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Abstract

Background: Iberian primitive breeds exhibit a remarkable phenotypic diversity over a very limited geographical
space. While genomic data are accumulating for most commercial cattle, it is still lacking for these primitive breeds.
Whole genome data is key to understand the consequences of historic breed formation and the putative role of
earlier admixture events in the observed diversity patterns.

Results: We sequenced 48 genomes belonging to eight Iberian native breeds and found that the individual breeds
are genetically very distinct with FST values ranging from 4 to 16% and have levels of nucleotide diversity similar or
larger than those of their European counterparts, namely Jersey and Holstein. All eight breeds display significant
gene flow or admixture from African taurine cattle and include mtDNA and Y-chromosome haplotypes from
multiple origins. Furthermore, we detected a very low differentiation of chromosome X relative to autosomes
within all analyzed taurine breeds, potentially reflecting male-biased gene flow.

Conclusions: Our results show that an overall complex history of admixture resulted in unexpectedly high levels of
genomic diversity for breeds with seemingly limited geographic ranges that are distantly located from the main
domestication center for taurine cattle in the Near East. This is likely to result from a combination of trading
traditions and breeding practices in Mediterranean countries. We also found that the levels of differentiation of
autosomes vs sex chromosomes across all studied taurine and indicine breeds are likely to have been affected by
widespread breeding practices associated with male-biased gene flow.

Keywords: Cattle genomes, Iberia, Native breeds, Genomic diversity, Animal breeding, Sex chromosome diversity,
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Background
The biological resources of the Mediterranean sub-region
of the Palaearctic include a diversity of domesticated ani-
mals [1] comprising 53 officially recognized local breeds
of taurine cattle (Bos taurus) in the Iberian Peninsula
alone (Additional file 1: Table S1). Taurine cattle are
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thought to have been domesticated by Neolithic farmers
from Bos primigenius populations in the Fertile Crescent
around 10,000 years [2], and have since diversified into
more than 1000 breeds [3]. Cattle genomes have been
shaped not only by human-driven selection, but also by
genetic bottlenecks associated with migrations from the
origin of domestication, adaptation to different agro-
ecological areas and a more strict division of animal popu-
lations into breeds led by Europeans since the eighteenth
century [3]. Furthermore, multiple events of introgression
have been proposed to have influenced European cattle
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breeds: i) ancestral hybridization with European popula-
tions of B. primigenius [4–9] (extinct in Europe since the
seventeenth century [9]); ii) introgression from African
taurine cattle [10]; iii) introgression from non-taurine
sources such as indicine breeds (Bos indicus, the humped
cattle type resulting from a separate domestication event
in the Indus valley [11]) [10, 12]. Such wide-spread gene-
flow resulted in complex patterns of admixture and the
difficulty in sometimes establishing whether a breed repre-
sents the taurine populations that were originally associ-
ated with a specific geographic region [10] and could
explain the high levels of genetic diversity relative to other
domesticated species [12].
Currently, there are two broad groups of cattle breeds,

those under intensive management with strong
specialization in dairy or meat phenotypes (such as the
commercial transboundary Holstein, Charolais, Limou-
sine, and more recently Angus), and the so-called “primi-
tive” breeds, traditional cattle with a low dependence from
external inputs that make use of naturally available food
resources. Iberian native cattle are found in diverse agro-
ecological systems including coastal, mountain, and low-
land arid environments (Fig. 1a). Inheritable traits of these
cattle have been modified at different times by the various
cultures that inhabited this territory, and breeds are often
defined based on morphological traits such as coat color,
as well as horn size and body shape. For example, osteo-
metric data validated by the molecular sexing of cattle
metacarpals dated to the fifteenth century indicated that
there was an overall size increase or improvement of cattle
in southern Portugal following the Christian reconquista
of the 11th–13th centuries AD [13]. Recently, the Food
and Agriculture Organization (FAO) has warned that
about 67% of the Iberian cattle breeds are at risk as many
of these have less than 1000 breeding females and/or less
than 20 breeding males [3], which reinforces the need for
a continued conservation strategy. The complex origin of
the Iberian primitive breeds is reflected in their high diver-
sity in Y-chromosome haplotypes, including the major
taurine Y1 and Y2 haplogroups [14, 15] and unique patri-
lines [16], as well as distinct maternal lineages, i.e. com-
mon European T3-matrilines along with more distinct Q-
haplotypes [15, 17], and a strong influence of T1-lineages
of African origin [18]. This higher diversity relative to
their European counterparts is quite notable, given the
geographic distance of this territory from the presumed
Near-Eastern center of domestication [4, 14, 15, 19, 20].
This makes Iberian cattle a great example for investigating
the genomic impact of the intricate processes of cattle di-
versification both regarding the last 200 years of specific
breed formation and the putative earlier admixture events.
To uncover genome-wide patterns of diversity associ-

ated with the formation of primitive cattle breeds, we se-
quenced the genomes of 48 individuals belonging to
eight breeds of native Iberian cattle (Fig. 1a). Their breed
denominations have been shown to agree with popula-
tion structure inferred from microsatellites [19–22].
Noteworthy, no clear structure is recovered when using
genotypes determined with the Illumina Bovine High-
Density 777 k SNP BeadChip in the context of European
cattle [4], likely a result of ascertainment bias as Iberian
breeds were not included in the discovery panel of the
genotyping assay. This reinforces the need for full gen-
ome data to accurately determine genetic diversity and
measure population differentiation [23].
We confirm that there is a clear genetic distinction be-

tween Iberian cattle breeds. In addition, we demonstrate
that breed management and associated demographic
processes had profound effects on genomic diversity and
resulted in unusual patterns of genetic differentiation for
autosomes vs sex chromosomes. We further describe
genome-wide diversity and introgression in Iberian
breeds in relation to 60 previously published taurine (B.
taurus) and zebu (B. indicus) cattle genomes from Eur-
ope, Africa and Asia [24], and sequence data from one
European aurochs (B. primigenius) [5]. We confirm that
gene flow has occurred between African taurine and
Iberian breeds. Overall, we show how whole-genome
data are important for uncovering specific patterns re-
lated to recent events in breed formation and manage-
ment, and provide the ground for future studies on the
singularity of locally adapted European cattle breeds.

Results
The 48 Iberian cattle genomes and the previously pub-
lished shotgun resequencing data from 60 additional in-
dividuals including taurine and indicine cattle (Table 1;
Additional file 1: Table S2) were mapped with BWA
mem to three reference genomes: genome version
UMD_3.1.1 (bosTau8) [25], genome version Btau_4.6.1
(bosTau7; contains an assembled Y-chromosome) [25]
and to the outgroup wild yak (B. mutus) [26]. Details on
the quality-based read trimming and filtering steps are
included in the Methods section. Sequencing error rates
for all 48 samples are below 0.2% (Additional file 1:
Figure S1).
Population structure and individual ancestry were

investigated with NGSadmix, which does not require
definition of the exact genotypes thus is adequate for
low-depth sequencing data [27]. Setting the number of
expected clusters to eight (the number of breeds) re-
sulted in the assignment of each individual to the source
breed (Fig. 1b) while assuring convergence of the
method. This level of genetic homogeneity within Iber-
ian cattle populations is also observed in the results of
the principal components analyses (Fig. 1c). The first
two PCs explain 10 and 9% of the total variation and
show the high differentiation of Mirandesa and Brava.



Fig. 1 a Geographical distribution of the eight Iberian native breeds (maps from https://commons.wikimedia.org/). b Population structure plot
determined by NGSadmix shows consistency with breed denomination; each individual is represented by a stacked column of the 2, 5 and 8
proportions (other K values in Fig. S2). c Reproductive isolation of the Mirandesa and Brava breeds relative to the others is clear in the principal
component analysis done with PCAngsd; variance explained by each component is shown in parenthesis (other components are in Fig. S3).
Colors denote breed names
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Mirandesa in fact appears as an independent cluster
when the number of ancestral K populations is set to
two (Fig. 1b), and Brava individuals become a separate
cluster when K = 4 (Additional file 1: Figure S2).
We assessed the levels of genetic differentiation be-

tween breeds by calculating the fixation index (FST). In
general, we observed high levels of differentiation (aver-
age 9%), even when admixture has occurred, which pre-
cludes the use of Iberian cattle as a single evolutionary
unit. Consistent with their higher heterogeneity, the
breed pair Arouquesa/Mertolenga had a low FST value of
0.06. The highest FST corresponded to the pairwise com-
parison of Mirandesa and Alentejana (FST = 0.16) and
the lowest FST values were obtained for Preta vs Merto-
lenga (FST = 0.04) (Table 2).
FST values between Iberian breeds and other
taurine cattle ranged from 12 to 33%, partially over-
lapping the divergence values observed for compari-
sons within Iberian breeds (Table 2). Mirandesa, the
most divergent within the Iberian breeds, has the
highest FST values relative to all other breeds
(Fig. 5a). The taurine breed with the overall highest
FST relative to the Iberian was the Jersey cattle
which may be explained by the insular isolated
status of this breed [28], although we must note
that this might not be a representative sample of
the breed. Overall, the FST for autosomes was much
higher than for chromosome X within taurine breeds
and within the indicine cattle (Fig. 5b; Additional file 1:
Figure S7).

https://commons.wikimedia.org/


Table 1 Summary of the data sets used in this study

Species/breed name Country Species Sample size Data type Reference

Alentejana Portugal Bos taurus 6 shotgun this study

Arouquesa Portugal Bos taurus 6 shotgun this study

Barrosã Portugal Bos taurus 6 shotgun this study

Brava de Lide Portugal Bos taurus 6 shotgun this study

Maronesa Portugal Bos taurus 6 shotgun this study

Mertolenga Portugal Bos taurus 6 shotgun this study

Mirandesa Portugal Bos taurus 6 shotgun this study

Preta Portugal Bos taurus 6 shotgun this study

Holstein The Netherlands Bos taurus 10 shotgun [24]

Angus Bos taurus 3 shotgun [24]

Jersey Jersey Island Bos taurus 9 shotgun [24]

N’Dama Africa Bos taurus 10 shotgun [24]

Kenana Africa Bos indicus 9 shotgun [24]

Ogaden Africa Bos indicus 9 shotgun [24]

Boran Africa Bos indicus 10 shotgun [24]

Busha Balkan region Bos taurus 6 777 K chip [4]

Aurochs Britain Bos primigenius 1 shotgun [5]

Boskarin Czech Republic, Hungary Bos taurus 4 777 K chip [4]

English Longhorn England Bos taurus 4 777 K chip [4]

White Park England Bos taurus 3 777 K chip [4]

Heck Germany Bos taurus 5 777 K chip [4]

Kerry Cattle Ireland Bos taurus 4 777 K chip [4]

Chianina Italy Bos taurus 3 777 K chip [4]

Maremmana Italy Bos taurus 5 777 K chip [4]

Maltese Malta Bos taurus 4 777 K chip [4]

Cachena Portugal Bos taurus 3 777 K chip [4]

Romanian grey Romania Bos taurus 4 777 K chip [4]

Galloway Scotland Bos taurus 5 777 K chip [4]

Highland Scotland Bos taurus 5 777 K chip [4]

Berrenda en colorado Spain Bos taurus 3 777 K chip [4]

Berrenda en negro Spain Bos taurus 3 777 K chip [4]

Cardena Spain Bos taurus 5 777 K chip [4]

Lidia Spain Bos taurus 3 777 K chip [4]

Limia Spain Bos taurus 4 777 K chip [4]

Pajuna Spain Bos taurus 6 777 K chip [4]

Sayaguesa Spain Bos taurus 5 777 K chip [4]

Brown Swiss Switzerland Bos taurus 4 777 K chip [4]

Fleckvieh Switzerland Bos taurus 4 777 K chip [4]

Dutch Belted The Netherlands Bos taurus 2 777 K chip [4]

Dutch Friesian The Netherlands Bos taurus 4 777 K chip [4]

Groningen Whiteheaded The Netherlands Bos taurus 5 777 K chip [4]

Meuse-Rhine-Yssel The Netherlands Bos taurus 4 777 K chip [4]

Wild Yak Bos mutus 1 shotgun [26]
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Table 2 FST values between the eight Iberian breeds. The highest value is shown in bold and the lowest in italic

Alentejana Arouquesa Barrosã Brava Mertolenga Mirandesa Maronesa

Arouquesa 0.10

Barrosã 0.12 0.06

Brava 0.13 0.08 0.09

Mertolenga 0.09 0.06 0.06 0.07

Mirandesa 0.16 0.08 0.11 0.13 0.11

Maronesa 0.12 0.06 0.06 0.09 0.06 0.11

Preta 0.08 0.05 0.06 0.05 0.04 0.09 0.06
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When compared to publicly available genomes [24]
(database information in the Materials section) of tau-
rine (European Holstein, Angus and Jersey, and African
N’Dama) and African indicine cattle (Ogaden, Kenana
and Borana), Iberian breeds are clearly assigned by
NGSadmix [27] to the European cluster (Fig. 2a) with a
slight suggestion of African taurine admixture at K = 3
for autosomal data. As observed previously [24], at K = 3
the clusters observed represent European taurine, Afri-
can taurine and African indicine ancestries.
All analyzed breeds have a positive Tajima’s D (Add-

itional file 1: Figure S4). As observed previously [24], the
commercial European breeds have lower nucleotide di-
versity (average number of pairwise differences) relative
to the African breeds (Fig. 2c). The Iberian breeds
Fig. 2 a Population structure using 108 individuals at K = 3 clearly divides t
(pink) ancestries. b Treemix maximum likelihood tree depicting the relation
data; black: whole genome data). c Nucleotide diversity in taurine and indi
analyzed in this study have, overall, similar or higher
values of nucleotide diversity compared to their Euro-
pean counterparts. The lowest values correspond to Mir-
andesa, Brava and Alentejana, which had been
previously shown to have the lowest heterozygosity in a
microsatellite panel [19, 20]).
We then used the maximum likelihood approach im-

plemented in Treemix [29] to uncover the historical re-
lationships between the breeds (Fig. 2b). We intersected
our whole genome data with the Illumina BovineHD
SNP data of 25 European primitive breeds from [4],
which shows that our selection of breeds is representa-
tive of the Iberian breed context (Fig. 2b). When allow-
ing for one migration event, we observe gene flow from
African taurine to the base of the Iberian clade (Fig. 2b)
he European taurine (blue), African taurine (green) and African indicine
ships between taurine cattle breeds (grey: Illumina BovineHD SNP
cine breeds (Iberian breed names in black)
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which had been previously suggested to have occurred
[15, 17, 18].
We explicitly test for differential African cattle intro-

gression into Iberian breeds, using the D-statistics [30,
31] and publicly available genomes [24] (database infor-
mation in the Materials section) of taurine (European
Holstein, Angus and Jersey, and African N’Dama). We
can confirm that there is a significant excess of shared
derived alleles in varying amounts between Iberian
breeds and the African taurine N’Dama when compared
to a panel of European taurine breeds (Fig. 3). This was
observed both for southern Iberian Brava that had the
largest African (N’Dama) influence, but also in breeds
from the north of Portugal such as Barrosã. These re-
sults are further supported by the occurrence of ~ 17%
of T1-matrilines in the Iberian cattle analyzed here
(Fig. 4). We found no evidence for either indicine or
aurochs introgression into Iberian cattle (Additional file
1: Figure S5).

Discussion
Signatures of breeding in the population structure and
genetic differentiation of Iberian cattle breeds
The observed genetic homogeneity within Iberian cattle
and the high differentiation of Mirandesa and Brava are
Fig. 3 D-statistics determined using genome-wide autosomal data. Negativ
H1 (denoted in the y-axis) and the African N’Dama breed in comparison w
expected to result from genetic drift due to drastic
demographic changes: in the 1970s, Mirandesa was
raised in a vast area of the Portuguese territory with over
200,000 animals [32] and since has suffered a significant
reduction in population size with less than 6000 breed-
ing females registered in the herd book in 2017 (http://
www.fao.org/dad-is/browse-by-country-and-species/en/);
Brava has historically been reproductively isolated from
other breeds living in semi-feral conditions for the main
purpose of its use in bullfights [32]. PCs 3 and 4 separate
Alentejana and Preta from the remaining Portuguese
native breeds, whereas Maronesa, Barrosã and Merto-
lenga are separated by PCs 5 and 6 (Additional file 1:
Figure S3).
Recent crossbreeding involving Arouquesa cattle is re-

vealed in it being the last to form a discrete cluster, show-
ing contributions from the other populations until K = 7
(Fig. 1b and Additional file 1: Figure S2). This is consistent
with an analysis of microsatellite loci, which showed
Arouquesa as having the lowest mean genotype member-
ship proportions [19]. This breed is mostly raised in a
region located south of the Douro river in the district of
Viseu (Fig. 1a), bordering the area of production of
Maronesa and in remote times also of the once abundant
Mirandesa cattle. Arouquesa has also historically been
e values indicate an excess of derived alleles shared by the breeds in
ith European taurine breeds (H2)

http://www.fao.org/dad-is/browse-by-country-and-species/en/
http://www.fao.org/dad-is/browse-by-country-and-species/en/


Fig. 4 Maximum-likelihood phylogeny of cattle mitogenomes showing that Iberian breeds can be assigned to haplogroups Q, and T, including
sub-haplogroup T1 typical of African cattle. Breed acronyms are as follows: ALT, Alentejana; Arouquesa, ARO; Barrosã, BAR; Brava de Lide, BRA;
Maronesa, MRO; Mertolenga, MER; Mirandesa, MIR; Preta, PRE; Kenana, KEN; Borana, BOR; Ogaden, OGA; N’Dama, DAM; Holstein, HOL; Jersey, JER
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crossbred with the latter to produce the highly valued
“vitela de Lafões”, a meat product certified by the Euro-
pean Union with Protected Geographical Indication, and
so admixture is intrinsically linked to its history. Another
breed showing high heterogeneity was Mertolenga (Add-
itional file 1: Figure S2), one of the most phenotypically di-
verse Iberian native breeds, with its three distinct coat
color phenotypes mostly raised in separate herds [19]. In
general, we observed high levels of differentiation (average
9%), even when admixture has occurred, which precludes
the use of Iberian cattle as a single evolutionary unit.

Iberian genetic variation in the context of taurine and
zebu cattle diversity
The positive Tajima’s D (Additional file 1: Figure S4) in-
dicates a reduction in the low-frequency polymorphisms,
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suggestive of population structure, bias in the choice of
genomic markers or of a recent bottleneck probably as-
sociated with breeding practices. The lower nucleotide
diversity of European breeds relative to the African
breeds (Fig. 2c) can be explained by a combination of in-
tensive selection and genetic drift in European cattle
breeds [24]. Mirandesa, Brava and Alentejana present
the lowest values of all, which probably results from
management and demographic histories (as mentioned
above, Mirandesa has, since the 1970s, suffered a drastic
reduction in population size, and significant inbreeding
has been detected in Brava and Alentejana [19]).

Iberian cattle show a clear signature of admixture from
African cattle and high diversity in mitochondrial DNA
and Y chromosome haplotypes
We confirmed that there was gene flow between Iberian
breeds and the African taurine N’Dama and this is sup-
ported by both nuclear and mitochondrial data (Fig. 3 and
Fig. 4). The Iberian Peninsula and the Maghreb regions
share natural zoo-geographical affinities, and there were
complex biogeographic and historic faunal and human re-
lationships during much of the early Holocene (including
maritime pioneer colonization in the West Mediterranean
by the agropastoral communities that reached the Iberian
Peninsula in the Early Neolithic [33]), which could explain
these patterns of genomic admixture. Despite not finding
evidence of indicine introgression in Iberian cattle, it is
important to notice that the indicine cattle in our sample
has taurine introgression (confirmed by the presence of
T1 taurine mitochondrial haplotypes in all the indicine
samples of Fig. 4), it is likely that these are not adequate
for performing this test. Contrary to previous results [4],
we did not find evidence for aurochs introgression into
Iberian cattle (Additional file 1: Figure S5) when using se-
quence data from a 6750 year-old British aurochs [5].
Given the probable complex population structure of an-
cient wild cattle in Europe [5, 9, 34], this result does not
preclude that local aurochs introgression occurred, but
data from pre-domestic Iberian specimens is required for
further testing of this hypothesis.
Y-specific markers are useful to investigate crossbreed-

ing [14] as Y-chromosomal variation is geographically
structured, with the Y1 and Y2 lineages being predomin-
ant in northern and central European taurine cattle, re-
spectively, while the Y3 lineage is specific of indicine
cattle [15]. In addition, the effective population size of
the cattle Y-chromosome is strongly reduced by the re-
productive success of popular sires. The paternal diver-
sity (Y-chromosome) of Iberian cattle (Additional file 1:
Figure S6 and Table S2) appears to have its origins in
the dispersal of a heterogeneous male population since
the Neolithic along the Mediterranean route, rather than
in the recent admixture of transboundary commercial
cattle which are generally fixed for a single patriline (e.g.
Holstein-Friesian). Isolation and less intensive selection
probably also contributed to preservation of much of the
original diversity in this region. Interestingly, Jersey bulls
shared a distinct patriline with African cattle (one Oga-
den individual; Additional file 1: Figure S6). Previous
analyses of Y-chromosome polymorphisms showed that
Jersey is fixed for a specific haplotype that is intermedi-
ate between Y1 and Y2 haplogroups [15], this may-well
represent an African Y-lineage but more comprehensive
data from African bulls are needed.

The impact of breeding practices on chromosomal
variation and general patterns of diversification
The lower effective population size in chromosome X
relative to the autosomes should lead to stronger impact
of the bottleneck (or population structure) caused by
breeding practices, observed in an overall higher Taji-
ma’s (Additional file 1: Figure S4). In this scenario, gen-
etic drift would be expected to result in higher FST
values for chromosome X (lower effective population
size [35]) relative to autosomes, which is what we ob-
serve when we compare taurine and indicine cattle (Fig.
5b). However, comparisons within taurine and within
indicine show a much higher FST for autosomes than for
chromosome X (Fig. 5b; Additional file 1: Figure S7).
This agrees with extensive male-biased gene flow within
taurine and within indicine – since males have a single
copy of chromosome X, introgression will be more effi-
cient on the autosomes. It is “known” that female popu-
lations are more likely to be geographically constrained
and human-driven crossbreeding may have been carried
out mainly using males [36]. This could also explain the
difference in ancestry assignments for autosomes and
chromosome X (Fig. 6), with signatures of previously de-
scribed indicine admixture in the African taurine auto-
somes, but not observed in chromosome X.

Conclusion
Here we sequenced whole genomes of locally adapted Iber-
ian cattle (for which genomic resources were lacking), and
compared them to commercial cattle to uncover genomic
patterns associated with the different breeding contexts.
Our analyses confirm that these breeds are genetically very
distinct and show high levels of genetic variation unlike
what would be expected given their limited geographical
distribution. Also, Iberian cattle retain much of the original
paternal and maternal diversity, which appears to derive
from the dispersal of a heterogeneous population since the
Neolithic along the Mediterranean route with strong influ-
ences from North African taurine cattle, rather than from
recent admixture with transboundary commercial cattle.
This may have significant impact on the resilience of Iberian
cattle to foreseen environmental changes. Not only these



Fig. 5 a Autosomal FST between Iberian cattle and taurine/indicine breeds. b Range of autosomal FST values for including European taurine (Holstein,
Jersey and the Iberian breeds), African taurine (N’Dama), and the African indicine breeds Ogaden, Kenana and Borana. Also shown are the FST values
for sex chromosome X, which is comparatively low within taurine breeds, but shows the expected trend in comparisons with indicine breeds
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breeds produce high-quality certified meat products under
local extensive conditions, as they can provide the source
for genetic material to improve breeds with depleted genetic
diversity, i.e. transboundary commercial cattle. Furthermore,
we show that the complex processes underlying the forma-
tion of taurine breeds in general had profound effects on
genomic diversity and resulted in unusual patterns of gen-
etic differentiation for autosomes vs. sex chromosomes. Our
results indicate that genetic differentiation measured using
Fig. 6 Population structure at K = 2 determined using the female individua
taurine (N’Dama) is not observed in sex chromosome X (bottom) compare
chromosome X might be more representative of the native
populations of domesticated cattle, and that comparisons
between breeds using autosomal data might be misleading
without an appropriate demographic model.

Methods
Materials
Information regarding the breeds and the type of genetic
data used to investigate genome diversity and genetic
ls only (Additional file 1: Table S2). The indicine contribution to African
d to the autosomes (top)
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relationships is summarized in Table 1 and supplemen-
tary Additional file 1: Note S1. We selected a total of 48
animals representative of Iberian cattle, namely from the
Portuguese breeds Alentejana, Arouquesa, Barrosã,
Brava de Lide, Maronesa, Mertolenga, Mirandesa and
Preta (Fig. 1). The 6 animals of each breed included in our
study were nonrelated back to the second generation, origi-
nated from several herds, and portray the genetic diversity
observed for autosomal microsatellite loci, mitochondrial
DNA and Y-chromosome sequences [15, 19]. Sampling
was done as described in [19], briefly 9ml of whole-blood
were collected from each animal by qualified veterinarians
during their routine practice in the framework of official
health control programs. Additionally, we used previously
generated publicly available genomic data to make popula-
tion genomics inferences in the context of worldwide cat-
tle: i) shotgun resequencing data of four indigenous
African breeds: N’Dama (Bos taurus), Ogaden (Bos indi-
cus), Boran (Bos indicus) and Kenana (Bos indicus) [24]
(Bioproject ID: PRJNA312138); ii) shotgun resequencing
data of three transboundary commercial breeds: Holstein,
Jersey, and Angus (Bioproject IDs: PRJNA210521,
PRJNA318089 and PRJNA318087, respectively); iii) geno-
typing Illumina BovineHD SNP data [4] (777,692 SNPs;
https://doi.org/10.5061/dryad.f2d1q) of 26 European
breeds represented by at least 3 individuals: English Long-
horn (England), White Park (England), Galloway
(Scotland), Highland (Scotland), Kerry Cattle (Ireland),
Heck (Germany), Brown Swiss (Switzerland), Fleckvieh
(Switzerland), Dutch Belted (The Netherlands), Dutch Frie-
sian (The Netherlands), Groningen Whiteheaded (The
Netherlands), Meuse-Rhine-Yssel (The Netherlands),
Busha (Balkan region), Romanian grey (Romania), Boskarin
(Check Republic and Hungary), Chianina (Italy), Marem-
mana (Italy), Maltese (Malta), Cachena (Portugal), Ber-
renda en Colorado (Spain), Berrenda en negro, (Spain),
Cardena (Spain), Lidia (Spain), Limia (Spain), Pajuna
(Spain), Sayaguesa (Spain). We also included data of an
aurochs [5] (England; Bioproject ID: PRJNA294709) to test
for admixture with domesticated cattle. Furthermore, 149
full mitochondrial genomes from NCBI’s PopSets 157,778,
019 [7], 306,977,267 [37], 355,330,537 [18], and 946,518,
556 [38] were used together with the mitochondrial con-
sensus sequences obtained from our shotgun data (details
below).

Laboratory procedures
Genomic DNA was extracted using a modified salting-out
precipitation method (Gentra Puregene Blood Kit, Qiagen)
according to the manufacturer’s recommendations. We pre-
pared equimolar DNA concentrations for all animals before
library construction using Nanodrop™ 2000 (Thermo Scien-
tific) and Qubit™ Fluorometer (Qubit™ dsDNA BR Assay Kit,
2–1000 ng, Invitrogen, Oregon, USA) measurements.
Following DNA fragmentation by sonication using a pro-
gram specific for 550 bp inserts (https://www.diagenode.
com/en/p/bioruptor-pico-sonication-device), genomic li-
braries were prepared using the TruSeq DNA PCR-free Li-
brary Preparation Kit (Illumina, San Diego, CA) according
to the manufacturer’s protocols. Whole-genome paired-end
resequencing data was obtained by pooling 16 samples in
each lane and using an Illumina HiSeq1500 instrument with
2 × 100 bp reads.

Sequencing data pre-processing
The 48 samples were sequenced to between 1.4X and
2.3X depth of coverage (Additional file 1: Table S2).
Methods appropriate for low coverage NGS data [27, 39–
41] were used throughout the analyses and applied to all
samples. Raw Illumina reads were first processed with
Trimmomatic (version 0.36) [42] for removal of adapter
sequences and trimming bases with quality < 20 and dis-
carded reads with length < 80. Mapping to cattle genome
versions UMD_3.1.1 (bosTau8) [25] and Btau_4.6.1 (bos-
Tau7; contains an assembled Y-chromosome) [25], and to
the outgroup wild yak (Bos mutus; Bioproject ID:
PRJNA74739) [26] was done with BWA mem (version
0.7.12-r1039). Reads showing a mapping hit were further
filtered for mapping quality > 25. PCR duplicates were re-
moved with Picard MarkDuplicates (version 1.95; http://
broadinstitute.github.io/picard/) and local realignment
around indels was done with GATK [43].

Sequencing error rates
Sequencing error rates were determined in ANGSD (ver-
sion 0.917) [39] using a method that relies on an out-
group and a high quality genome to estimate the
expected number of derived alleles (similar to a method
described by Reich et al [44]). Briefly, if we observe a
higher number of derived alleles in an individual we as-
sume that this excess is due to errors. If the high-quality
genome is error free, we will obtain an estimate of the
true error rate. If there are errors in the high-quality
genome, then the estimated error rate can roughly be
understood as the excess error rate relative to the error
rate of the high-quality genome.

Population structure
NGSadmix version 32 [27] was used to detect popula-
tion structure with autosomal data from samples for
which shotgun resequencing data was available. NGSad-
mix infers population structure from genotype likeli-
hoods (that contain all relevant information on the
uncertainty of the underlying genotype [45]). NGSadmix
was run for K equal 2 to 8 for sites present in a mini-
mum of 10% of the individuals: a total of 951,213 SNP
sites for the 48 Iberian samples (Fig. 1b); 129,829 SNP
sites for the data set including all 128 animals (Fig. 2a);
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628,774 for SNP sites for the data set including the 94
female individuals (Fig. 6). The program was run with
different seed values until convergence was reached.
A principal component analysis using the same SNP

set for the Iberian breeds was done with PCAngsd [40]
which estimates the covariance matrix for low depth
NGS data in an iterative procedure based on genotype
likelihoods. Genotype likelihoods for all individuals were
generated with ANGSD [39] (options -GL 1 -doGlf 2
-minQ 20 -minMapQ 30).
Phylogenetic analyses
Treemix (version 1.13) [29] was used to infer the admix-
ture graphs (Fig. 2b) using allele counts for 512,358 SNP
positions included in the Illumina BovineHD SNP that
can be unambiguously assigned to autosomal positions
in the cattle reference genome version UMD_3.1.1 [25]
using [46]. For shotgun resequencing data, allele counts
were obtained from allele frequencies calculated in
ANGDS [39] for positions covered in at least 3 individ-
uals. Treemix was run using the global option and
standard errors were estimated in blocks with 500 SNPs
in each. Even though we do not call genotypes on the
shotgun data, the individual breeds where correctly
assigned to expected branches in the North/Central
European and Iberian clades (Fig. 2b), confirming the ro-
bustness of our methodological approach.
The software RAxML [47] version 8.1.7 with 100 rapid

bootstrap replicates was used to estimate the phylogen-
etic trees under the GTR +GAMMA model of sequence
evolution for complete mitochondrial sequences from [7,
18, 37, 38] together with consensus sequences from the
shotgun resequencing data analyzed in this study ob-
tained by choosing the most common base per position
(−doFasta 2 in ANGSD [39]).
D-statistics
To determine the pattern of excess shared derived alleles
between taxa, indicative of introgression, we estimated
D-statistics using the wild yak (Bos mutus) as an out-
group. All samples were mapped to the yak outgroup
genome assembly [26]. The D-statistic [30, 31] is ap-
proximated by a Gaussian distribution with mean zero
[41] in the absence of gene flow between the four popu-
lations, allowing for hypothesis testing. We apply an ex-
tended version of the D-statistic [41] which can use
multiple individuals per population sequenced at low
coverage and is implemented in ANGSD [39]. It takes
observed allele frequencies for each individual in a popu-
lation, and then combines them linearly to find an un-
biased estimator of population frequency while
minimizing the variance [41].
Assessment of genetic diversity and population
differentiation
We used methods based on the site frequency spectrum
(SFS) [48, 49] to estimate nucleotide diversity, the neu-
trality test statistic Tajima’s D (Fig. 2C; Additional file 1:
Figure S7) and genome-wide FST values (Fig. 5 and Add-
itional file 1: Figure S7). Briefly, after estimating the SFS,
posterior sample allele frequencies are calculated using
the global SFS as prior. SFSs estimated separately were
used to obtain joint SFSs for population pairs, which are
then used to estimate FST. For all pairwise breed com-
parisons, we determined FST using autosomes 1 to 29.
For comparisons relating to chromosome X, FST was de-
termined for the sex chromosome and autosomes using
only female individuals.

Additional file

Additional file 1: Note S1. Brief description of the Iberian native cattle
breeds sampled in our study. Table S1. Iberian breeds databases. Table
S2. Individual sample information. The Y-chromosome haplogroups in
bold were determined in this study (n.a.: not applicable). Table S3. FST
values between taurine breeds. The highest value is shown in bold and
the lowest in italic. Figure S1. Average error rate per sample. Figure S2.
Population structure plots determined by NGSadmix; each individual is
represented by a stacked column for 3, 4, 6 and 8 proportions. Other K
values are shown in Fig. 1b. Figure S3. Principal component analysis
done with PCAngsd (components 1 and 2 are shown in Fig. 1c). Variance
explained by each component is shown in parenthesis. Figure S4. Differ-
ences in Tajima’s D between autosomes and sex chromosome X (calcu-
lated using only the female individuals). Figure S5. D-statistics
determined as in [4] using genome-wide data. Positive values indicate an
excess of derived alleles shared by the breeds in H2 (ANG: Angus; HOL:
Holstein; JER: Jersey) and the British Aurochs [5], as indicated by the tree
depicted above. Figure S6. Approximately-maximum-likelihood phyl-
ogeny of cattle Y-chromosome sequences (sites with a minimum of two
minor alleles) determined in FastTree [6] which uses the Jukes-Cantor dis-
tance [7]. Labels for the Iberian cattle are according to Table S2. JER:
Jersey; ANG: Angus; BOR: Borana; KEN: Kenana. 50% missing data was
allowed. The taurine haplogroups Y1 and Y2 are shown in green and red,
respectively, and the indicine Y3 in grey. Figure S7. FST per chromosome
for all pairwise comparisons within Iberian cattle and between Iberian
cattle and the African taurine N’Dama and the African indicine Ogaden.
The proportion of shared variation oscillates throughout the genome,
reaching extreme values for chromosome 21 (the largest between Iberian
and African taurine cattle) and sex chromosome X (shows the lowest dif-
ferentiation within taurine breeds, while having a relatively large FST be-
tween Iberian and the African indicine cattle). (DOCX 1909 kb)
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