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Abstract

Background: MicroRNAs (miRNAs) play crucial roles in post-transcriptional regulation of eukaryotic gene expression
and are involved in many aspects of plant development. Although several prediction tools are available for
metazoan genomes, the number of tools dedicated to plants is relatively limited.

Results: Here, we present miRkwood, a user-friendly tool for the identification of miRNAs in plant genomes using
small RNA sequencing data. Deep-sequencing data of Argonaute associated small RNAs showed that miRkwood is
able to identify a large diversity of plant miRNAs and limits false positive predictions. Moreover, it outperforms
current tools such as ShortStack and contrary to ShortStack, miRkwood provides a quality score allowing users to
rank miRNA predictions.

Conclusion: miRkwood is a very efficient tool for the annotation of miRNAs in plant genomes. It is available as a web
server, as a standalone version, as a docker image and as a Galaxy tool: http://bioinfo.cristal.univ-lille.fr/mirkwood
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Background
Since their discovery in animals and plants, microRNAs
(miRNAs) have been shown to play pivotal roles in
growth and development of organisms. Canonical miR-
NAs are endogenous ~ 21 nt small RNAs that regulate
key developmental processes or the response to environ-
mental stresses at the post-transcriptional level by
mediating the cleavage of the target messenger RNAs
(mRNAs) and/or by inhibiting their translation. So far,
about 300 miRNAs have been annotated in the model
plant Arabidopsis thaliana. The most conserved ones
play crucial roles in plant patterning, cell identity and
development by coordinating the expression of tran-
scriptions factors and F-box proteins. The most recently
evolved miRNAs target mRNAs encoding a broader
range of proteins and are involved in diverse processes,

including plant response to environmental cues (see for
review [1, 2]).
Many aspects of the biogenesis and evolution of

miRNAs differ between animals and plants. For example,
unlike animal miRNAs, which are mainly found in in-
trons or exons from coding genes, most plant miRNAs
are encoded by discrete genes. Moreover, miRNAs are
released from their precursors (pre-miRNA) using
distinct pathways in the two kingdoms. Animals use a
nuclear Drosha RNAse III enzyme to liberate pre-
miRNA from primary transcript. After nuclear export of
pre-miRNAs, they are cleaved into miRNA/miRNA*
duplexes (miRNA* being the passenger strand) by a
cytoplasmic Dicer enzyme. In plants, both steps of cleav-
ing are performed by a single nuclear Dicer-like protein
(DCL). MIR genes (i.e. genes producing miRNAs) give
rise predominantly to canonical 21-nt miRNAs, which
are generated by DCL1 from hairpin precursors. Beside
21 nt miRNAs, as shown in A. thaliana and rice, DCL3
is capable of generating 24-nt long miRNAs (lmiRNAs)
from pre-miRNAs, which are loaded into AGO4 proteins
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and direct cytosine methylation to trigger transcriptional
gene silencing [3–5]. Also, miRNA precursors are more
heterogeneous in plants than in animals, varying greatly in
size and structure [6]. These differences have justified
dedicated approaches for miRNA gene finding.
High-throughput sequencing of cDNA-libraries de-

rived from endogenous small RNAs (sRNA-seq), is a
widely used and powerful method for the discovery and
annotation of miRNA-producing genes. In particular,
sRNA-seq has uncovered many young and non-
conserved miRNAs (of both 21 and 24 nt) that are less
expressed than their conserved counterparts and there-
fore more difficult to detect. However 24-nt lmiRNAs
could be easily confounded with heterochromatic small
interfering RNAs (hc-siRNAs) that are very abundant in
plant sRNA-seq libraries. Indeed, both are 24 nt in length,
DCL3 dependent, loaded into AGO4, and direct cytosine
DNA methylation. Nevertheless, these two types of sRNAs
present important differences, notably with respect to
their origins. Like canonical miRNAs, lmiRNAs are pro-
duced from hairpin pre-miRNAs, while hc-siRNAs are
produced from dsRNAs originating from transposable
element (TE) loci and DNA repeats. Moreover, hc-siRNAs
specify DNA methylation in cis at the same or very similar
locus from which they originate, while lmiRNAs can
direct DNA methylation at target loci that are different
from those that produce them, typically in trans [5].
Although many computational tools dealing with

sRNA-seq data in animals are available, the number of
tools calibrated for plants is relatively limited (e.g. [7–10],
see [11] for review). Moreover, none of these tools is avail-
able as a web-server or offer a GUI. Considering this gap,
we have developed miRkwood that is specifically designed
for plant miRNAs. It is able to face the diversity of plant
pre-miRNAs (producing canonical and lmiRNAs) and it is
optimised to take advantage of their distinctive properties
[12–14]. Moreover, miRkwood provides information re-
lated to multi-mapping miRNAs. miRkwood is available
as a web-server offering an intuitive and comprehensive
user interface to navigate the data, as well as many export
options to conduct further analyses on a local computer.
Moreover, it is available in command line with a Docker
container and as a Galaxy tool.

Implementation
Workflow overview
miRkwood implements a complete workflow that com-
bines information of both read positions and secondary
structures of miRNA precursors (Fig. 1).

Alignment and filtering
The starting point is to map small RNA sequencing
reads on the reference genome to produce an alignment
file. This can be done by the user with any standard

short read mapper, such as Bowtie2 [15] or BWA [16]
for example. When annotation of the reference genome
is available, it is advised to filter out the alignments
based on the existing annotation provided in GFF files.
This allows to discard false positive predictions due
to degradation products, and speed up the computa-
tion. We offer to mask coding regions, tRNAs, rRNAs
and snoRNAs using their genomic coordinates (see
Additional file 1, Section 1). We also propose to remove
reads that are mapped to more than 5 loci (customizable
threshold) on the reference sequence. This allows to avoid
spurious predictions due to TEs. All these options are
activated by default, but remain optional.

Identification of known miRNAs
When available, genome coordinates of miRNA precur-
sor sequences such as provided in miRBase [17] for
example, may be used to detect known miRNAs that are
expressed in the sequencing data.

Peak-calling
The next step of miRkwood is to locate expression signals
into the set of reads that have not been eliminated in the
previous step. For that, we have developed a method that
is both scalable and takes advantage of the secondary
structure of the precursors. First, we identify areas in the
genome that have been enriched in aligned reads using a
classical k-mean clustering method. Then, for each such
peak we look for RNA duplexes by testing whether the
sequence can bind to a sequence located in the vicinity
(up to 350 nt upstream or downstream of the peak) by es-
tablishing C-G, A-U and G-U interactions. This condition
ensures that the peak can be part of a potential stem-loop
structure, and reduces the number of peaks to consider in
the next step. This search is achieved using a custom
program (see Additional file 1, Section 2).

Secondary structure of the hairpin precursor
After peak detection, miRkwood aims at determining
which sequences can fold into a stable stem-loop struc-
ture. This step is critical because precursor stem-loops
are very heterogeneous in plants. The main idea is to
use the RNALfold software of the RNA Vienna package
[18] to identify locally stable secondary structures
without any prior knowledge. This computation is time
consuming, which is why we have made sure that only a
limited number of peaks are kept from the previous step.
We then select stable secondary structures that are com-
patible with a miRNA stem-loop in terms of length and
number of base pairings. In Section 3 of Additional file 1,
we provide an advanced discussion on the parameters
used and the accuracy of the approach.
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Thermodynamic stability of the hairpin precursor
For each hairpin structure found, we compute the MFE
(minimal free energy), AMFE (adjusted MFE) and MFEI
(MFE index), which are all interrelated. The MFE is cal-
culated using the Matthews-Turner nearest neighbor
model implemented in RNAeval [18]. miRkwood offers
the option to select only sequences with MFEI < − 0.6.
Indeed, more than 96% of miRBase precursors have
an MFEI smaller than − 0.6, whereas pseudo-hairpins
show significantly larger values of MFEI in general
(see Additional file 1, Section 4). The significance of
the stability of the sequence can also be determined
by comparison with random sequences with the same
dinucleotide composition [19].
At this point, the selected loci form the set of candi-

date miRNA precursors. The remaining of the workflow

is devoted to the computation of additional criteria that
bring further evidence to evaluate quality of the candi-
date miRNA precursors. For that, we have introduced a
total of six criteria, that are gathered into a quality score
ranging from 0 to 6 (expressed in stars). Candidates with
a score of 6 fulfill all criteria and are considered highly
reliable.
The first criterion is the stability of the secondary

structure of the precursor. The five other criteria relate
to the distribution of mapped reads along the locus.
They allow to determine if this distribution presents a
typical 2-peaks profile corresponding to the guide
miRNA and the passenger miRNA respectively: number
of reads, existence of the miRNA, precision of the
precursor processing, presence of the miRNA:miRNA*
duplex, stability of the the miRNA:miRNA* duplex.

Fig. 1 Overview of miRkwood methodology. The workflow describes the main steps covered by miRkwood, such as detailed in the Implementation
section. The six criteria defining the quality score ranging from 0 to 6 (expressed in stars) as well as the conservation of the miRNA with miRBase are
represented on the hairpin
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Criterion 1: stability of the hairpin precursor
This criterion is met when the MFEI of the structure is
smaller than − 0.8. This threshold covers 83% of miR-
Base pre-miRNAs, whereas it is observed in less than
13% of pseudo hairpins (see Additional file 1, Section 4,
Table 2).

Criterion 2: number of reads
This criterion is met when the locus has either at least
10 reads mapping to each arm, or at least 100 reads
mapping in total. This criterion is inspired from miR-
Base definition for high-confidence miRNAs (http://
www.mirbase.org/blog/).

Criterion 3: existence of the miRNA
The most common read is selected as the guide miRNA
sequence if its frequency is at least 33%. Otherwise, we
do not define any mature miRNA sequence for the
locus.
When the miRNA is properly defined, we consider the

three following properties.

Criterion 4: precision of the precursor processing
At least 75% of reads start in a window [− 3,+ 3] cen-
tered around the start position of the miRNA, or [− 5,+
5] around the pairing position on the opposite arm of
the stem-loop. These parameters are conform to obser-
vations in miRBase.

Criterion 5: presence of the miRNA:miRNA* duplex
There is at least one read in the window [− 5,+ 5] around
the pairing position on the strand of the passenger
miRNA.

Criterion 6: stability of the duplex
In Kurihara and Watanabe, 2004 [20] it is reported that
the guide miRNA and the passenger miRNA form a du-
plex with two nucleotide overhangs, and base-pairing
between the miRNA and the other arm is extensive. We
formalize it with the usage of miRdup [21], that assesses
the stability of the miRNA:miRNA* duplex by machine
learning (with random forests). It was trained on miR-
Base Viridiplantae V20 with default parameters.
With this score system, hairpin precursors with no

clear miRNA locus have a score of at most 2. Hairpin
precursors with a guide miRNA and no passenger
miRNA have a score of at most 5. Reaching a score of 6
means that the locus shows the expression of both the
guide miRNA and the passenger miRNA, and that its
secondary structure (hairpin and duplex) is consistent
with this expression.
Lastly, miRkwood provides two additional pieces of in-

formation for each prediction. First, it checks if the
miRNA (when it exists) could possibly originate from a

duplication. For that, it reports whether the sequence is
present elsewhere in the genome, and whether this alter-
native location corresponds to another miRNA precur-
sor found by miRkwood. Second, it checks whether the
miRNA is conserved through evolution by comparison
with a database of known miRNAs (see Additional file 1,
Section 5). Alignments are performed with the piccolo
alignment tool, which is particularly effective for pro-
cessing short sequences, such as miRNAs [22].

Output
Results are presented as an overview web page where
miRNA precursors are displayed in a table, with each
row corresponding to a pre-miRNA, and each column
to a specific feature (Fig. 2a). By default, results are
sorted by position. It is possible to have them sorted by
quality. One can visualise the full report for a pre-
miRNA prediction by clicking on the name of the
sequence. This report sums up all previously computed
information including, but not limited to, the 2D sec-
ondary structure of the pre-miRNA, the components of
the quality score, the alignment of short reads on the
pre-miRNA (reads cloud) and all alignments with miR-
Base sequences, when they exist (Fig. 2b).

Export
Search results are available in a variety of formats: CSV
(supported by all spreadsheets, such as Excel), FASTA,
dot-bracket notation (FASTA sequence plus the second-
ary structure), GFF, text report in ORG-mode and read
clouds.

Availability
miRkwood is implemented in Perl and C. It offers an
intuitive and comprehensive user interface to navigate
the data. For now, the web version has 12 reference
genomes: Arabidopsis lyrata, Arabidopsis thaliana,
Brassica napus, Brassica rapa, Glycine max, Lotus
japonicus, Medicago truncatula, Oryza sativa, Populus
trichocarpa, Solanum lycopersicum, Sorghum bicolor and
Vitis vinifera. Most of them are supplemented by two
GFF files, that are used to filter out the reads in the
alignment filtering step (see above). The first one con-
tains the genome coordinates of annotated CDS, tRNAs,
rRNAs and snoRNAs, and is used to apply masking
options. The other GFF file compiles all miRNAs and
precursors of miRNAs available in miRBase V21. User’s
reads should be previously mapped on one of those 12
assemblies, and the coordinates of the resulting align-
ments stored in a custom BED file. A tool to automatic-
ally convert SAM/BAM file to the BED file is provided
with miRkwood. The database for the alignments to
known miRNAs is miRBase V21 (file mature.fa), but can
be updated as new versions of miRBase are released.
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The stand-alone version is freely distributed under the
GNU Affero General Public Licence (v3.0). The code is
available on GitHub: https://github.com/miRkwood-RNA/
miRkwood. The user can provide any genome and any an-
notation file of his/her choice. To make the installation
and the usage easier, we offer a Galaxy wrapper (available
on the Test Toolshed) and a Docker image.
Finally, besides the sRNA-seq mode, miRkwood also

offers an ab initio mode, which allows the prediction of
miRNA precursors from assembled expressed sequences
or short genomic sequences (up to 100 kilobases on the
website).

Methods
Datasets
To evaluate the performance of miRkwood and bench-
mark against ShortStack [10], a dataset composed of 6.2
million Illumina raw reads and obtained from inflores-
cences from A. thaliana previously published by Wang

et al. (2011) [23] was downloaded from the SRA-NCBI
database (accession number SRX058635). AGO1 and
AGO4 associated small RNAs (AGO1-IP and AGO4-
IP) data obtained from the same biological sample were
downloaded from the GEO database (accession numbers
GSM707682 and GSM707690 for AGO1-IP and
GSM707686 for AGO4-IP). They were composed of 969,
586, 884,610 and 2,171,046 non-redundant reads,
respectively.

Pre-processing of reads and miRNA predictions
Adaptors were removed from the sequencing reads using
Cutadapt (version 1.8.3) [24] and reads were cleaned
using Prinseq (version 0.20.4) [25] with specified param-
eters: -min_len 18 -max length 30 -min_qual_mean 30.
Quality of the cleaned Illumina reads was checked using
FastQC (version 0.11.4) [26]. Prior to miRkwood ana-
lysis, reads were mapped on the A. thaliana genome
(TAIR10, [27]) using Bowtie (version 1.1.2) [15] with

A

B

Fig. 2 Examples of outputs. a: Summary table. The first six columns are for the stem-loop precursor. Reads is the number of reads that are
mapped to the locus (when this number fulfils criterion 2, it is highlighted in turquoise), reads distribution is the total score achieved by criteria
4–6, mfei is the MFEI of the secondary structure of the precursor (when its value is smaller than − 0.8, it is highlighted in pink, in accordance with
criterion 1). The four last columns are for the miRNA. Sequence is the sequence of the guide miRNA, when its exists (criterion 3), and length is its length.
Weight is the number of reads corresponding to the miRNA normalized by the total number of occurrences of the sequence in the genome. Alignment
indicates if there is an alignment with mature plant miRNAs in miRBase. This cell is checked when such an alignment is found, and doubled checked if it
overlaps the miRNA locus in the precursor. b: Read cloud. The read cloud is the visual representation of a candidate miRNA precursor. The first line is the
sequence of the precursor. The second line is the stem-loop structure in bracket-dot format. The third line with square brackets and dots highlights the
miRNA duplex (when the miRNA is well-defined). The fourth line indicates the position of the alignments with the miRBase sequence, when found. In
the remaining lines, each ********** string is a unique read. Its length and its depth (its number of occurrences in the set of reads) are reported at the
end of the dotted line. The mature miRNA, when one is defined, is written in full letters. In this example, the locus has a total of 114 reads, corresponding
to 7 unique reads. The most frequent read is AGAUAUUAGUGCGGUUCAAUC, with 71 copies (representing 62% of reads). Following criteria 3, it is
selected as the guide miRNA. Its length is 21 nucleotides. The passenger miRNA is UUGAGCCGUGCCAAUAUCACG, supported by 27 reads. As expected,
its position is shifted by two nucleotides compared to the guide miRNA. Lastly, we found two distinct alignments with miRbase, whose positions
coincide to the guide and the passenger miRNAs respectively, which is a good indicator that the miRNA duplex is evolutionary conserved
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specified parameters: -v 0 --all --best --strata, and sam
output files were converted to bed format using the
dedicated tool, mirkwood-bam2bed.pl provided with
miRkwood. For comparison, miRNAs were also pre-
dicted using ShortStack (version 3.8.2) [10] with default
parameters.

Analysis of predictions
Pre-miRNA predictions were compared to pre-miRNAs
annotated in the A. thaliana genome assembly using the
“intersect” function from the Bedtools suite (version
2.27.1) [28]. Predicted pre-miRNAs were considered as
annotated, i.e. corresponding to a known pre-miRNA in
the A. thaliana genome, when the overlap was larger
than 30 bp. Pre-miRNAs predicted by ShortStack were
then compared to the whole set of Viridiplantae mature
miRNAs deposited into miRBase using Exonerate (ver-
sion 2.4.7) [29], allowing at most 3 mismatches/indels
and no consecutive indels. It was not necessary to
perform this analysis for pre-miRNAs predicted by
miRkwood since it is already included into the pipeline.
A miRNA prediction was considered as associated

with AGO1 or AGO4 when the miRNA sequence was
observed at least once in the dataset (without mismatch
nor additional nucleotide). When the mean number of
reads in the two AGO1-IP datasets was greater than that
observed in the AGO4-IP dataset the miRNA were
considered as preferentially associated to AGO1, and
vice versa. For this calculation, the number of reads was
normalized by the number of unique reads in each of
the datasets (reads per million).
The colocalization between pre-miRNA predictions

and TE annotations in the A. thaliana genome was eval-
uated using the “intersect” function from the Bedtools
suite (with an overlap of at least 1 bp) and the recent
deep annotation of TEs in A. thaliana [30]. Predictions
obtained by miRkwood and ShortStack were considered
as identical when pre-miRNAs presented an overlap of
at least 30 bp (also defined using the “intersect” function
from the Bedtools suite).

Results and discussion
We evaluated the performance of miRkwood using a
sRNA-seq dataset from A. thaliana previously published
(see methods) [23]. Following the cleaning step, we con-
served 4.8 million reads (i.e. 77% of the raw reads),
representing 2.6 million non-redundant reads. MiRk-
wood predicted a total of 2049 pre-miRNAs/miRNAs,
including 87, 41, 42 and 70 with a quality score equal to
6, 5, 4 and 3, respectively. MiRkwood allowed to retrieve
173 miRNA precursors from A. thaliana. Since we
performed miRNA predictions from only one sRNA-seq
experiment representing a single tissue (inflorescence) at
a single time point, we did not expect to find all the 326

miRNAs annotated in the A. thaliana genome (miRBase,
V22). Predictions below a quality score of 3 will not be
further considered, since they do not systematically
exhibit a clearly identifiable miRNA sequence.
To validate the predictions, the association between

the predicted miRNAs and AGO1 was evaluated using
deep-sequencing data of AGO1 associated small RNAs
(AGO1-IP), AGO1 being the main argonaute protein
used in the miRNA pathway loading canonical 21 nt
miRNAs. We also evaluated the association of the pre-
dicted miRNAs with AGO4 that binds to lmiRNAs of
24 nt. The performance of miRkwood was compared to
that of ShortStack [10], one of the most popular and
effective tools for the prediction of miRNAs in plants,
particularly because of its ability to avoid false positive
predictions, compared to other tools [9, 14].

Detection of high confidence miRNAs with high
sensitivity
MiRNA predictions with a quality score of 6 were
mainly 21 nt long (76%) (Fig. 3a), initiated predomin-
antly with a 5′ U (77%, Fig. 3b) and were mainly associ-
ated with AGO1 (94%, Fig. 3c). Similar results, although
less pronounced, were observed for miRNAs predictions
with a score equal to 5: 54% were 21 nt long, 39% started
with a 5′ U and 63% were associated with AGO1.
Hence, high score predictions seem to predominantly
correspond to canonical 21-nt miRNAs produced by
DCL1 and associated with AGO1.
Although not all of the 87 miRkwood predictions

reaching a quality score of 6 were associated with
AGO1, we observed that they were all annotated in the
A. thaliana genome (including 3 predictions preferen-
tially associated with AGO4), suggesting that they are
real miRNAs (Fig. 3d). In contrast, only 28 of the 41
predictions with a quality score of 5 were annotated in
the reference genome. However, among the 13 unanno-
tated predictions, 8 presented homology with plant miR-
NAs deposited in miRBase and the 5 remaining miRNAs
were all validated using the AGO1-IP data (including one
24 nt prediction preferentially associated with AGO4)
suggesting that they are indeed bona fide miRNAs.
From the same dataset, ShortStack provided 90 predic-

tions (Fig. 4), i.e. 29.7% less predictions than miRkwood
set up with a quality score ≥ 5. All of them were anno-
tated in the reference genome and/or aligned with
known miRNAs from miRBase and/or associated with
AGO proteins and could be consequently considered as
bona fide miRNAs. Two-thirds (60) of the predictions
from miRkwood set up with a quality score threshold
equal to 6 were obtained by both tools and one-third of
the predictions were specific to each one (27 and 30 for
miRkwood and ShortStack, respectively, Fig. 4). These
results show that at this threshold, miRkwood produces
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Fig. 3 Features of miRNA predictions obtained by miRkwood. a: Length of predicted miRNAs. b: 5′ nt of the predicted miRNA sequence. c. AGO
association of the different predictions according to their score. d. Annotation of the predicted miRNAs and alignment to miRNA sequences from
miRBase. Association of the unannotated and unaligned sequences with AGO proteins are shown in pie charts

Fig. 4 Comparison of the predictions obtained by miRkwood and ShortStack. The Venn diagram of the predictions obtained by both tools with
two different score thresholds for the miRkwood results (≥5 stars and equal to 6 stars). Within the rectangles, the bar plots describe the
predictions: blue and red are for miRNA predictions associated with AGO1 and AGO4, respectively. Green is for predictions not-associated with
AGO1 or AGO4 proteins. The dark and intermediate shades correspond to miRNA predictions which were annotated in miRBase or could be
aligned with miRBase sequences, respectively. The light shade indicates predictions which were neither annotated nor aligned with miRBase
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comparable results as ShortStack in terms of numbers of
predicted miRNAs. When the quality score threshold
was set up to ≥5, the number of specific miRNAs pre-
dicted by miRkwood increased to 54, whereas that of
ShortStack sharply decreased (16). At this threshold, in
addition to a substantial number of specific predictions,
miRkwood is able to detect the major part (82%) of the
ShortStack predictions.
In brief, when miRkwood is set up with a quality

score ≥ 5, both tools mainly detect canonical miRNAs
and limit the number of false positives, but miRkwood is
able to predict substantially more miRNAs than Short-
Stack (128 vs. 90).

Identification of novel miRNAs
Decreasing the quality score threshold in miRkwood
presented a negative impact on the predictions, since it
increased the proportions of unassociated predictions
with AGO proteins (and so unvalidated). Indeed, 17 and
29% of unassociated predictions were observed for
predictions with a 4 and 3 score, respectively, vs. 2, 7%,
for predictions of a quality of 6 and 5, respectively.
Nonetheless, we observed that miRNAs predictions with
a score of 4 and 3 were predominantly 24 nt long (62
and 69%, respectively, Fig. 3a), started mainly with a 5′
A (64 and 61%, respectively, Fig. 3b), and were mainly as-
sociated with AGO4 (52 and 54%, respectively, Fig. 3c),
which corresponds to features of 24-nt lnmiRNA or hc-
siRNAs loaded into AGO4 [31].
Among the 42 predictions with a quality score of 4,

only 13 were annotated or presented similarities with
known miRNAs, leaving 29 putative novel predictions.
Among them, 23 were associated with AGO proteins (7
with AGO1 and 16 with AGO4). Among the 70 predic-
tions with a score of 3, only 19 were annotated or
aligned with known miRNAs, and 34 of the 51
remaining miRNAs were associated with AGO proteins
(9 with AGO1 and 25 with AGO4). Thus, even at the
threshold scores of 3 and 4, miRkwood provides predic-
tions that may correspond to bona fide miRNA. Beside,
a large part of the predictions presents sRNA sequences
associated with AGO4, implying they could correspond
to lmiRNAs or to hc-siRNAs. Considering that hc-
siRNAs emerge from TE loci, we tested the intersection
between these predictions and the deep TE annotations
in the A. thaliana genome [30]. We observed that
among the 42 predictions with a score of 3 or 4 that are
not annotated in the reference genome, not aligned with
known plant miRNAs, and not associated with AGO1,
but which are associated with AGO4, only 20 colocalized
with TEs, suggesting that a significant part of the AGO4
associated predictions could be lmiRNAs.
Concerning the comparison of the results with Short-

Stack, even if decreasing the threshold score to 4 or 3

did not deeply reduce the number of specific predictions
to ShortStack, it increased the number of those specific
to miRkwood (95 and 165, respectively, data not shown).
In summary, decreasing the threshold score to 4 or 3

may increase the proportion of false positives, but po-
tentially offers in return the detection of novel canonical
miRNAs and lmiRNAs.

Conclusions
We took advantage of the distinctive properties of plant
pre-miRNAs/miRNAs to develop miRkwood, a dedi-
cated tool for miRNA gene discovery in plant genomes.
The performance analysis showed that miRkwood is able
to predict miRNA with high sensitivity and can be tuned
either to limit the number of false positives or to broadly
identify novel miRNAs. Contrary to ShortStack, it
provides a quality score for each prediction (ranging
from 0 to 6) allowing users to rank miRNA predictions.
miRkwood is available either as a web server, with a
user-friendly interface, as a standalone version, as a
docker image or as a Galaxy tool. We believe that miRk-
wood will be a useful tool for biologists interested in the
identification of miRNAs in plant genomes.

Availability and requirements
Project name: miRkwood
Project home page: http://bioinfo.cristal.univ-lille.fr/mirk-
wood, https://github.com/miRkwood-RNA/miRkwood
Contact: mirkwood@univ-lille.fr
Operating system(s): Unix or web server
Programming languages: Perl, C and C++
Other requirements for the Unix version: bedtools

(v2.14.2 or higher), Vienna package (v2.1.6-1), Blast+
(2.2.25+ or higher), miRdup (1.2 or higher), VARNA (v3-
91 or higher, optional).
License: GNU Affero GPL
Other requirements for the web version: none. The

version of miRBAse will be regularly updated. New plant
genomes can be added upon request.
Any restrictions to use by non-academics: none
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Additional file 1: Detailed description of some of the miRkwood steps.
(PDF 166 kb)
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