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Abstract

Background: Biological networks describes the mechanisms which govern cellular functions. Temporal networks
show how these networks evolve over time. Studying the temporal progression of network topologies is of utmost
importance since it uncovers how a network evolves and how it resists to external stimuli and internal variations. Two
temporal networks have co-evolving subnetworks if the evolving topologies of these subnetworks remain similar to
each other as the network topology evolves over a period of time. In this paper, we consider the problem of identifying
co-evolving subnetworks given a pair of temporal networks, which aim to capture the evolution of molecules and
their interactions over time. Although this problem shares some characteristics of the well-known network alignment
problems, it differs from existing network alignment formulations as it seeks a mapping of the two network topologies
that is invariant to temporal evolution of the given networks. This is a computationally challenging problem as it
requires capturing not only similar topologies between two networks but also their similar evolution patterns.

Results: We present an efficient algorithm, Tempo, for solving identifying co-evolving subnetworks with two given
temporal networks. We formally prove the correctness of our method. We experimentally demonstrate that Tempo
scales efficiently with the size of network as well as the number of time points, and generates statistically significant
alignments—even when evolution rates of given networks are high. Our results on a human aging dataset
demonstrate that Tempo identifies novel genes contributing to the progression of Alzheimer’s, Huntington’s and
Type II diabetes, while existing methods fail to do so.

Conclusions: Studying temporal networks in general and human aging specifically using Tempo enables us to
identify age related genes from non age related genes successfully. More importantly, Tempo takes the network
alignment problem one huge step forward by moving beyond the classical static network models.
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Background
Biological networks describe the interaction between
molecules. They are frequently represented as graphs,
where the nodes correspond to the molecules (e.g., pro-
teins or genes) and the edges correspond to their inter-
actions [1]. Formally, we denote a biological network as
G = (V , E) where V and E represent the set of nodes and
the set of edges, respectively. Analysis of these networks
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enable the elucidation of cellular functions [2], the identi-
fication of variations in cancer networks [3], and the char-
acterization of variations in drug resistance [4]. Studying
biological networks led to numerous computational chal-
lenges as well as methods which address these challenges.
Network alignment is one of the most important of these
challenges [5] as it has a profound set of applications
ranging from the detection of conserved motifs to the pre-
diction of protein functions [6]. This problem aims to find
a mapping of the nodes of two given networks in which
nodes that are similar in terms of content (i.e. homol-
ogy) and interaction structure (i.e. topology) are mapped
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to each other. Hence, we represent the alignment between
two given networks G1 = (V1, E1) and G2 = (V2, E2) as a
bijection function ψ : V1 → V2, and the score resulting
from alignment ψ as score(G1, G2|ψ). The network align-
ment problem seeks the function ψ that maximizes this
score. We note that there are various ways to calculate the
scoring function.

There are two categories of network alignment prob-
lem: local and global alignment. The former problem aims
to find pairs of highly-conserved sub-networks in two
given networks in which a sub-network of the query net-
work is mapped to multiple sub-networks in the target
network. Global network alignment aims to maximize
the similarity in the networks in which all nodes in the
query network are mapped to a set of nodes in the tar-
get network. Network alignment is a challenging task as
the graph and subgraph isomorphism problems which are
known to be GI and NP-hard [7], reduce to them. In
“Related Work” section, we give a brief review of the meth-
ods addressing the global network alignment problem as
the problem we consider in this paper is associated with
that problem.

Biological networks have dynamic topologies [8]. There
are various reasons behind this dynamic behavior. For
example, genetic and epigenetic mutations can alter
molecular interactions [9], and variation in gene copy
number can affect the existence of interactions [10]. Due
to this dynamic behavior, the topology of the network
that models the molecular interaction evolve over time
[11]. Majority of the previous work on alignment of bio-
logical networks assume the network topology is static
[12]—an assumption that ignores the history of network
evolution, and may lead to biased or incorrect analysis.
For example, identifying causes and consequences of the
influence of external stimuli is impossible when analyz-
ing static topologies. To address this oversight, we define
a biological network using a model that accounts for the
evolution of the underlying network at consecutive time
points. We refer to this model as a temporal network [13].
We view this model as containing a single snapshot of the
network at each time point in a sequence of time points
and thus, as a time series network. More formally, we
denote a temporal network with t consecutive time points
as G = [G1, G2, . . . , Gt], where Gi = (V , Ei) represents the
topology of the network at the ith time point.

In this paper, we consider the problem of identifying
co-evolving subnetworks in a given pair of temporal net-
works. We say that two subnetworks are co-evolving if
their topologies remain similar to each other even though
their topologies evolve (i.e. change) over time. We define
this more formally as follows. We consider two input
temporal networks G1 = [

G1
1, G1

2, . . . , G1
t
]

and G2 =[
G2

1, G2
2, . . . , G2

t
]
, where ∀i ∈ {1, 2, . . . , t}, G1

i = (V 1, E1
i )

and G2
i = (

V 2, E2
i
)

represent G1 and G2 respectively at

the time point i. Without losing generality, let G1 be the
query (smaller) network and G2 be the target network, i.e.,
|V 1| ≤ |V 2|. An alignment of G1 and G2 maps G1

i to G2
i

across all time points i. Thus, we represent the alignment
of the two temporal networks G1 and G2 as a bijection of
their nodes and denote it as a function ψ : V 1 → V 2.
We compute the score of the alignment ψ of G1 and G2,
denoted with score

(
G1,G2|ψ)

, as the sum of the scores of
the alignment at all time points. Hence, score

(
G1,G2|ψ)

=
∑t

i=1 score
(
G1

i , G2
i |ψ

)
. We assume G1 is connected

at all time points, but it maybe impossible to find an
alignment that is connected in the target network at all
time points.

It is worth emphasizing that the temporal network
alignment problem described above is dramatically dif-
ferent than existing network alignment problems, which
can be categorized as follows: (i) pairwise alignment, (ii)
multiple network alignment, and (iii) dynamic network
alignment. We illustrate these problems as well as the tem-
poral one in Fig. 1. The pairwise network alignment prob-
lem (Fig. 1a) ignores that the network topology evolves.
Although the multiple alignment problem (Fig. 1b) can
consider more than two networks at once, it lacks the
ability to capture the temporal changes since it treats all
networks as having static topologies. The dynamic net-
work alignment problem (Fig. 1c) considers topological
changes over time. It however, it seeks a different solu-
tion to the alignment problem at each time point. Thus, it
can not identify co-evolving subnetwork. A new algorithm
is needed to capture such evolving characteristics. Unlike
these alignment problems, temporal network alignment
(Fig. 1d) captures that network topologies co-evolve over
time.

Contributions in this paper. We develop an efficient
algorithm, Tempo, to identify co-evolving subnetworks in
a given pair of the temporal networks. More specifically,
we aim to find subnetworks of given networks which have
similar evolving topologies over time. Briefly, our algo-
rithm first finds an initial alignment between the input
networks G1 and G2 using the similarity score between
pairs of aligned nodes across all time points. It then per-
forms a dynamic programming strategy that maximizes
the alignment quality (i.e. score) by repeatedly altering the
aligned nodes in the target network. We demonstrate the
efficiency and accuracy of Tempo using both real and syn-
thetic data. We compare the running time and the quality
of the alignments found by Tempo against those of three
existing alignment algorithms, IsoRank [12], MAGNA++
[14] and GHOST [15]. Note that all these networks are tai-
lored towards optimizing alignment at a single time point.
To have a fair comparison, we allow each of these meth-
ods to consider each time point independently then apply
the resulting alignments to all other time points and took
the average. We show Tempo has competitive running
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(a) (b) (c) (d)
Fig. 1 This figure represents different network alignment problems in different types of biological networks. a This represents the alignment between
two input static networks. b This represents the alignment between multiple time points where each network represent a different organism. c This
represents the alignment between two input networks where one of them is static and one of them is dynamic. Here, there exist different
alignment between the static network and each version of the dynamic network. d This represents the alignment between two input temporal
networks where each have time specific snapshots that was taken at three specific time points. Here, the alignment is persist across all time points

time and generates significantly better alignments. We
use a human brain aging [16] dataset, and integrate this
dataset to analyze three phenotypes—two age related dis-
eases (Alzheimer’s and Huntington’s) and one disease that
is less prone to aging (Type II diabetes). We perform
gene ontology analysis on the aligned genes reported by
our algorithm and compared algorithms. Our algorithm
could successfully align genes of the phenotype query (i.e.
the underlying disease) to strongly related genes in the
target network despite their evolving topologies unlike
other algorithms. Consequently, we could predict disease-
related genes based on the generated alignment using
tempo which suggests that Tempo generates alignments
that reflect the evolution of nodes topologies through
time as well as their homological similarities while other
methods only focuses on static and independent topolo-
gies. Lastly, we observe that alignments of age related
phenotype is significantly higher than alignment of non
age phenotype which reflects their high evolution rates
and shows that Tempo could identify between different
queries.

Related Work
One of the key studies on pairwise global network align-
ment is IsoRank [12], which is based on the conjecture
that two nodes should be matched if their respective
neighbors can also be matched. It formulates the align-
ment as an eigenvalue problem and computes the simi-
larity between pairs of nodes from two given networks as
a combination of their homological and topological sim-
ilarities. It obtains the global alignment of the two given
networks using their maximum weight bipartite match
with the scores as the weights. The GRAAL (GRAph
ALigner) family [17] of global network alignment methods
use the graphlet degree similarity to align two networks.
Briefly, the graphlet-degree of a node counts the num-
ber of graphlets (i.e. induced subgraph) that this node
touches, for all graphlets on 2 to 5 nodes. GRAAL [18]
first selects a pair of nodes (one from each of the two given
networks) with high graphlet degree signature similarity

as the seed of the alignment, and greedily expands the
alignment by iteratively including new pairs of simi-
lar nodes. The SPINAL algorithm [19] iteratively grows
the alignment based on apriori computed node similar-
ity score. MAGNA [20] optimizes the edge conservation
between two networks using a genetic algorithm. There
are several other methods for pairwise network align-
ment [15, 21–25]. Although the underlying algorithms
of these methods vary, the end goal is similar to those
discussed above.

Several algorithms address the multiple network align-
ment [26–28]. IsoRankN [29] extends IsoRank. It adopts
spectral clustering on the induced graph of pairwise align-
ment scores. The algorithm developed by Shih et al. [30]
is a seed-expansion heuristic that first selects a set of node
pairs with high similarity scores using a clustering algo-
rithm, and then expands these pairs by aligning nodes that
maximizes the number of the total conserved edges of
aligned nodes.

INQ [31] aligns a dynamically evolving query network
with one static target network. It uses ColT [32] to find an
initial alignment of the initial query, then it observes the
differences between the topologies of the already aligned
query network and the new query network, and finally,
uses these differences to refine the alignment found for
the previous query and generate alignment of the current
query network. DynaMAGNA++ [33] aligns two dynamic
networks. It assigns a value to each node based on how
the incident edges and graphlets change through dynamic
events. It assigns each node a value based on dynamic
graphlet degree vector (DGDV) of graphlets up to size
four. It considers a pair of nodes from two networks
similar if their DGDVs are similar.

Problem Formulation
In this section, we develop a new scoring function,
score

(
G1

i ,G2
i | ψ

)
, that integrates the similarities of the

aligned nodes and their evolving topologies, and includes
a penalty for each disconnected component in the aligned
subnetworks of the target network at each time point.
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Next, we introduce the terminology and discuss how we
drive our scoring function.

Given a network G = (V , E) and a subset of nodes V̄ ,
we define the induced subnetwork of V̄ in G as the nodes
in V̄ and all incident edges (i.e., Ē = {

V̄ × V̄
} ∩ E). We

denote this induced network as Ḡ = (
V̄ | G

)
. We say two

nodes u and v in G are connected if there exists a path
between u and v in G. We say a subset of nodes in G
form a connected component if all pairs of nodes in that
subset are connected in G. We define a subset of nodes
V̄ in G as a maximum connected component if the fol-
lowing conditions hold: (i) V̄ is a connected component
in G, and (ii) there is no node in V − V̄ which is con-
nected to a node in V̄ . In the rest of the paper, we use the
term “connected component” instead of “maximum con-
nected component”. We denote the number of connected
components of a given network G with NCC(G).

Given two temporal networks with t time points, G1 =[
G1

1, G1
2, . . . , G1

t
]

andG2 = [
G2

1, G2
2, . . . , G2

t
]
, we denote the

similarity between a pair of nodes u ∈ V 1 and v ∈ V 2 at
time point i (1 ≤ i ≤ t) with Si(u, v). We use an exist-
ing pairwise alignment method to calculate Si(u, v). The
alignment function ψ maps all nodes in V 1 to a subset
of the nodes in V 2. We denote this subset with �

(
V 1)

(i.e. �
(
V 1) =

{
ψ(u)|∀u ∈ V 1}). We note that ψ yields

an induced subnetwork
(
�

(
V 1) |G2

i
)

of G2
i for each time

point i, and each induced subnetwork
(
�

(
V 1) |G2

i
)

forms
one or more connected components. See Figure 2a for
an illustration of this latter point. We denote the num-
ber of connected components of the induced subnetwork(
�

(
V 1) |G2

i
)

at time point i as NCC
(
�

(
V 1) | G2

i
)
. If

the number of connected components at time point i is
greater than one then the corresponding induced subnet-
work is disconnected. We incur a penalty to account for
the missing edges which would connect the disconnected
components, and apply this penalty to each disconnected
component.

The minimum number of edges needed to join
NCC

(
�

(
V 1) | G2

i
)

connected components is
NCC

(
�

(
V 1) | G2

i
) −1. We penalize each edge insertion

with a constant value denoted with δ, where δ ≥ Si(u, v), ∀
u ∈ V 1, v ∈ V 2 and i ∈ {1, 2, . . . , t}. We define the score of
the alignment ψ() at time point i as: score

(
G1

i , G2
i | ψ

) =∑
u∈V 1 Si(u, ψ(u)) − δ

(
NCC

(
�

(
V 1) | G2

i
) − 1

)
. We

define the temporal network alignment as

argmax
ψ

⎧
⎨

⎩

t∑

i=1

⎛

⎝
∑

u∈V 1

Si (u, ψ(u)) − δ
(
NCC

(
�

(
V 1) | G2

i
) − 1

)
⎞

⎠

⎫
⎬

⎭
.

(1)

Methods
Overview. Our algorithm for solving the temporal net-
work alignment problem has two phases. The first phase
finds an initial alignment between the input networks G1

and G2 using the similarity score between pairs of aligned
nodes across all time points. We discuss how we calcu-
late the similarity score later in this section. The induced
subnetwork of G2 obtained by this alignment may be dis-
connected since this phase ignores the penalty incurred
by edge insertions. The second phase reduces the num-
ber of connected components, improving the alignment
score. In the second phase, we improve the alignment
between the input networks by swapping a subset of the
nodes in G2 that are aligned with nodes in G1 with other
nodes in G2. In order to swap a node vi ∈ �

(
V 1) with

vj ∈ V 2 − �
(
V 1), we update the alignment function ψ()

to ψ ′() such that ∀ u ∈ V̄ one of the two conditions is
satisfied: (i) ψ ′(u) = vj if ψ(u) = vi; and (ii) ψ ′(u) =
ψ(u) if ψ(u) 	= vi. Figure 2 illustrates this. Here, initially
b11 is aligned to a11 (Figure 2a). Swapping b11 with b14
updates the alignment function so that b14 is aligned to
a11 (Figure 2b). We observe that this swapping reduces

(a) (b) (c)

Fig. 2 This figure represents an alignment between two networks G1 and G2. Each node in the query network G1 has a one-to-one mapping with a
node in the network G2. The dashed line between two nodes emphasizes that they are mapped to each other. a This represents a hypothetical
alignment where ai is aligned with bi for all 1 ≤ i ≤ 11. The induced subnetwork of the aligned nodes in G2 forms three connected components;
C1 = {b1, b2, b3, b4}, C2 = {b5, b6, b7}, and C3 = {b8, b9, b10, b11}. Gap nodes are {b12, b13, b14}. b After swapping b11 with b14. This swapping results
in two connected components in G2. c After swapping b8 with b14. The aligned nodes in G2 form four connected components
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the number of connected components in the induced sub-
network of G2 by one. Notice that if we swap b8 with b14
(instead of b11 with b14) then the number of connected
components increases (Figure 2c).

We note that the number of connected components may
simultaneously decrease at one time point and increase
at other time points when we swap two nodes. We prove
that the problem of finding the subset of node swaps that
minimizes the number of connected components across
all time points is NP-hard. We give a reduction from the
Maximum Coverage problem [34] to this problem later in
this section.

Algorithm details. Tempo takes two networks (G1 and
G2) and the maximum number of allowed swaps (denoted
as k) as input. In the following, we explain the two phases
of our method in detail.

PHASE I (INITIALIZATION). Here, we construct an
initial alignment of G1 and G2. There exists several
algorithms to perform pairwise alignment of two static
networks at a single time point. Each of these methods
assign similarity scores to all node pairs (one from the
first network and one from the second) and then choose
the alignment that maximizes the total score of all aligned
node pairs. We adopt one of these methods to obtain the
similarity scores of each network pairs

(
G1

i , G2
i
)

at each
time point i, and use the outputted scores to calculate an
initial alignment. We denote the similarity of the node pair
(u, v), u ∈ V 1 and v ∈ V 2 generated by such method at
the ith time point with Si(u, v).

Following, we describe how we adopt pairwise align-
ment methods to generate similarity scores in temporal
networks that are needed to calculate an initial align-
ment. For that purpose, we consider adopting IsoRank.
We note that our choice of such method has no impact
on our method. Recall that IsoRank perform pairwise net-
work alignment. Thus, our modifications of IsoRank are
meant to adopt it to temporal networks. First, we cal-
culate the homology score between all pairs of nodes
(u, v) where u ∈ V 1 and v ∈ V 2 as the similarity
score of their sequences using BLAST [35]. We denote
the homology score between u and v as H[ u, v]. Next,
we calculate the topological similarity matrix at the ith
time point, denoted as Ai, as follows. First, we initial-
ize Ai to be the zero matrix. Next, for u, w ∈ V 1 and
v, z ∈ V 2 we let Ai[ (u, v), (w, z)] = 1

|N(
w|G1

i
)||N(

z|G2
i
)| if w ∈

N
(
u|G1

i
)

, z ∈ N
(
v|G2

i
)
, where N(v|G) denotes the neigh-

bors of v in network G. Conceptually, Ai[ (u, v), (w, z)]
models the topological support that the node pair (u, v)
gives to the alignment of their neighboring pair (w, z) at
the ith time point. We integrate the homology and the
topology scores for G1

i and G2
i at the ith time point itera-

tively using a mixing parameter α. We initialize H0
i = H .

We then update the similarity between node pairs at

iteration r as Hr
i = αAiHr−1

i + (1 − α)H0
i . We stop this

iterative process when Hr
i = Hr−1

i .
We note that in subsequent iterations of the above for-

mulation, the homological similarity of each node pair
(w, z) propagates their neighboring pairs (u, v) by a func-
tion governed by the topology matrix and the mixing
parameter α. We explain three issues arising from these
iterations. First, as the number of neighbors of w and z
increases, the similarity propagating to each neighbor pair
decreases because the number of ways to align nodes w
and z without altering the topological similarity grows
with increasing number of their neighbors. Secondly, as
the value of α decreases, the contribution of the homo-
logical similarity to the final similarity value between each
node pair grows and the contribution of the topologi-
cal similarity decreases. In the extreme case when α = 0,
the topological similarity has no contribution. Lastly, the
iterations above are guaranteed to converge since Ai is a
column stochastic matrix (i.e., the values at each column
add up to one). We denote the converged vector at the ith
time point with Si and call it a score vector. Each entry
Si[ u, v] in this vector shows the similarity (homology and
topology combined) between nodes u and v.

We generate an initial alignment ψ0 as follows. We first
construct a weighted bipartite network Gbp =

(
V 1, V 2, E

)

as follows: we insert an edge in Gbp between each pair of
nodes (u, v) such that u ∈ V 1 and v ∈ V 2. We set the weight
of the edge (u, v) as the similarity between nodes u and
v aggregated over all time points. We denote the similar-
ity as S(u, v) =

∑t
1 Si(u, v). The maximum-weight bipartite

matching algorithm maps each node in V 1 to a node in V 2

[36]. This mapping represents the initial alignment, ψ0.
We call the nodes in V 2 that are not mapped to any node
in V 1 as gap nodes and denote with F = V 2 − �

(
V 1).

PHASE II (SELECT k SWAPPING PAIRS). Here, we
describe our dynamic programming algorithm that selects
a set of k swaps which maximize the alignment score by
reducing the number of connected components in the
induced alignment across all time points of G2 (see Eq. 1).

We denote a set of r swaps with � =
{(u1, v1), (u2, v2), . . . , (ur , vr)} with ∀i 	= j, ui 	= uj and
vi 	= vj. We denote the alignment after applying the swaps
in a given set � as ψ�. Let us denote the optimal set of
r swaps for the alignment ψ with solution

(
r, ψ ,G1,G2).

Also, for a given ui ∈ �
(
V 1), we denote the optimal set

of r swaps for the alignment ψ which contains the swap
pair (ui, vi), ∃vi ∈ F , with solution

(
r, ui, ψ ,G1,G2).

Our algorithm works iteratively. In the first iteration,
our algorithm selects one swapping pair for each aligned
node ui ∈ �

(
V 1) as

solution
(
1, ui, ψ ,G1,G2) = argmax

�={(ui ,vi)},vi∈F

{
score

(
G1,G2|ψ�

)}
.
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At each subsequent iteration r where 2 ≤ r ≤ k, for each
aligned node ui ∈ �

(
V 1), our algorithm selects a set

of r swapping pairs denoted with solution
(
r, ui, ψ ,G1,G2)

by adding one swapping pair (ui, vi), ∃vi ∈ F , to the
previously selected r − 1 pairs as follows.

argmax
�={(ui,vi)}∪

solution(r−1,uj ,ψ ,G1,G2),�

{
score

(
G1,G2|ψ�

)}
. (2)

Here � represents the necessary conditions to include
the (ui, vi) swap pair with a set of r − 1 swap pairs as

� = (vi ∈ F)AND(
uj ∈ �

(
V 1)) AND(

�v ∈ F, such that(ui, v) ∈ solution
(
r − 1, uj, ψ ,G1,G2))

AND(�u ∈ �(V 1), such that
(u, vi) ∈ solution(r − 1, uj, ψ ,G1,G2)).

The first condition above ensures that node ui is
swapped with a gap node and the second ensures the
dynamic programming iterates over all size r−1 swap sets
for all aligned nodes of G2. The third condition ensures
that the aligned node ui has not already been swapped in
the r − 1 sized swap set. The final condition is the dual
of the previous one, as it ensures that the gap node vi has
not already been swapped in the r − 1 sized swap set.
When these conditions hold, the two nodes ui and vi can
be swapped and included into the existing set of r − 1
swaps without conflicting with any of the existing swaps.

We report the output of the algorithm at end of the kth
iteration as set of k swaps with the highest alignment score
using equation

�=solution(k,ψ ,G1,G2)=
argmaxui∈�(V 1),�i=solution(k,ui ,ψ ,G1,G2)

{
score

(
G1,G2|ψ�i

)}
. (3)

Complexity Analysis. We represent the set cardi-
nalities |V 1|, |V 2|, and |F| with m, n, l, respec-
tively. The complexity of our algorithm is O

(
m2n2) +

O(mn log m) + ml
∑t

i=1 |E2
i | + O

(
k2l2m

)
. We note that

k ≤ NCC
(
ψ

(
V 1) | G2) − 1. This value is either given

as input or we set it to NCC
(
ψ

(
V 1) | G2) − 1. Next, we

provide the derivation of this complexity.
Here we analyze the complexity of our method. Recall

that we represent |V 1|, |V 2|, and |F| with m, n, l respec-
tively. We refer to “Related Work” section as we discuss
the phases of our method. For each phase, we explain
its complexity. We then summarize the complexity of all
phases to denote the overall complexity of our method.
These phases are;

(1) PHASE I (CONSTRUCT INITIAL ALIGNMENT). In this
phase, we calculate the similarity score between node
pairs of the input two networks based on their homol-
ogy and their topology. First to calculate the topology
vector Ai, we need to trace neighbors of all node pairs
which is performed in O

(
m2n2). Thus, the complexity

of calculating the topology score for all time points is
O

(
m2n2t

)
. We then integrate the homology and topol-

ogy score by multiplying the topology and the homology
vectors in O

(
m2n2). The algorithm repeat the previous

step, let us say for c times to converge
(
O

(
m2n2c

))
. We

select the initilat alignment using the weighted-bipartite
matching algorithm in O(mn log m). Thus, in this sce-
nario, the complexity of this phase becomes O

(
m2n2) +

O(mn log m).
(2) PHASE II (SELECT k SWAPPING PAIRS). This phase is

performed in two steps. The first step performs the initial-
ization process of the dynamic programming algorithm,
in which we calculate the profit of swapping a gap node fl
with an aligned node vj. In order to to this, we calculate
the number of components that fl can connect if swapped
with vj using depth first search through all time points in
ml

∑t
i=1 |E2

i |. The second step performs the iterative pro-
cess of selecting k swapping pairs where the maximum
number of iterations is (k − 1). The process combines a
gap node fl (i.e. 1 ≤ l ≤ |F|) with a set from swapping pairs
from the previous iteration where the maximum num-
ber of sets is l. Due to resolving the conflict nodes issue,
each combination may trace all profits of all gab nodes
in the current combination. This process is performed in
O(km). Thus, the complexity of the second step of phase
II is O

(
(k − 1)l2km

)
= O

(
k2l2m

)
. Hence, the complexity

of phase II is ml
∑t

i=1 |E2
i | + O

(
k2l2m

)
.

In summary, the complexity of our method consider-
ing all the previous phases is O

(
m2n2) + O(mn log m) +

ml
∑t

i=1 |E2
i | + O

(
k2l2m

)
.

Proof of correctness. Here, we formally proof the cor-
rectness of our algorithm. We say that swapping the pair
of nodes (ui, vi) is proper if that the swapping does not
increase the number of connected components of the
aligned nodes. We first prove that our algorithm will
always find a proper swapping node ui from the set
of aligned node for each gap node vi. We first present
a lemma which is necessary for the proof of our first
theorem. Let us denote the degree of a node v (i.e. number
of edges connected to this node) within a component Ci =
(Vc, Ec) of the induced subnetwork Ḡ2

i = (
�

(
V 1) |G2

i
)

at
time point i with the function deg(v|Ci).

Lemma 1 Given an undirected subnetwork of G2
i , Ḡ2

i =
(
�

(
V 1) |G2

i
)

where |Vc| = z and Ḡ2
i is acyclic network

(has no cycle) within its topology, then
∑

v∈Ci deg(v|Ci) =
2(z − 1).

Proof Since Ci is a connected subnetwork with no
cycles, the number of edges in Ci equals z − 1 edges.
Each edge belongs to an undirected network increases
the sum of the network nodes degrees by two. Thus,∑

v∈Ci deg(v|Ci) = 2(z − 1).
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Lemma 2 Given a gap node vi that connects at least
two connected components, there exist at least one aligned
node ui which we can swap with vi without increasing the
number of connected component.

Proof We formally prove this by induction on the size of
connected components that ui belongs to.

BASE CASE. We consider a component Ci = (Vc, Ec)
where |Vc| = 2 and vi is connected to Ci through uj, and
assume ui belongs Ci. If we swap vi with ui, then Ci will
contain uj and vi which corresponds to one component.
Thus, the number of connected components of Ci is still
one after swapping.

INDUCTION HYPOTHESIS. We assume there exists a
node ui for all components of size q nodes that can be
swapped without disconnecting its component. We con-
sider two cases of one component Ci where vi is connected
to through uj. The first case is when Ci contains at least
one cycle with the set of nodes, Vc1 = {v1, v2, . . . , vn}. It
follows that for each node ui ∈ Vc1 and ui 	= uj, ui can be
swapped with vi without disconnecting Ci. In the second
case, Ci represents acyclic network with no cycles. Next,
we prove our theorem in this case by contradiction. First,
we assume that the number of nodes in Ci with degree
equal to 1 is less than 2. Consequently,

∑
v∈Ci deg(v|Ci) ≥

2(z − 1) + 1, which contradicts Lemma 1. Thus, the
number of nodes in Ci with degree equal to 1 is at
least 2 nodes and thus, ∃v, w ∈ C st. deg(v|C) = 1 and
deg(w|C) = 1 and v 	= w. Therefore, we can swap vi with
either v or w.

Next, we prove that swapping a gap node vi with an
aligned node ui at each iteration will increase the align-
ment score score(G1,G2|ψ), showing that the alignment
score will always improve by our dynamic programming
algorithm.

Theorem 1 Given a value of δ where δ is greater than or
equal to S(ψ(ui), ui) for all ui ∈ V 2. At each iteration of
our algorithm, score(G1,G2|ψ) monotonically increases.

Proof We assume that our algorithm chooses one pair
of nodes to swap; a gap node vi and aligned node ui
which will connect x number of components. We note
that the condition x ≥2 must be satisfied for vi to be
considered for swapping. Also, it follows from Lemma 2
that if we swap vi and ui then the number of connected
components will not increase. Thus, the difference in
the score equals D = δ(x − 1) − puv where puv is the
difference in pairwise score from swapping (i.e. puv =
S(ψ(ui), ui) - S(ψ(ui), vi)). Since δ is greater than or
equal to S(u, v) ∀ u ∈ V 1 and ∈ V 2, then δ(x − 1)

≥ puv. Consequently, D ≥ 0 and score(G1,G2|ψ) will
not decrease.

Proof of NP-hardness. Here, we prove that our prob-
lem is NP-hard. To do that, we reduce the Maximum
Coverage Problem (MCP), which is known to be NP-hard
[37], to our problem. Given a positive integer ḱ and a col-
lection of sets, S = {S1, S2, . . . , Sm}, MCP seeks the subset
Ś ⊆ S such that |Ś| ≤ ḱ and the number of covered
elements | ⋃Si∈Ś Si| is maximized.

We reduce MCP to an instance of our problem. Let
U = {x1, x2, . . . , xn} be the union of elements in S (i.e.
U = | ⋃Si∈S Si|). We construct a target temporal network
G2 with one time point G2 = (

V 2, E2) as follows. We
initialize G2 as V 2 = ∅ and E2 = ∅. Next, we add a
node aj in G2 for each element xj ∈ U . Also, for each set
Si ∈ S, we add two nodes fi and bi in V 2. Formally, V 2 =
{a1, a2, . . . , an}∪{b1, b2, . . . , bm}∪{f1, f2, . . . , fm}. Next, we
populate the set of edges E2. To do that, for all Si ∈ S and
xj ∈ Si, we insert the edge (fi, aj) in E2. In addition, for all
pair of sets Si, Sj ∈ S, where i < j, we insert the edge (fi, fj)
in E2. Finally, for a given query network G1 = (

V 1, E1), we
construct the set of nodes in G2 aligned to those in G1 as
�

(
V 1) = {a1, a2, . . . , an} ∪ {b1, b2, . . . , bm}. Thus, the set

of gap nodes is {f1, f2, . . . , fm}. Notice that, the subnetwork
of G2 induced by �

(
V 1) has m + n nodes but it contains

no edges as all the edges in G2 are connected to a gap node
by our construction. Thus, the alignment yields n+m con-
nected components as each node in �

(
V 1) represents a

component.
Recall that each swapping operation swaps an aligned

node with a gap node. Also, recall that the optimiza-
tion problem we solve for aligning temporal networks
aims to find at most k swaps, such that after apply-
ing those swaps, the number of connected components
NCC

(
�

(
V 1) | G2) is minimized (see “Problem Formu-

lation” section). We call this optimization problem mini-
mum Connected Component Problem (mCCP) in the rest
of this proof. Next, we prove that MCP is maximized if
and only if mCCP is minimized.

First, we prove that if there exists a solution to mCCP,
then there exists a solution to MCP. In other words, we
prove that minimizing mCCP maximizes MCP. Let us
denote the nodes corresponding to the elements in a set
Si with Ai = ∪xj∈Si{aj}. In our problem instance, a swap
operation swaps fi with a node in the set V 2 − Ai −
{fi}. This is because all nodes in Ai are connected to fi,
and thus swapping fi with a node not in Ai ensures that
all nodes in Si ∪ {fi} form one connected component.
Therefore, to minimize the number of connected com-
ponents, we swap fi with one of the nodes which is not
a part of this connected component. To ensure that, we
swap fi with a node in the set {b1, b2, . . . , bm}. Since all
nodes in this set are disconnected, swapping fi with any
node in this set will yield the same number of connected
components. Let us assume that the solution to mCCP
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performs k swaps. Following from the discussion above,
without losing generality, we assume that these swaps
are {(f1, b1), (f2, b2), . . . , (fk , bk)}. Notice that after these
swaps, the nodes in (∪k

i=1Ai) ∪ {f1, f2, . . . , fk} forms one
connected component, and all remaining nodes are iso-
lated. Let us denote the number of connected components
after these swaps with β . Let us denote the number of
nodes in (∪k

i=1Ai) with τ . Notice that τ also reflects the
number of elements covered in (∪k

i=1Si). We have β =
(m − k) + (n − τ) + 1.

In the formulation above, the first term (m − k) is
the number of nodes bj which are not swapped with
a gap node. Since all those nodes are isolated, each
one forms a connected component by itself. The second
term (n − τ ) is the number of nodes aj which are not
included in the set

(
∪k

i=1Ai
)

. These nodes remain iso-
lated even after swapping of nodes. The last term (i.e.,
1) is the connected component containing the nodes in(
∪k

i=1Ai
)

∪ {f1, f2, . . . , fk}. After minor algebraic manip-
ulation, we rewrite the equation above as β = (m +
n − k + 1) − τ . In this equation, the parameters m, n,
and k are input to the given mCCP problem, and thus
we denote the first term above with the constant c =
m + n − k + 1. Therefore, we have β = c − τ . In
this equality the smaller the value of β is, the larger τ

gets. Thus, minimizing the number of connected compo-
nents β in mCCP maximizes the nuumber of elements
covered in MCP.

Second, we prove that if there exists a solution to MCP,
then there exists a solution to mCCP. In other words,
we prove that maximizing MCP minimizes mCCP. Let us
assume that the solution to MCP is Ś = {

S1, S2, . . . , Sḱ
}

.
The number of elements covered by this solution is τ́

= | ⋃Si∈Ś Si|. By constructing an instance of mCCP as
described above, we have ḱ swaps denoted with the set{
(f1, b1), (f2, b2), . . . , (fḱ , bḱ

}
. Consequently, after perform-

ing these swaps, the nodes in
(
∪ḱ

i=1Si
)

∪ {
f1, f2, . . . , fḱ

}

forms one connected component, and all the remaning
nodes are isolated. Let us denote the number of connected
components with β́ . We have β́ = (m − ḱ) + (n − τ́ ) + 1.

After minor algebraic manipulation, we rewrite the
equation above as τ́ =

(
m + n − ḱ + 1

)
− β́ . Since m, n,

and ḱ are input parameters, we have τ́ = c − β́ , where
c is a constant

(
c =

(
m + n − ḱ + 1

))
. In this equality,

the larger the value of τ́ is, the smaller β́ gets. Thus,
maximizing τ́ in MCP results in maximizing β́ in mCCP.

Lastly, the proof we describe above reduces an instance
of MCP to an instance of mCCP in polynomial time and
space as it requires only building a network with O(n +
m) nodes and edges. Thus, we conclude that the mCCP
problem is NP-hard.

Results and Discussion
We evaluate the performance of our algorithm on syn-
thetic and real data. Next, we describe both datasets in
detail.

Real Dataset. We obtain our real dataset from two
sources. The first one is the human brain aging dataset
[16]. This dataset contains microarray human brain gene
expressions profiles obtained from 55 individuals span-
ning 37 ages from 20 to 99 years. Data from each individ-
ual is collected in at least two of the four brain regions
namely, the hippocampus, entorhinal cortex, superior-
frontal gyrus, and postcentral gyrus. These samples were
preferentially selected where tissue was available, thus the
number of tissues vary across different individuals. In
total, transcription values for 173 samples are collected.
Overall, the dataset contains 9426 genes with different
expression across ages. The ages in this dataset are not
uniformly spaced. In order to bring consecutive time gaps
to a more uniform values, we remove two data points
which have an age gap of more than 5 years from their
successive age values, leading to 35 ages. The samples
from each age group were found to be correlated [16].
Thus, to construct different correlated temporal networks
from these dataset, we form temporal networks that each
has interleaved age groups. We select five temporal net-
works each having seven time points. Next, we explain
how we do that for the first temporal network. We start
with the first (i.e., youngest) time point in the aging data.
We then skip the next four time points and take the sixth
time point in aging data iteratively until we have seven
time points. Similarly, for 1 < j ≤ 5, we select the
jth temporal network starting from the jth time point.
In this manner, we form five non-overlapping and inter-
leaved temporal networks. In order to integrate static PPI
network with gene expression data to form age-specific
PPI networks, we set a cut-off on the gene-expression
value. All the interactions that have a lower transcrip-
tion value for either or both the proteins are removed
from the corresponding age-specific network. We use
the protein-protein interaction (PPI) network data from
BioGRID [38]. For the second source, we select pheno-
type specific query temporal networks from this dataset.
We use two neurodegenrative disorders which are con-
jectured to be age-related (Alzheimer’s and Huntington’s)
and a third one which we expect to be less prone to
aging (Type II diabetes). We retrieve the gene sets spe-
cific to these three diseases from KEGG database [39]. We
form three query PPI temporal networks by keeping only
the interactions where both the interactors are from each
of the three phenotype-specific (Alzheimer’s, Hunting-
ton’s or Type II Diabetes) gene set. We form temporal
networks of phenotype disease by taking the intersec-
tion of phenotype genes and temporal networks of aging
dataset.
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Synthetic dataset. We generate synthetic networks to
observe the performance of our method under a wide
spectrum of parameters classified under two categories;
(i) network size and (ii) temporal model parameters,
namely number of time points, temporal rate, and cold
rate. We vary the target network size to take values from
{100, 250, 500, 750, 1000}. We fix the network density to
two edges per node on the average (i.e., mean node degree
is set to four). We randomly select G1

1 as a connected sub-
network of G2

1. We set the size of the query network to
50 nodes. We generate target network G2

1 using Barabási-
Albert (BA) [40] model as this model produces scale-free
networks. In order to explain the parameters in the sec-
ond category, we describe how we generate the query and
target networks G1

1 and G2
1 at the first time point. We then

explain how we use the parameters in this category to
build the query and target networks at the remaining time
points.

We generate the subsequent networks for the remain-
ing time points using the three parameters in the second
category above as follows. The first parameter is the num-
ber of time points t in G1 and G2. We use 5, 10, 15, and
20 time points in our experiments. Recall that we select
a subnetwork of the target network G2

1 as the first query
network G1

1. We mark all nodes and edges in G2
1 within

this subnetwork as cold nodes and edges respectively. We
mark all other nodes and edges in G2

1 as hot. Next, we iter-
atively generate the networks G1

i and G2
i at the ith time

point (i > 1) from G1
i−1 and G2

i−1 respectively as follows.
Let us denote temporal and cold rates (two real numbers)
with ε and εc respectively such that 0 ≤ εc ≤ ε ≤ 1. Let us
denote the ratio of cold edges to the total number of edges
in the target network G2

1 with γ . We calculate the hot rate,
denoted with εh, from temporal rate and cold rate as εh =
(ε − εcγ )/(1 − γ ). Conceptually, hot and cold rates model
the rate of evolution of hot and cold edges between two
consecutive time points respectively. More specifically, for
each subsequent time point i, we generate G2

i by random-
izing G2

i−1 as follows. We iterate over all edges in G2
i−1. For

each edge e, if it is a cold edge we remove it with probabil-
ity εc and insert a new edge between two randomly chosen
cold nodes. If e is a hot edge, we remove it with probability
εh and insert a new hot edge between two random nodes
(with at least one being a hot node). We generate query
networks at subsequent time points using almost the same
procedure with the only difference being that all edges are
cold. We generate datasets by varying ε and εc to take the
values {0.05, 0.1, 0.2, 0.4, 0.8} and {0.05, 0.1, 0.2} respec-
tively. For each parameter setting we generate 10 target
and query temporal networks.

Recall that, we generate the scoring matrix based on
both homology and topology similarities. We generate the
homology score between two pair of nodes u ∈ V 1 and
v ∈ V 2 as follows. If v was originally selected as cold node

and u is the same as v, then we generate a homology score
between u and v from log-normal distribution [41] with
mean 2μ and standard deviation σ . Otherwise, we ran-
domly generate the homology score between u and v from
log-normal distribution with mean μ and standard devi-
ation σ . In this way, we allow nodes in query network
to be likely to align to nodes in the target network that
were originally extracted from. In this paper, we set μ and
σ to be 2 and 0.25 respectively. Notice that the homol-
ogy scores do not change through time points, although
topology scores do. Thus, evolution through time points
of query and target networks may affect how the query is
aligned to the cold region in the target network. We set
the edge insertion penalty δ to be max

u∈V 1,v∈V 2
S(u, v).

We compare the accuracy and running time of our
algorithm against IsoRank, MAGNA++ and GHOST. Iso-
Rank, MAGNA++ and GHOST are designed to align two
networks at a single time point. We therefore find the
alignment using each of these methods at each time point,
impose the alignment to all the time points and report
the average. We analyze the biological significance of our
results on real data by performing gene ontology analy-
sis and exploring publication evidence. We implemented
Tempo in C++, performed all experiments on a computer
equipped with AMD FX(tm)-8320 Eight-core Processor
1.4 GHz CPU, 32 GB of RAM running Linux operating
system, and used α = 0.7 unless otherwise stated.

Evaluation on real data
In this section, we evaluate Tempo on the real data. We
first evaluate the significance of alignment score using
Tempo. We calculate the z-score by comparing the score
of aligned nodes to the score of 1000 randomly selected
alignments of the same number of nodes. We compare
our results to those of IsoRank. We repeat this experiment
for three different disease network queries: Alzheimer’s,
Huntigton’s and Type-II diabetes. Figure 3 shows the
results. Our results demonstrate that Tempo yields highly
significant alignments, and outperforms IsoRank in terms
of z-score. We also observe that z-scores of non-age
related disease (diabetes) is lower than those of age-related
diseases (i.e. Alzheimer and Huntington’s). Although there
are some fluctuations in the z-score with growing time gap
between query and target networks, we observe that the z-
score tends to increase for Alzheimer’s and Huntington’s
disease unlike the Type-II diabetes. This suggests that age-
related pathways have higher evolution rate than other
pathways. Thus, we conjecture that Tempo, which takes
all time points into consideration, is suitable for capturing
evolving topologies.

Next, we consider the biological significance of our
results by identifying aligned gene pairs in which
the aligned genes are different, and determining prior
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Fig. 3 The average z-score of our method using real data of three different diseases; Alzheimer’s, Huntington’s and Type-II diabetes. The x-axis shows
which time points was selected to represent the target network. The y-axis shows the z-score of IsoRank (white bars) against our method (black bars)

evidence that these gene pairs are biologically relevant.
We use Tempo to identify 4, 4 and 6 such pairs for
Alzheimer’s, Huntington’s and Type-II diabetes, respec-
tively. We note that Alzheimer’s, Huntington’s and Type-II
diabetes query sizes are 39, 36, and 23. Thus, the percent-
ages of the different genes found to all the genes in the
alignment are 10% to 26%. IsoRank only mapped genes to
themselves, suggesting that IsoRank only considers static
topologies while our algorithm could map genes based
on homological similarities as well as evolving topologies.
MAGNA++ and GHOST could only map few genes to
themselves while other mapped genes were poorly related.

For each combination of disease and differently mapped
gene pairs identified by Tempo, we first search PubMed
for publication evidence specific to that disease. For
instance, in case of Alzheimer’s disease, the gene DAB1
that was selected by Tempo and was identified as a poten-
tial gene that encode proteins related to functions in bio-
logical pathways relevant to the disease [42]. Genes found
by Tempo for type II diabetes, for example gene ACTA1,
has remarkable change in gene expression value that was
observed for the in diabetic samples compared to non-
diabetic samples [43]. Moreover, significant up-regulation
of GRB2 is observed in transgenic samples compared to
controls [44].

Evaluating signaling pathways. In order to determine
the biological processes of the aligned genes found by
Tempo in gene aging dataset, we perform the gene ontol-
ogy analysis of the aligned genes in target network using
Gene Ontology Consortium [45]. We identify the bio-
logical processes or signaling pathways that play signifi-
cant roles in the disorder. Notice that, while the aligned
genes represent many pathways, we only focus on path-
ways that are related to the underlying query phenotype.
We compare all significant pathways later in this section.
We calculate how many related pathways found by our
method (Tempo) against MAGNA and GHOST and their
significance. We also counted the frequency of those path-
ways when used different range of time points. Table 1
present the results. We find references of certain path-
ways that are related to specific neurodegenerative disor-
ders (Alzheimer’s and Huntigton’s diseases). For genes we

identify when we use Alzheimer’s disease as a query net-
work, we find two pathways, namely Alzheimer disease-
amyloid secretase and Alzheimer disease-presenilin are
related to Alzheimer’s disease [46]. Various growth fac-
tors alter the brain development process at younger
age, that manifest as a variety of risk factors at an
older age and eventually results in aging-related dis-
eases such as Alzheimer’s and Huntigton’s diseases [47].
For the genes we identify when we use type II dia-
betes phenotype as a query, we find two pathways that
they are commonly associated with type II diabetes [48]
namely Insulin/IGF pathway-protein kinase B signaling
cascade and Insulin/IGF pathway-mitogen activated pro-
tein kinase kinase/MAP kinase cascade. On the other
hand, MAGNA or GHOST found at most one pathway
with very low significance and did not appear through all
tested target networks (see Table 1). In conclusion, study-
ing temporal networks in general and human aging specif-
ically using Tempo enables us to identify age related genes
from non age related genes successfully. More impor-
tantly, Tempo takes the network alignment problem one
huge step forward by moving beyond the classical static
network models.

Next, we compare significant pathways which are
related to query phenotype to the rest of the pathways
of aligned genes using Tempo as well as MAGNA and
GHOST. In order to perform this comparison, we present
the percentage of genes that contributes to the signif-
icant pathways which are related to the query disease.

Table 1 Number and significance of functional pathways
associated with the underlying disease observed among the
aligned genes of target network

Disease Tempo MAGNA++ GHOST

Alzheimer 2 / 4 / 2.29E-14 1 / 2 / 2.14E-03 1 / 2 / 3.32E-04

Huntigton’s 1 / 4 / 1.15E-22 0 0

Diabetes 2 / 4 / 2.29E-09 1 / 1 / 2.2E-01 0

Each cell lists the results in the form x/y/z. Here, x represents number of pathways
identified, y denotes the number of time points at which these pathways are
observed, and z is the statistical significance (p-value) of the least significant of these
pathways. The cell with the value 0 implies that no pathways were found
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We show the results for Alzheimer disease. Results are
similar for the other two queries. Recall that using our
algorithm we could find two pathways that are related
to Alzheimer disease while MAGNA and GHOST find
only one (see Table 1). Figure 4 presents the results. The
results demonstrate that the aligned genes result from
our method have two pathways that are associated with
Alzheimer while MAGNA and GHOST results in only
one. In addition our method finds alignments in target
network with substantial fraction of genes that contributes
to the pathways which are associated with the query dis-
ease (15.6% and 18.7% of the genes in the two pathways).
On the other hand, resulting alignments of MAGNA
and GHOST contributes with a very small fraction
to pathways associated with Alzheimer; more precisely
2.2% and 1.64% of the genes for MAGNA and GHOST
respectively.

Evaluation of recovered query. In this experiment,
we evaluate the recovered query region from gene aging
dataset by our algorithm, Tempo, against MAGNA++
and GHOST on real dataset. The recovered region com-
putes the percentage of genes in the query network that
were mapped to themselves in the target network despite
their evolving topologies. Tables 2, 3, and 4 present the
results for Alzheimer’s, Huntington’s, and Type II dia-
betes respectively. The results show that our algorithm
significantly outperform both MAGNA++ and GHOST
by aligning similar genes despite their evolving topologies.
On the other hand, MAGNA++ and GHOST could poorly
align small portion of the query genes to themselves. This
suggests that our algorithm could successfully capture the
evolving topologies of the genes through time points while
other algorithms fail to do so since they consider aligning
each time point independently.

Evaluation on synthetic dataset
Evaluation of recovered region. In this experiment, we
compare the accuracy of the alignment generated by
Tempo against that of IsoRank, MAGNA++, and GHOST.

We recall that we select the original query network from a
subset of nodes and their edges from the target network,
and then evolve the query through time points. Here,
we evaluate the accuracy by calculating the percentage
of the aligned nodes from query network that are paired
with the same nodes of the target network that they were
originally selected from. We refer to this percentage as
recovered region. We illustrate the results in Fig. 5, which
demonstrate that Tempo recovers high percentage of the
query networks compared to other methods. As the tem-
poral rate increases, the accuracy of Tempo improves dra-
matically while that of IsoRank remains nearly stagnant
and while MAGNA++ and GHOST continue to generate
alignments with low recovery rates. Growing the temporal
rate while keeping the cold rate unchanged means that the
topology of the query network (i.e., cold edges) is evolv-
ing slower than the rest of the temporal network (i.e., hot
edges). This implies that Tempo can capture the varia-
tion in such evolutionary rate while competing alignment
strategies which fail to do so.

Evaluation of induced conserved structure. Next, we
evaluate the topological quality of the alignment gen-
erated by Tempo through comparison with IsoRank,
MAGNA++, and GHOST. For this purpose, we mea-
sure the shared topological structure between G1

i and
G2

i which is preserved under the alignment function ψ

through all time points i. Induced conserved structure
(ICS) measures the percentage of edges from G1

i that
are aligned to edges in G2

i to the total edges of the
induced subnetwork �

(
V 1|G2

i
)
, and is one of the most

common measures of topological quality [14]. Formally,
ICS(G1,G2, ψ) =

∑t
i=1

|E1
i ∩E2

i
[
�

(
V 1|G2

i
)]|

|E2
i [�

(
V 1|G2

i
)
]| . Figure 6 presents

the results, which demonstrate that Tempo generates
alignments with high quality based on ICS compared to
other algorithms. We note that GHOST was created to
optimize ICS, however, Tempo outperforms GHOST on
this measure—especially when the temporal rate is high
since the performance of GHOST degrades.

(a) (b) (c)
Fig. 4 This figure represents the percentage of genes that contributes to each pathway of the resulting aligned genes in the target network. We
point to the significant related pathways of the query disease (Alzheimer). a Tempo b MAGNA c GHOST
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Table 2 Percentage of recovered query genes from gene aging
dataset when using Alzheimer’s phenotype as query

Target time points Tempo MAGNA++ GHOST

First 7 94.87 2.56 0

Second 7 97.43 5.13 0.36

Third 7 97.43 2.56 0

Forth 7 97.43 2.56 0

Evaluation of edge correctness. In this experiment, we
evaluate the topological quality of the alignment gener-
ated by our method against IsoRank, MAGNA++, and
GHOST. For this purpose, we measure the shared topo-
logical structure between G1

i and G2
i which is preserved

under the alignment function, ψ through all time points
i. Edge correctness (EC) is one of the most common
measures of topological quality [14, 15]. It has a similar
computations to ICS. Basically, it measures the percent-
age of edges from G1

i that are aligned to edges in G2
i

to the total edges of smaller network. More specifically,
EC(G1,G2, ψ) = ∑t

i=1
|E1

i ∩E2
i [�

(
V 1|G2

i
)
]|∣∣E1

i
∣∣ . Figure 7 presents

the results. The results demonstrate that our algorithm
generates alignments with high quality based on EC com-
pared to other algorithms.

Evaluation of statistical significance of the align-
ment. We compare the statistical significance of the align-
ments generated by Tempo against that of existing meth-
ods. In order to ensure that our experiments do not give
any advantage to our algorithm, we use IsoRank to gen-
erate initial alignments for Tempo and thus, compare the
statistical significance against IsoRank only.

(I) Varying evolution rate. In this experiment, we eval-
uate the effect of varying the temporal rate (ε) and cold
rate (εc) on the significance of the score of the alignments
produced by Tempo and that of IsoRank. We generate syn-
thetic networks of sizes {100, 250, 500, 750, 1000} and 20
time points. We fix the network density to two edges per
node on the average, and vary ε and εc (εc ≤ ε) to take the
values {0.05, 0.1, 0.2, 0.4, 0.8} and {0.05, 0.1, 0.2}, respec-
tively. Next, we randomly selected 50 nodes from target
network 1000 times, and calculate the alignment score of
each, i.e., each random selection corresponds to an align-
ment. We calculate the mean and standard deviation of

Table 3 Percentage of recovered query genes from gene aging
dataset when using Huntington’s phenotype as query

Target time points Tempo MAGNA++ GHOST

First 7 90.9 0.36 0

Second 7 86.36 0 0

Third 7 95.45 0.73 0

Forth 7 95.45 0.73 0

Table 4 Percentage of recovered query genes from gene aging
dataset when using Type II diabetes phenotype as query

Target time points Tempo MAGNA++ GHOST

First 7 97.22 2.56 0

Second 7 97.22 2.56 0

Third 7 97.22 5.12 0

Forth 7 97.22 2.56 0

these 1000 scores and generate the z-score of the align-
ment generated by Tempo using this mean and standard
deviation. Hence, we denote the score generated from our
method by S∗, and denote the mean and standard devia-
tion of 1000 scores generated from the random selections
with Sμ and σ , respectively. We calculate the z-score of
our method as (S∗−Sμ)/σ . We calculate the z-score of the
IsoRank method in a similar manner. Figure 8 presents the
average z-score values across all target network sizes. The
results show that as we increase the temporal rate, the z-
score of Tempo significantly increases while the z-score of
IsoRank increases by small amount. As the evolution rate
increases, the topology of the alignment found by Tempo
differs significantly from the topology of rest of the net-
work, and thus, it becomes more challenging to find the
correct alignment. However, Tempo continues to generate
accurate and significant results especially for large evolu-
tion rates unlike IsoRank which considers each single time
point independently. We observe the same pattern as we
increase cold rate.

(II) Varying time points. In this experiment, we evalu-
ate how the z-scores of Tempo and IsoRank differ as the
input networks evolve and deviate from each other. More
specifically, we consider aligning the query network with
each of the four target sets we have which have evolv-
ing time points (i.e. older ages) as we move to later target
sets. First, we measure the z-score of aligning the query
to the first target set (i.e., containing time points 2, 7, 12,
. . . ) then we measure the z-score of aligning the query
to the second target set (i.e., containing time points 3,
8, 13, . . . ) and so on. We present the average z-score
across all temporal and cold rates. Figure 9a presents the
results. The results show that Tempo continues to gener-
ate alignment with high score significance as we evolve the
network. We observe the same pattern for IsoRank, how-
ever, Tempo outperforms IsoRank—especially when the
time points are distant. This confirms the fact that as the
target and query networks evolve and deviate from each
other, Tempo is able to take into account the evolution
through consecutive time points and generate accurate
alignments that persist.

(III) Varying network size. In this experiment, we com-
pare the significance of the alignment generated by Tempo
against IsoRank as the target network size increases and
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Fig. 5 The percentage of recovered query in the resulting alignment varying ε and εc to take the values {0.05, 0.1, 0.2, 0.4, 0.8} and {0.05, 0.1, 0.2}
respectively. The x-axis shows temporal rate, ε and cold rate, εc (these are the parameters used for constructing synthetic temporal network, with
varying evolution rates. The y-axis shows the percentage of recovered query of IsoRank, MAGNA++, and GHOST against Tempo. The error bars show
the 80-percentile of the recovered query based on the 10 repetitions of each parameters setting

Fig. 6 The induced conserved structure (ICS) score of the resulting alignment varying ε and εc to take the values {0.05, 0.1, 0.2, 0.4, 0.8} and {0.05, 0.1,
0.2} respectively. The x-axis shows temporal rate, ε and cold rate, εc . The y-axis shows the ICS score of GHOST, MAGNA++, and IsoRank against our
method (Tempo)

Fig. 7 The Edge correctness (EC) score of the resulting alignment varying ε and εc to take the values {0.05, 0.1, 0.2, 0.4, 0.8} and {0.05, 0.1, 0.2}
respectively. The x-axis shows temporal rate, ε and cold rate, εc . The y-axis shows the EC score of GHOST, MAGNA++, and IsoRank against our
method (Tempo)
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Fig. 8 The average z-score of Tempo across network sizes {100, 250, 500, 750, 1000} varying ε and εc to take the values {0.05, 0.1, 0.2, 0.4, 0.8} and
{0.05, 0.1, 0.2} respectively. The x-axis shows temporal rate, ε and cold rate, εc . The y-axis shows the z-score of IsoRank (white) against Tempo (black)

the query becomes small with respect to the target. We
average the z-score across all evolution rates and vary tar-
get network size to take values {100, 250, 500, 750, 1000}.
Figure 9b presents the results, which show that the sig-
nificance of the alignment (best alignment) increases as
we increase the size of the underlying target network. We
expect this behavior since we compare the aligned nodes
(50 nodes) to a random selection of 50 nodes from the
underlying target network. Thus, the chance of selecting
the best alignment decreases. That said, Tempo was able
to identify the accurate alignment which results in high
significant values.

Evaluation of running time. In this experiment, we
evaluate the running time of our algorithm using synthetic
dataset for network sizes as well as number of time points
(t). We report the average running time over all values of ε

and εc with each parameter combination tested 10 times.
We also report the running time for IsoRank, MAGNA++,
and GHOST for aligning two networks at a single time
point. Figure 10 presents the results. The results demon-
strate that Tempo successfully scales to large target net-
works. The running times of both Tempo and IsoRank
grow linearly with increasing target network size and the
number of time points (t). We notice that MAGNA++
has similar behavior than IsoRank, while GHOST has an
exponential running time. The running time of Tempo is

more than that of IsoRank, which is unsurprising since
Tempo computes alignment across multiple time points.
That said, Tempo has practical running time even for
large networks with many time points. More importantly,
unlike IsoRank, Tempo considers the network topology
at all time points while aligning networks. As we present
later in this section, as a natural consequence of the extra
effort our method puts to consider all time points, the
alignment it finds is significantly more accurate than that
of IsoRank which considers only one time point at a time.

Conclusion
In this paper, we modeled the problem of network align-
ment between two given temporal networks and proposed
a new alignment score function. We developed a novel
method to solve this problem by optimizing the alignment
score and generating a persist alignment through all time
points. Our algorithm incorporates a dynamic program-
ming approach which iteratively refines the alignment to
monotonically increase the alignment score. We adapted
IsoRank, MAGNA++, and GHOST which are used for
pairwise static network alignment, to align two temporal
networks by aligning snapshots at each time point inde-
pendently. We compare the quality and significance of the
resulting alignment of both our method and other meth-
ods as well as their running time. We observed that the

(a) (b)
Fig. 9 The average z-score of Tempo (black) against IsoRank (white) a varying target time points, the x-axis shows time point selected, and b varying
network size, the x-axis shows network sizes in terms of number of nodes
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Fig. 10 The total running time of IsoRank and Tempo for synthetic networks varying target network size from {100, 250, 500, 750, 1000}, and varying
t from 5 to 20. The x-axis shows the input network sizes. The y-axis shows the total running time in seconds

running time of our algorithm is reasonable, compared to
other methods, with growing the size of the target net-
work and number of time points, t. In addition, the results
showed that our method generates significantly more
accurate alignments than that of IsoRank, MAGNA++,
and GHOST especially for large evolution rates where
finding the correct alignment becomes hard which indi-
cated that our algorithm could capture temporal evolution
of the two input networks unlike existing methods. Our
experimental results on human aging dataset suggests
that age-related pathways (i.e. Alzheimer and Hunting-
ton’s) have higher evolution rate than other pathways (i.e.
diabetes) and thus, our method could capture such evolv-
ing topologies. Furthermore, we performed gene ontology
analysis on aligned gene pairs and found that our method
could successfully align genes from target network that
are similar to genes of the query or significantly related to
the underlying query phenotype unlike existing methods
which failed to do so.
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