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Abstract

Background: Selection of an appropriate statistical significance threshold in genome-wide association studies is
critical to differentiate true positives from false positives and false negatives. Different multiple testing comparison
methods have been developed to determine the significance threshold; however, these methods may be overly
conservative and may lead to an increase in false negatives. Here, we developed an empirical formula to determine
the statistical significance threshold that is based on the marker-based heritability of the trait. To develop a formula
for a significance threshold, we used 45 simulated traits in soybean, maize, and rice that varied in both broad sense
heritability and the number of QTLs.

Results: A formula to determine a significance threshold was developed based on a regression equation that used
one independent variable, marker-based heritability, and one response variable, − log10 (P)-values. For all species,
the threshold –log10 (P)-values increased as both marker-based and broad-sense heritability increased. Higher broad
sense heritability in these crops resulted in higher significant threshold values. Among crop species, maize, with a
lower linkage disequilibrium pattern, had higher significant threshold values as compared to soybean and rice.

Conclusions: Our formula was less conservative and identified more true positive associations than the false
discovery rate and Bonferroni correction methods.

Keywords: Genome-wide association studies, Significant threshold, Bonferroni correction, False discovery rate,
Heritability, Single nucleotide polymorphisms

Background
Linkage mapping (LM) and genome-wide association
studies (GWAS) are the two most popular methods to
decipher genetic architectures of complex traits in crops
[1]. With advancements in high throughput genotyping
and sequencing technologies, single nucleotide polymor-
phisms (SNPs) provide relatively low cost and dense
marker coverage across various genomes [2]. Association
mapping has several advantages over the traditional LM,
including increased mapping resolution, broader allele
coverage, and reduced time and costs to establish tedi-
ous and expensive biparental mapping populations [3].
A major problem in GWAS is false positives that arise

from population structure and family relatedness. Sev-
eral statistical models have been developed to control
false positives in GWAS. Mixed linear model (MLM)
has become the most popular approach with the ability

to consider population structure and family relatedness
[3, 4]. Since the publication of MLM for GWAS [3],
many MLM-based methods have been developed. All
these methods are single-locus, which test one marker at
a time, and these methods fail to match the true genetic
model of complex traits that are controlled by many loci
simultaneously. To overcome this problem, multi-locus
models, including FASTmrEMMAa [5], ISIS EM-
BLASSO [6], pLARmEB [7], pKWmEB [8], LASSO [9],
and FarmCPU [10], have been developed.
Determining the correct P-value threshold for statis-

tical significance is critical to differentiate true positives
from false positives and false negatives. To determine
the statistical significance threshold in GWAS, different
statistical procedures accounting for multiple testing
have been proposed, including the Bonferroni correc-
tion, Sidak correction, False Discovery Rate (FDR), per-
mutation test, and Bayesian approaches. Bonferroni
correction and FDR [11–15] are the two most com-
monly used methods for crops. All of these methods
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limit type 1 errors (false-positives), but they almost cer-
tainly inflate type 2 errors (false negatives) [16].
The Bonferroni correction method is considered the

most conservative method for selecting a threshold P-
value due to the assumption that every genetic variant
tested is independent of the rest. The False Discovery
Rate controls the expected proportion of false positives
among the rejected null hypotheses and is a popular, less
conservative approach compared to the Bonferroni cor-
rection [15]. However, FDR also assumes independence
of hypotheses; therefore, if many SNPs in strong linkage
disequilibrium (LD) are present on an array, it can suffer
from a loss of statistical power and generate false nega-
tives [17]. An imbalance of error rates permitting an ex-
cess of false negatives may be more problematic in the
long term because type 1 errors are more easily identi-
fied in subsequent studies, and the resources necessary
to perform other large GWAS needed to overcome the
bias toward type 2 errors are finite [16]. Additionally,
the variants tested in a study are inevitably dependent
on population-specific factors, such as LD pattern and
minor allele frequency (MAF), suggesting that the ap-
propriate threshold for genome-wide significance might
vary for different populations and crop species. For ex-
ample, the threshold for a crop with a lower LD pattern,
such as maize (Zea mays L.), should be more stringent
than a population with higher LD pattern, such as soy-
bean (Glycine max L.) or rice (Oryza sativa L.), as the
number of independent markers tends to be greater in
maize than soybean. The LD decay rate (r2 = 0.25 level)
was much greater in maize (1 kb) [18] than soybean (150
kb in euchromatic and 5,000 kb heterochromatic regions)
[19–21]. or rice (123 kb) [22]. Therefore, there is a need to
develop a method that can select an appropriate signifi-
cant threshold value for GWAS to differentiate true posi-
tives from false positives and false negatives.
As trait complexity increases, the number of loci af-

fecting the trait increases along with environmental in-
teractions with an expected decrease in heritability.
Conversely, for less complex traits, fewer loci affect the
trait, there is less interaction with the environment, and
there is an expected increase in heritability. For a trait
with a high heritability, the threshold value for signifi-
cance of associating loci with a trait would have high –
log10 (P)-values, and vice versa for a complex trait with
low heritability.
Here, we develop an empirical formula to determine

the statistical significance thresholds that is based on the
marker-based heritability of the trait. The objective of
this study was to develop an empirical formula that can
determine the statistical significance thresholds for
GWAS using a large number of simulated phenotypes
that varied in heritability and the number of QTLs for
soybean, maize, and rice. These crops were selected

because of differences in LD pattern with maize having a
lower LD pattern compared with soybean and rice. The
phenotypes were simulated and associated with freely-
available SNP marker datasets for all these crops.

Results and discussion
In this study, we developed a method to determine the
significant threshold value for GWAS using the 45 simu-
lated phenotypic traits that varied in both the broad
sense heritability and the number of QTLs in three crop
species that differed in their LD patterns. We repeated
the simulation of these traits 10 times so that simulated
QTLs were randomly assigned to different parts of the
genome in order to obtain unbiased results.
For the same simulated trait in different repetitions,

there were different marker-based heritabilities and dif-
ferent significant – log10 (P)-values (where all simulated
QTLs in that trait were present) (Fig. 1). There were
strong positive associations between broad sense herit-
ability and significant threshold values. That is, the
higher the broad sense heritability, the higher the –
log10 (P)-values for all three crops (Table 1). Significant
threshold values (−log10 (P)) also increased among the
crop species for these simulated traits as the LD de-
creased. Specifically, maize had higher significant thresh-
old (−log10 (P)) values as compared to soybean and rice
for simulated traits when they had more than 50% broad
sense heritability (Table 1), which corresponded in-
versely with LD patterns.
Using both broad-sense heritability and marker-based

heritability as independent variables and the selected sig-
nificant threshold (−log10 (P)) value as the response vari-
able in the multiple regression analysis, we obtained an
equation for determining significant threshold values in
GWAS for each crop. We observed that marker-based
heritability showed a significant effect on the response
variable (P < 0.05) (Table 2), but there was no significant
effect of broad-sense heritability. Therefore, only
marker-based heritability was included in the regression
eq. (Y = a + bX), where Y was the significant threshold
(−log10 P-value), a was the intercept, and b was the slope
of the regression coefficient for the marker-based herit-
ability (X) in maize, soybean, and rice. Table 2 shows the
intercept and slope of regression equations in 10 out of
100 different repetitions. We used the raw value of the
intercept and slope from 100 different repetitions to de-
velop the final formula. Although, the fit for regression
equation was poor for maize (R2 = 0.14) and rice (R2 =
0.16), and was moderate for soybean (R2 = 0.35), these
regressions were highly significant (P < 0.0001) and indi-
cate that the predictor variables still provide information
about the response even though data points fall further
from the regression line.
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For datasets based on previously reported results, esti-
mated marker-based heritability was 66.8% for DP and
84.9% for ED in maize, 28.6% for C13 and 77.8% for CW
in soybean, and 42.8% for SD and 68.8% for PH in rice.
These marker-based heritability values were used to de-
termine significant threshold (−log10 (P)) values as
shown in Figs. 1, 2, and 3 based upon the regression
equation for each respective crop in Table 2. Add-
itional file 1: Figure S1 shows the relationship between

response significant threshold and marker-based herit-
ability in maize, soybean, and rice.
Manhattan and QQ plots in Figs. 1–3 show the com-

parisons of our formula based threshold (a red line) with
FDR (a blue line) and Bonferroni correction (a green
line) methods using previously published datasets for DP
and ED in maize (Fig. 1), C13, and CW in soybean
(Fig. 2), and SD and PH in rice (Fig. 3). The sharp break
upwards in QQ plots indicates where the P-value thresh-
old for true associations begin [19]. The P-value thresh-
old determined using our method captured more true
positives than the FDR and Bonferroni corrections
methods as indicated by being closer to the breakpoint
at which the observed P-value increases sharply. Some
of the extra markers that were identified for previously
published datasets by our formula-based threshold, were
coincident in the same genomic region of previously re-
ported QTLs studies for that trait (data not shown).
Higher broad sense heritability traits in these crops had
higher significant threshold values. Among crop species,
maize, with a lower LD pattern, had higher significant
threshold values as compared to soybean and rice
(Figs. 1, 2, 3).
We also used the one simulated trait in soybean that

had 60% broad sense heritability and 10 QTLs in three
randomly selected repetitions (R4, R7, and R9) to deter-
mine if our formula accurately estimated threshold P-

Table 1 Significant P-values (−Log10 P-value) from FarmCPU
where all 10 associated QTLs with 9 simulated traits varied in
broad sense heritability (H = 10, 20, 30, 40, 50, 60, 70, 80, 90%) in
maize, soybean, and rice

Maize Rice Soybean

Simulated Traits

H10_Q10 3.54 3.94 3.17

H20_Q10 3.67 3.91 3.58

H30_Q10 4.00 4.05 3.64

H40_Q10 4.17 4.23 3.84

H50_Q10 4.68 4.29 4.03

H60_Q10 4.84 4.45 4.12

H70_Q10 5.07 4.65 4.73

H80_Q10 7.02 5.39 5.62

H90_Q10 15.08 7.45 7.95

Fig. 1 Manhattan plots of -Log10 (P) vs. chromosomal position of SNP markers associated with ear diameter (ED) and days to pollination (DP),
and quantile-quantile (QQ) plots in maize from the Fixed and random model Circulating Probability Unification (FarmCPU). Marker-based
heritability was 66.8% for DP and 84.9% for ED. A red line represents the significant threshold (−Log10 (P) values: 4.89 for DP and 5.49 for ED),
which was determined using our formula based on the marker-based heritability, a blue line represents the threshold from the FDR, and a green
line represents the threshold from the Bonferroni correction method
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values identified in the 10 simulated QTLs. A simulated
trait in different repetitions had different marker-based
heritability values of 48.6% (R4), 43.2% (R7), and 39.1%
(R9). Using this marker-based heritability, significant
threshold P-values were determined for the simulated
trait in all three repetitions. Results indicated that our
formula-based threshold values identified 10 QTLs for
this simulated trait in these three repetitions across dif-
ferent parts of the genome (Fig. 4). The sharp break

upwards in QQ plots from this simulated trait in all
three repetitions also indicated that our formula-based
threshold values identified 10 true associations (Fig. 4).
Using the equation developed from marker-based her-

itability, we evaluated our threshold P-values with other
multiple testing comparison methods using the GWAS
results from the previously-published phenotypic data-
sets in maize [23], soybean [19, 20], and rice [24]. The
results indicated that selection of significant threshold

Table 2 Intercept (a) and slope (b) values of regression eqs. (Y = a + bX), predicting the significant threshold (−Log10 P-value), as a
function of the marker-based heritability (X) in maize, soybean, and rice

Maize Soybean Rice

Repetition Constant Slope R2 P-value Constant Slope R2 P-value Constant Slope R2 P-value

1 2.49 0.032 0.15 0.008 2.10 0.027 0.45 4.4e-07 2.59 0.016 0.11 0.02

2 2.91 0.022 0.10 0.03 2.05 0.030 0.40 2.9e-06 2.58 0.015 0.11 0.02

3 2.71 0.031 0.14 0.01 2.09 0.033 0.22 0.001 2.52 0.017 0.18 0.004

4 2.93 0.019 0.13 0.01 2.20 0.026 0.36 1.3e-05 2.26 0.021 0.19 0.003

5 2.75 0.024 0.11 0.02 2.01 0.032 0.40 3.7e-06 2.33 0.022 0.20 0.002

6 2.88 0.022 0.09 0.04 2.28 0.027 0.42 1.3e-06 2.62 0.016 0.13 0.01

7 2.87 0.022 0.15 0.008 2.18 0.026 0.40 3.6e-06 2.62 0.020 0.11 0.02

8 2.75 0.026 0.13 0.01 2.16 0.027 0.36 1.5e-05 2.41 0.017 0.21 0.001

9 2.47 0.034 0.12 0.01 2.10 0.030 0.39 3.9e-06 2.64 0.017 0.14 0.01

10 2.68 0.027 0.13 0.01 2.14 0.028 0.39 4.0e-06 2.51 0.018 0.19 0.003

All Raw Data 2.77 0.025 0.14 7.6e-15 2.16 0.028 0.35 < 2.2e-16 2.53 0.017 0.15 2.8e-16

Fig. 2 Manhattan plots of -Log10 (P) vs. chromosomal position of SNP markers associated with canopy wilting (CW) and carbon isotope ratio
(C13), and quantile-quantile (QQ) plots in soybean from the Fixed and random model Circulating Probability Unification (FarmCPU). Marker-based
heritability was 28.6% for C13 and 77.8% for CW. A red line represents the significant threshold (−Log10 (P) values: 2.96 for C13 and 4.39 for CW),
which was determined using our formula based on the marker-based heritability, a blue line represents the threshold from the FDR, and a green
line represents the threshold from the Bonferroni correction method
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values based on our formula were less conservative than
other multiple comparisons in controlling both false
positives and false negatives (Table 3). Table 3 shows the
comparisons of having no correction (uncorrected P ≤
0.05) with our formula, Bonferroni correction, and FDR.
Because Bonferroni, Šidák, Hommel, and Hochberg cor-
rections had similar results, and False Discovery Rate
and Positive False Discovery Rate had similar results,
only Bonferroni correction and FDR are shown in Table
3. For all traits in maize, soybean, and rice, our formula
was less conservative in identifying true positive associa-
tions as compared to both FDR and Bonferroni correc-
tion methods (Table 3). The column marked none in
Table 3 represents the selection of significant SNPs at a
threshold value (−log10 P ≥ 3.5), which was the arbitrary
selection. Our formula identified a greater number of
markers than the uncorrected method for the C13 trait
in soybean, which might be due to the generation of
false negatives in the uncorrected method.
These results indicate that selection of significant

threshold values vary in different populations and crop
species, which depend on the heritability of the trait in a
particular environment. The GWAS results for these
comparisons were obtained from the FarmCPU model
because this multi-locus model effectively controlled
false positives that arise from population structure and
family relatedness as compared to all MLM models

(Kaler et al. unpublished results), which are single-locus
models.

Conclusions
We developed a simple method for determining the
threshold P-value for GWAS based upon the marker-
based heritability of a trait in a specific environment.
This method is simple and robust across a wide range of
heritabilities and species with different LD. This method
is less conservative and captures more true positives as
compared to more conservative methods such as FDR
and Bonferroni corrections.

Methods
Data collection
To develop a formula for a significance threshold, we
used 45 simulated traits in soybean, maize, and rice that
varied in broad sense heritability and the number of
QTLs (Q). We used an R code script for simulation,
where real genotypic data of each crop was used and dif-
ferent number of QTLs and heritability were assigned to
create a simulated phenotype. In soybean, genotypic data
consisted of 42,509 SNP markers (www.soybase.org) for
346 accessions that were previously reported by Kaler et
al. [19, 20]. Phenotypic data for canopy wilting and car-
bon isotope ratio for these 346 accessions is provided in
Additional file 1: Table S1. In maize, genotypic data

Fig. 3 Manhattan plots of -Log10 (P) vs. chromosomal position of SNP markers associated with seeds per panicle (SD) and plant height (PH), and
quantile-quantile (QQ) plots in soybean from the Fixed and random model Circulating Probability Unification (FarmCPU). Marker-based heritability
was 42.8% for SD and 68.8% for PH. A red line represents the significant threshold (−Log10 (P) values: 3.28 for SD and 3.75 for PH), which was
determined using our formula based on the marker-based heritability, a blue line represents the threshold from the FDR, and a green line
represents the threshold from the Bonferroni correction method
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consisted of 50,896 SNP markers for 273 accessions [25].
In rice, genotypic data consisted of 44,100 SNP markers
for 352 accessions that were obtained from two projects:
(1) OryzaSNP project, an oligomer array-based re-se-
quencing effort using Perlegen Sciences technology, and
(2) BAC clone Sanger sequencing of wild species from
the OMAP project [24].
The 45 phenotypic traits were simulated using a R-

code script (Additional file 1: Table S2). The simula-
tions represent nine different combinations of broad
sense heritability (10, 20, 30, 40, 50, 60, 70, 80, and
90%), and five different combinations of the number
of QTLs associated with the simulated trait (10, 20,
30, 40, and 50 QTLs). These 45 simulations were re-
peated 100 times each.

Formula development
A formula to determine a significance threshold was de-
veloped based on a multiple regression equation that
used two independent variables, broad-sense heritability
and marker-based heritability, and one response variable,
− log10 (P)-values. Broad-sense heritability was the herit-
ability that was used to simulate the trait, and marker-
based heritability was estimated using genetic variance
determined from a simulated trait and genotypic marker
data [26] that were obtained from the GAPIT R package
[27]. In the GAPIT package, the MLM model can be de-
scribed as follows: Y = Xβ + Zu + e, where where Y is the
vector of observed phenotypes; β is an unknown vector
containing fixed effects, including the genetic marker,
population structure (Q), and the intercept; u is an

Fig. 4 Manhattan plots of -Log10 (P) vs. chromosomal position of SNP markers associated with soybean simulated trait that had 60% heritability
and 10 QTLs from three randomly selected repetitions (R4, R7, and R9) using the real SNP markers dataset, and quantile-quantile (QQ) plots in
soybean from the Fixed and random model Circulating Probability Unification (FarmCPU). Estimated marker-based heritability of this simulated
trait was 48.6% in R4, 43.2% in R7, and 39.1% in R9, which was used in the formula to select significant thresholds -Log10 (P) values, such 3.54 in
R4, 3.38 in R7, and 3.26 in R9. A red line represents the significant threshold values in these different repetitions. For all three repetitions, 10
markers were identified above the threshold value but in some cases these may be hidden behind other markers

Kaler and Purcell BMC Genomics          (2019) 20:618 Page 6 of 8



unknown vector of random additive genetic effects from
multiple background QTL for individuals/lines; X and Z
are the known design matrices; and e is the unobserved
vector of residuals. The u and e vectors are assumed to
be normally distributed with a null mean and a variance

of: Var
u
e

� �
¼ G 0

0 R

� �
, where G = σ2aK with σ2a as

the additive genetic variance and K as the kinship
matrix. Homogeneous variance is assumed for the re-
sidual effect; i.e., R = σ2eI, where σ2e is the residual vari-
ance. The proportion of the total variance explained by
the genetic variance is defined as marker-based
heritability.
The response variable was the – log10 (P)-value deter-

mined from the association analysis of a simulated trait
that identified the number of QTLs for that simulated
trait. For example, if a simulated trait had 10 QTLs, then
the significant – log10 (P)-value was selected that identi-
fied these 10 QTLs after performing association analysis
using the FarmCPU model [10]. The FarmCPU is a
multi-locus model that was used for association analysis
because it performs better than other models in control-
ling false positives and false negatives [19].

Validation and comparison of the formula
We validated this formula using the GWAS results
from previously-published phenotypic datasets in soy-
bean, maize, and rice. The GWAS results were ob-
tained after performing association analysis on the
datasets including carbon isotope ratio (C13) [20] and
canopy wilting (CW) [19] in soybean, days to pollin-
ation (DP) and ear diameter (ED) in maize [23], and
seeds per panicle (SD) and plant height (PH) in rice
[24]. We also compared our formula with different
multiple testing comparisons, including Bonferroni,

Šidák, Hommel, Hochberg, False Discovery Rate, and
Positive False Discovery Rate [11–15] with a signifi-
cant cut off of 0.05. The GWAS results obtained from
compressed mixed linear model (CMLM) and Farm-
CPU models were also used in these comparisons.

Additional file

Additional file 1: Figure S1. Scatter plots between significant threshold
and marker-based heritability in maize, soybean, and rice. Table S1.
Phenotypic data of canopy wilting (CW) and carbon isotope ratio (C13)
from 346 soybean accessions previously reported by Kaler et al. (19, 20).
Table S2. The R code script used for trait simulation for rice data. Similar
programming can be used for other crops by changing the genotypic
data. (DOCX 176 kb)

Abbreviations
CW: Canopy wilting; DP: Days to pollination; ED: Ear diameter;
GWAS: Genome-wide association study; LD: Linkage disequilibrium;
LM: Linkage mapping; MAF: Minor allele frequency; MLM: Mixed linear
model; PH: Plant height; QTLs: Quantitative trait loci; SD: Seeds per panicle;
SNPs: Single nucleotide polymorphisms

Acknowledgements
Not applicable.

Authors’ contributions
ASK conceived of the idea. ASK and LCP developed and wrote the
manuscript. Both authors approved of the final manuscript.

Funding
Partial funding for this report was provided by the United Soybean Board,
project number 1920–172-0116-A. The funders were not involved in the
planning of this research work, data analysis, or manuscript writing.

Availability of data and materials
The R code script used for trait simulation in this study is provided using as
an example the script for rice data. Similar programming can be used for
other crops by changing the genotypic data.
The 346 soybean genotypes used in this study are part of 19,652 G. max and
G. soja accessions genotyped with SoySNP50K iSelect Beadchip (http://www.
soybase.org/snps/download.php). Additional file 1: Table S1 provides
phenotype data for soybean canopy wilting and carbon isotope ratio.
Similarly, the 279 maize genotypes and 352 rice genotypes are also available
to the public at the website, https://www.panzea.org/data and http://www.
ricediversity.org/data/, respectively.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 10 April 2019 Accepted: 23 July 2019

References
1. Zhu C, Gore M, Buckler ES, Yu J. Status and prospects of association

mapping in plants. Plant Genome. 2008;1(1):5-20. Available from: https://
www.crops.org/publications/tpg/abstracts/1/1/5.

2. Syvanen A-C. Toward genome-wide SNP genotyping. Nat Genet. United
States; 2005 Jun;37 Suppl:S5–10.

3. Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, et al. A
unified mixed-model method for association mapping that accounts for
multiple levels of relatedness. Nat Genet United States. 2006;38(2):203–8.

Table 3 Comparisons of the number of markers identified as
significant based upon various criteria

Crop Trait None MBH Bon FDR

Maize DP 24 11 5 10

ED 19 8 5 6

Soybean C13 12 15 3 3

CW 38 13 6 11

Rice SD 11 11 5 8

PH 21 17 7 12

The column marked ‘None’ represents the selection of significant SNPs at an
arbitrary threshold value (−Log10 P ≥ 3.5). The column marked MBH represents
the number of markers identified using the marker-based-heritability-
regression method. Columns marked Bon and FDR refer to Bonferroni
corrections and positive False Discovery Rate, respectively, for the number of
significant markers that were selected based on a cutoff of 0.05. Data sets for
these analysis were previously published reports for days to pollinations (DP)
and ear diameter (ED) in maize, carbon isotope ratio (C13) and canopy wilting
(CW) in soybean, and seeds per panicle (SD) and plant height (PH) in rice

Kaler and Purcell BMC Genomics          (2019) 20:618 Page 7 of 8

https://doi.org/10.1186/s12864-019-5992-7
http://www.soybase.org/snps/download.php
http://www.soybase.org/snps/download.php
https://www.panzea.org/data
http://www.ricediversity.org/data/
http://www.ricediversity.org/data/
https://www.crops.org/publications/tpg/abstracts/1/1/5
https://www.crops.org/publications/tpg/abstracts/1/1/5


4. Zhang Z, Ersoz E, Lai C-Q, Todhunter RJ, Tiwari HK, Gore MA, et al. Mixed
linear model approach adapted for genome-wide association studies. Nat
genet [internet]. Nat Publ Group. 2010;42:355. Available from:. https://doi.
org/10.1038/ng.546.

5. Wen Y-J, Zhang H, Ni Y-L, Huang B, Zhang J, Feng J-Y, et al. Methodological
implementation of mixed linear models in multi-locus genome-wide
association studies. Brief Bioinform [Internet]. 2018;19(4):700–712. Available
from: https://academic.oup.com/bib/article/19/4/700/2965637

6. Tamba CL, Ni Y-L, Zhang Y-M. Iterative sure independence screening EM-
Bayesian LASSO algorithm for multi-locus genome-wide association studies.
Komarova NL, editor. PLOS Comput Biol [Internet]. 2017;13(1):e1005357.
Available from:. https://doi.org/10.1371/journal.pcbi.1005357.

7. Zhang Y, Liu P, Zhang X, Zheng Q, Chen M, Ge F, et al. Multi-locus
genome-wide association study reveals the genetic architecture of stalk
lodging resistance-related traits in maize. Front Plant Sci [Internet. 2018;9
Available from: http://journal.frontiersin.org/article/10.3389/fpls.2018.00611/
full.

8. Ren W-L, Wen Y-J, Dunwell JM, Zhang Y-M. pKWmEB: integration of
Kruskal–Wallis test with empirical Bayes under polygenic background
control for multi-locus genome-wide association study. Heredity (Edinb)
[Internet]. 2018;120(3):208–18 Available from: http://www.nature.com/
articles/s41437-017-0007-4.

9. Xu Y, Xu C, Xu S. Prediction and association mapping of agronomic traits in
maize using multiple omic data. Heredity (Edinb) [Internet]. 2017;119(3):174–
84 Available from: http://www.nature.com/doifinder/10.1038/hdy.2017.27.

10. Liu X, Huang M, Fan B, Buckler ES, Zhang Z. Iterative Usage of Fixed and
Random Effect Models for Powerful and Efficient Genome-Wide Association
Studies. Listgarten J, editor. PLOS Genet [Internet]. 2016 1;12(2):e1005767.
Available from: https://doi.org/10.1371/journal.pgen.1005767

11. Sidak Z. Rectangular confidence regions for the means of multivariate
Normal distributions. J Am Stat Assoc [Internet]. 1967;62(318):626 Available
from: https://www.jstor.org/stable/2283989?origin=crossref.

12. Holm S. A simple sequentially Rejective multiple test procedure. Scand J
Stat. 1979;6:65–70.

13. Hommel G. A Stagewise Rejective multiple test procedure based on a
modified Bonferroni test. Biometrika [Internet]. 1988;75(2):383. Available
from: https://www.jstor.org/stable/2336190?origin=crossref

14. HOCHBERG Y. A sharper Bonferroni procedure for multiple tests of
significance. Biometrika [Internet]. 1988;75(4):800–802. Available from:
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/75.4.
800

15. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J R Stat Soc. 1995;57:289–300.

16. Perneger T V. What’s wrong with Bonferroni adjustments. BMJ [Internet].
1998;316(7139):1236–1238. Available from: http://www.bmj.com/cgi/doi/1
0.1136/bmj.316.7139.1236

17. Buzdugan L, Kalisch M, Navarro A, Schunk D, Fehr E, Bühlmann P. Assessing
statistical significance in multivariable genome wide association analysis.
Bioinformatics [Internet]. 2016;32(13):1990–2000. Available from: https://
academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/
btw128

18. Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF, Gaut BS. Patterns
of DNA sequence polymorphism along chromosome 1 of maize (Zea mays
ssp. mays L.). Proc Natl Acad Sci U S A United States. 2001;98(16):9161–6.

19. Kaler AS, Ray JD, Schapaugh WT, King CA, Purcell LC. Genome-wide
association mapping of canopy wilting in diverse soybean genotypes. Theor
Appl Genet [Internet]. 2017;130(10):2203–2217. Available from: http://link.
springer.com/10.1007/s00122-017-2951-z

20. Kaler AS, Dhanapal AP, Ray JD, King CA, Fritschi FB, Purcell LC. Genome-
wide association mapping of carbon isotope and oxygen isotope ratios in
diverse soybean genotypes. Crop Sci [Internet]. 2017;57(6):3085. Available
from: https://dl.sciencesocieties.org/publications/cs/abstracts/57/6/3085

21. Kaler AS, Ray JD, Schapaugh WT, Asebedo AR, King CA, Gbur EE, et al.
Association mapping identifies loci for canopy temperature under drought
in diverse soybean genotypes. Euphytica [Internet]. 2018;214(8):135.
Available from: http://link.springer.com/10.1007/s10681-018-2215-2

22. Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, et al. Genome-wide
association studies of 14 agronomic traits in rice landraces. Nat genet
[internet]. Nature publishing group, a division of Macmillan publishers
limited. All Rights Reserved; 2010;42:961. Available from: https://doi.org/10.1
038/ng.695.

23. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES.
TASSEL: software for association mapping of complex traits in diverse
samples. Bioinformatics [Internet]. 2007;23(19):2633–2635. Available from:
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/
bioinformatics/btm308

24. Zhao K, Tung C-W, Eizenga GC, Wright MH, Ali ML, Price AH, et al. Genome-
wide association mapping reveals a rich genetic architecture of complex
traits in Oryza sativa. Nat Commun [Internet]. 2011;2(1):467 Available from:
http://www.nature.com/articles/ncomms1467.

25. Wallace JG, Bradbury PJ, Zhang N, Gibon Y, Stitt M, Buckler ES. Association
Mapping across Numerous Traits Reveals Patterns of Functional Variation in
Maize. Borevitz JO, editor. PLoS Genet [Internet]. 2014 4;10(12):e1004845.
Available from: https://doi.org/10.1371/journal.pgen.1004845

26. Kruijer W, Boer MP, Malosetti M, Flood PJ, Engel B, Kooke R, et al. Marker-
based estimation of heritability in immortal populations. Genetics [Internet].
2015;199(2):379–398. Available from: http://www.genetics.org/lookup/doi/1
0.1534/genetics.114.167916

27. Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, et al. GAPIT: genome
association and prediction integrated tool. Bioinformatics England. 2012;
28(18):2397–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Kaler and Purcell BMC Genomics          (2019) 20:618 Page 8 of 8

https://doi.org/10.1038/ng.546
https://doi.org/10.1038/ng.546
https://academic.oup.com/bib/article/19/4/700/2965637
https://doi.org/10.1371/journal.pcbi.1005357
http://journal.frontiersin.org/article/10.3389/fpls.2018.00611/full
http://journal.frontiersin.org/article/10.3389/fpls.2018.00611/full
http://www.nature.com/articles/s41437-017-0007-4
http://www.nature.com/articles/s41437-017-0007-4
http://www.nature.com/doifinder/10.1038/hdy.2017.27
https://doi.org/10.1371/journal.pgen.1005767
https://www.jstor.org/stable/2283989?origin=crossref
https://www.jstor.org/stable/2336190?origin=crossref
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/75.4.800
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/75.4.800
http://www.bmj.com/cgi/doi/10.1136/bmj.316.7139.1236
http://www.bmj.com/cgi/doi/10.1136/bmj.316.7139.1236
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btw128
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btw128
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btw128
http://link.springer.com/10.1007/s00122-017-2951-z
http://link.springer.com/10.1007/s00122-017-2951-z
https://dl.sciencesocieties.org/publications/cs/abstracts/57/6/3085
http://link.springer.com/10.1007/s10681-018-2215-2
https://doi.org/10.1038/ng.695
https://doi.org/10.1038/ng.695
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btm308
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btm308
http://www.nature.com/articles/ncomms1467
https://doi.org/10.1371/journal.pgen.1004845
http://www.genetics.org/lookup/doi/10.1534/genetics.114.167916
http://www.genetics.org/lookup/doi/10.1534/genetics.114.167916

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	Conclusions
	Methods
	Data collection
	Formula development
	Validation and comparison of the formula

	Additional file
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

