of fruit and seed dimorphism in
Aethionema arabicum. Plant Physiol. 2016;172(3):1691-707.

4. Arshad W, Sperber K, Steinbrecher T, Nichols B, Jansen VAA, Leubner-Metzger
G, Mummenhoff K. Dispersal biophysics and adaptive significance of dimorphic
diaspores in the annual Aethionema arabicum (Brassicaceae). New Phytol.
2019;221(3):1434-46. https://doi.org/10.1111/nph.15490. Epub 2018 Oct 25.

5. Haudry A, Platts AE, Vello E, Hoen DR, Leclercg M, Williamson RJ, Forczek E,
Joly-Lopez Z, Steffen JG, Hazzouri KM, et al. An atlas of over 90,000
conserved noncoding sequences provides insight into crucifer regulatory
regions. Nat Genet. 2013;45(8):891-U228.

6. tHoen PA, Ariyurek Y, Thygesen HH, Vreugdenhil E, Vossen RH, de Menezes RX,
Boer JM, van Ommen GJ, den Dunnen JT. Deep sequencing-based expression
analysis shows major advances in robustness, resolution and inter-lab portability
over five microarray platforms. Nucleic Acids Res. 2008;36(21)e141.

7. Wilhelm BT, Marguerat S, Watt S, Schubert F, Wood V, Goodhead |, Penkett
CJ, Rogers J, Bahler J. Dynamic repertoire of a eukaryotic transcriptome
surveyed at single-nucleotide resolution. Nature. 2008;453(7199):1239-43.

8. Gibbons JG, Janson EM, Hittinger CT, Johnston M, Abbot P, Rokas A.
Benchmarking next-generation transcriptome sequencing for functional and
evolutionary genomics. Mol Biol Evol. 2009,26(12):2731-44.

9. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson
A, Szczesniak MW, Gaffney DJ, Elo LL, Zhang X, et al. A survey of best
practices for RNA-seq data analysis. Genome Biol. 2016;17(1):13.

10.  Gongora-Castillo E, Buell CR. Bioinformatics challenges in de novo
transcriptome assembly using short read sequences in the absence of a
reference genome sequence. Nat Prod Rep. 2013;30(4):490-500.

11. Li B, Fillmore N, Bai Y, Collins M, Thomson JA, Stewart R, Dewey CN.
Evaluation of de novo transcriptome assemblies from RNA-Seq data.
Genome Biol. 2014;15(12):553.

12. Surget-Groba Y, Montoya-Burgos JI. Optimization of de novo transcriptome
assembly from next-generation sequencing data. Genome Res. 2010,20(10):1432-40.

13. Zhao QY, Wang Y, Kong YM, Luo D, Li X, Hao P. Optimizing de novo
transcriptome assembly from short-read RNA-Seq data: a comparative study.
BMC Bioinformatics. 2011;12(Suppl 14):52.

14.  Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit |, Adiconis X,
Fan L, Raychowdhury R, Zeng Q, et al. Full-length transcriptome assembly from
RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644-52.

15. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for lllumina
sequence data. Bioinformatics. 2014;30(15):2114-20.

16.  Schmieder R, Edwards R. Quality control and preprocessing of
metagenomic datasets. Bioinformatics. 2011;27(6):863-4.

17. Wu TD, Nacu S. Fast and SNP-tolerant detection of complex variants and
splicing in short reads. Bioinformatics. 2010;26(7):873-81.

18. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data.
Bioinformatics. 2010,26(1):139-40.

19.  Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.

20. Tarazona S, Garcia-Alcalde F, Dopazo J, Ferrer A, Conesa A. Differential
expression in RNA-seq: a matter of depth. Genome Res. 2011;21(12):2213-23.


http://www.seedadapt.eu
http://www.seedadapt.eu
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA413671
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA413671
https://doi.org/10.1111/nph.15490

Wilhelmsson et al. BMC Genomics

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

(2019) 20:95

Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a
universal tool for annotation, visualization and analysis in functional
genomics research. Bioinformatics. 2005;21(18):3674-6.

Liu Y, Zhou J, White KP. RNA-seq differential expression studies: more
sequence or more replication? Bioinformatics. 2014;30(3):301-4.

Simao FA, Waterhouse RM, loannidis P, Kriventseva EV, Zdobnov EM.
BUSCO: assessing genome assembly and annotation completeness with
single-copy orthologs. Bioinformatics. 2015;31(19):3210-2.

Berardini TZ, Reiser L, Li D, Mezheritsky Y, Muller R, Strait E, Huala E. The
Arabidopsis information resource: making and mining the “gold standard”
annotated reference plant genome. Genesis. 2015;53(8):474-85.

Anders S, Pyl PT, Huber W. HTSeg—a Python framework to work with high-
throughput sequencing data. Bioinformatics. 2015;31(2):166-9.

Wilhelmsson PKI, Muhlich C, Ullrich KK, Rensing SA. Comprehensive genome-
wide classification reveals that many plant-specific transcription factors evolved
in streptophyte algae. Genome Biol Evol. 2017,9(12):3384-97.

Zhang ZH, Jhaveri DJ, Marshall VM, Bauer DC, Edson J, Narayanan RK,
Robinson GJ, Lundberg AE, Bartlett PF, Wray NR, et al. A comparative study
of techniques for differential expression analysis on RNA-Seq data. PLoS
One. 2014,9(8):€103207.

Perroud PF, Haas FB, Hiss M, Ullrich KK, Alboresi A, Amirebrahimi M, Barry K,
Bassi R, Bonhomme S, Chen H, et al. The Physcomitrella patens gene atlas
project: large scale RNA-seq based expression data. Plant J. 2018;95:168.

Le BH, Cheng C, Bui AQ, Wagmaister JA, Henry KF, Pelletier J, Kwong L,
Belmonte M, Kirkbride R, Horvath S, et al. Global analysis of gene activity
during Arabidopsis seed development and identification of seed-specific
transcription factors. Proc Natl Acad Sci U S A. 2010;107(18):8063-70.

Xiang D, Venglat P, Tibiche C, Yang H, Risseeuw E, Cao Y, Babic V, Cloutier
M, Keller W, Wang E, et al. Genome-wide analysis reveals gene expression
and metabolic network dynamics during embryo development in
Arabidopsis. Plant Physiol. 2011;156(1):346-56.

Nakabayashi K, Okamoto M, Koshiba T, Kamiya Y, Nambara E. Genome-wide
profiling of stored mRNA in Arabidopsis thaliana seed germination:
epigenetic and genetic regulation of transcription in seed. Plant J. 2005;
41(5):697-7009.

Graeber K, Nakabayashi K, Leubner-Metzger G. Seed development and
germination. In: Thomas B, Murray BG, Murphy DJ, editors. Encylopedia of
applied plant sciences, vol. 1. Waltham: Academic Press; 2017. p. 483-9.
Leprince O, Pellizzaro A, Berriri S, Buitink J. Late seed maturation: drying
without dying. J Exp Bot. 2017,68(4):827-41.

Fei H, Tsang E, Cutler AJ. Gene expression during seed maturation in
Brassica napus in relation to the induction of secondary dormancy.
Genomics. 2007;89(3):419-28.

Bai B, Peviani A, van der Horst S, Gamm M, Snel B, Bentsink L, Hanson J.
Extensive translational regulation during seed germination revealed by
polysomal profiling. New Phytol. 2017;214(1):233-44.

Galland M, Rajjou L. Regulation of mRNA translation controls seed
germination and is critical for seedling vigor. Front Plant Sci. 2015,6:284.
Tatematsu K, Kamiya Y, Nambara E. Co-regulation of ribosomal protein genes
as an indicator of growth status: comparative transcriptome analysis on axillary
shoots and seeds in Arabidopsis. Plant Signal Behav. 2008;3(7):450-2.

Xiao J, Jin R, Wagner D. Developmental transitions: integrating
environmental cues with hormonal signaling in the chromatin landscape in
plants. Genome Biol. 2017;18:88.

Bonisch C, Hake SB. Histone H2A variants in nucleosomes and chromatin:
more or less stable? Nucleic Acids Res. 2012:40(21):10719-41.

Boisnard-Lorig C, Colon-Carmona A, Bauch M, Hodge S, Doerner P, Bancharel
E, Dumas C, Haseloff J, Berger F. Dynamic analyses of the expression of the
HISTONE:YFP fusion protein in arabidopsis show that syncytial endosperm is
divided in mitotic domains. Plant Cell. 2001;13(3):495-509.

van Zanten M, Koini MA, Geyer R, Liu Y, Brambilla V, Bartels D, Koornneef M,
Fransz P, Soppe WJ. Seed maturation in Arabidopsis thaliana is
characterized by nuclear size reduction and increased chromatin
condensation. Proc Natl Acad Sci U S A. 2011;108(50):20219-24.
Yelagandula R, Stroud H, Holec S, Zhou K, Feng S, Zhong X, Muthurajan UM,
Nie X, Kawashima T, Groth M, et al. The histone variant H2AW defines
heterochromatin and promotes chromatin condensation in Arabidopsis.
Cell. 2014;158(1):98-109.

Footitt S, Muller K, Kermode AR, Finch-Savage WE. Seed dormancy cycling
in Arabidopsis: chromatin remodelling and regulation of DOGT in response
to seasonal environmental signals. Plant J. 2015;81(3):413-25.

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

56.

57.

58.

59.

60.

62.

63.

64.

65.

66.

67.

Page 18 of 19

Liu Y, Koornneef M, Soppe WJJ. The absence of histone H2B
monoubiquitination in the Arabidopsis hubT (rod4) mutant reveals a role for
chromatin remodeling in seed dormancy. Plant Cell. 2007;19:433-44.

Lee N, Kang H, Lee D, Choi G. A histone methyltransferase inhibits seed
germination by increasing PIFT mRNA expression in imbibed seeds. Plant J.
2014;78(2):282-93.

Zhou Y, Tan B, Luo M, Li Y, Liu C, Chen C, Yu CW, Yang S, Dong S, Ruan J,
et al. HISTONE DEACETYLASE19 interacts with HSL1 and participates in the
repression of seed maturation genes in Arabidopsis seedlings. Plant Cell.
2013;25(1):134-48.

Heisel TJ, Li CY, Grey KM, Gibson SI. Mutations in HISTONE
ACETYLTRANSFERASET affect sugar response and gene expression in
Arabidopsis. Front Plant Sci. 2013;4:245.

Graeber K, Nakabayashi K, Miatton E, Leubner-Metzger G, Soppe W.J. Molecular
mechanisms of seed dormancy. Plant Cell Environ. 2012,35:1769-86.

Lolas IB, Himanen K, Gronlund JT, Lynggaard C, Houben A, Melzer M, Van
Lijsebettens M, Grasser KD. The transcript elongation factor FACT affects
Arabidopsis vegetative and reproductive development and genetically
interacts with HUB1/2. Plant J. 2010,61(4):686-97.

Antosz W, Pfab A, Ehrnsberger HF, Holzinger P, Kollen K, Mortensen SA,
Bruckmann A, Schubert T, Langst G, Griesenbeck J, et al. The composition of
the Arabidopsis RNA polymerase Il transcript elongation complex reveals
the interplay between elongation and mRNA processing factors. Plant Cell.
2017;29(4):854-70.

Wang Y, Ma H. Step-wise and lineage-specific diversification of plant RNA
polymerase genes and origin of the largest plant-specific subunits. New
Phytol. 2015;207(4):1198-212.

Eom H, Park SJ, Kim MK, Kim H, Kang H, Lee I. TAF15b, involved in the
autonomous pathway for flowering, represses transcription of FLOWERING
LOCUS C. Plant J. 2018,93(1):79-91.

Liu Y, Geyer R, van Zanten M, Carles A, Li Y, Horold A, van Nocker S, Soppe
WJ. Identification of the Arabidopsis REDUCED DORMANCY 2 gene
uncovers a role for the polymerase associated factor 1 complex in seed
dormancy. PLoS One. 2011;6(7):e22241.

Li S, Chen L, Zhang L, Li X, Liu Y, Wu Z, Dong F, Wan L, Liu K, Hong D, et al.
BnaC9.SMG7b functions as a positive regulator of the number of seeds per
silique in Brassica napus by regulating the formation of functional female
gametophytes. Plant Physiol. 2015;169(4):2744-60.

Baud S, Boutin J-P, Miquel M, Lepiniec L, Rochat C. An integrated overview
of seed development in Arabidopsis thaliana ecotype WS. Plant Physiol
Biochem. 2002;40:151-60.

Baud S, Wuilleme S, To A, Rochat C, Lepiniec L. Role of WRINKLED1 in the
transcriptional regulation of glycolytic and fatty acid biosynthetic genes in
Arabidopsis. Plant J. 2009,60(6):933-47.

Miquel M, Trigui G, d'Andrea S, Kelemen Z, Baud S, Berger A, Deruyffelaere
C, Trubuil A, Lepiniec L, Dubreucq B. Specialization of oleosins in oil body
dynamics during seed development in Arabidopsis seeds. Plant Physiol.
2014;164(4):1866-78.

Ruuska SA, Girke T, Benning C, Ohlrogge JB. Contrapuntal networks of gene
expression during Arabidopsis seed filling. Plant Cell. 2002;14(6):1191-206.
Baud S, Lepiniec L. Physiological and developmental regulation of seed oil
production. Prog Lipid Res. 2010,49(3):235-49.

Devic M, Roscoe T. Seed maturation: simplification of control networks in
plants. Plant Sci. 2016;252:335-46.

Cernac A, Andre C, Hoffmann-Benning S, Benning C. WRI1 is required for seed
germination and seedling establishment. Plant Physiol. 2006;141(2):745-57.

Li Z, Wu S, Chen J, Wang X, Gao J, Ren G, Kuai B. NYEs/SGRs-mediated
chlorophyll degradation is critical for detoxification during seed maturation
in Arabidopsis. Plant J. 2017,92(4):650-61.

Sano N, Rajjou L, North HM, Debeaujon |, Marion-Poll A, Seo M. Staying alive:
molecular aspects of seed longevity. Plant Cell Physiol. 2016;57(4):660-74.
Hundertmark M, Hincha DK. LEA (late embryogenesis abundant) proteins and
their encoding genes in Arabidopsis thaliana. BMC Genomics. 2008,9:118.
Kimura M, Nambara E. Stored and neosynthesized mRNA in Arabidopsis seeds:
effects of cycloheximide and controlled deterioration treatment on the resumption
of transcription during imbibition. Plant Mol Biol. 2010;73(1-2):119-29.

Manfre AJ, LaHatte GA, Climer CR, Marcotte WR Jr. Seed dehydration and the
establishment of desiccation tolerance during seed maturation is altered in the
Arabidopsis thaliana mutant atem6-1. Plant Cell Physiol. 2009;50(2):243-53.
Bailly C. Active oxygen species and antioxidants in seed biology. Seed Sci
Res. 2004;14:93-107.



Wilhelmsson et al. BMC Genomics

68.

69.

70.

71.

72.

73.

74.

(2019) 20:95

Linkies A, Leubner-Metzger G. Beyond gibberellins and abscisic acid: how
ethylene and jasmonates control seed germination. Plant Cell Rep. 2012;
31(2):253-70.

Graeber K, Linkies A, Wood AT, Leubner-Metzger G. A guideline to family-
wide comparative state-of-the-art quantitative RT-PCR analysis exemplified
with a Brassicaceae cross-species seed germination case study. Plant Cell.
2011,23(6):2045-63.

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ.

Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs. Nucleic Acids Res. 1997,25(17):3389-402.

R: A language and environment for statistical computing. https://www.r-
project.org/.

Benjamini Y, Hochberg Y. Controlling the false discovery rate - a practical
and powerful approach to multiple testing. J R Stat Soc Ser B Methodol.
1995;57(1):289-300.

Widiez T, Symeonidi A, Luo C, Lam E, Lawton M, Rensing SA. The chromatin
landscape of the moss Physcomitrella patens and its dynamics during
development and drought stress. Plant J. 2014;79(1):67-81.

Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ. An “electronic
fluorescent pictograph” browser for exploring and analyzing large-scale
biological data sets. PLoS One. 2007;2(8):e718.

Page 19 of 19

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions



https://www.r-project.org/
https://www.r-project.org/

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	Overview of RNA-seq analysis of Ae. arabicum mature dimorphic seeds
	Read filtering of RNA-seq raw data
	De novo transcriptome assembly
	Mapping reads to the transcriptome and the genome
	Differential gene expression analysis
	Gene ontology analysis
	DEG analysis of mature dimorphic Ae. arabicum seeds
	Dimorphic Ae. arabicum seeds differ in their maturation programmes

	Conclusions
	Methods
	Plant material and RNA extraction
	RNA-seq library preparation and sequencing
	RNA-seq data trimming and filtering
	De novo transcriptome assembly
	Evaluation of assembly and comparison to genome
	Read mapping and feature counting
	Differential gene expression analysis pipeline
	Principal component analysis of expression values
	Annotation and GO-bias
	qRT-PCR analysis

	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

