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Genome-wide association study reveals
new loci for yield-related traits in Sichuan
wheat germplasm under stripe rust stress
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Abstract

Background: As one of the most important food crops in the world, increasing wheat (Triticum aestivum L.)
yield is an urgent task for global food security under the continuous threat of stripe rust (caused by Puccinia
striiformis f. sp. tritici) in many regions of the world. Molecular marker-assisted breeding is one of the most
efficient ways to increase yield. Here, we identified loci associated to multi-environmental yield-related traits
under stripe rust stress in 244 wheat accessions from Sichuan Province through genome-wide association
study (GWAS) using 44,059 polymorphic markers from the 55 K single nucleotide polymorphism (SNP) chip.

Results: A total of 13 stable quantitative trait loci (QTLs) were found to be highly associating to yield-related
traits, including 6 for spike length (SL), 3 for thousand-kernel weight (TKW), 2 for kernel weight per spike
(KWPS), and 2 for both TKW and KWPS, in at least two test environments under stripe rust stress conditions.
Of them, ten QTLs were overlapped or very close to the reported QTLs, three QTLs, QSL.sicau-1AL, QTKW.sicau-
4AL, and QKWPS.sicau-4AL.1, were potentially novel through the physical location comparison with previous
QTLs. Further, 21 candidate genes within three potentially novel QTLs were identified, they were mainly
involved in the regulation of phytohormone, cell division and proliferation, meristem development, plant or
organ development, and carbohydrate transport.

Conclusions: QTLs and candidate genes detected in our study for yield-related traits under stripe rust stress
will facilitate elucidating genetic basis of yield-related trait and could be used in marker-assisted selection in
wheat yield breeding.
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Background
Wheat (Triticum aestivum L.) is one of the most import-
ant food crops in the world and provides 20% of calories
consumed by humans [1]. Producing enough wheat for
the growing population is one of the vital tasks for food
security. However, abiotic and biotic stresses are among
the greatest challenges to wheat production. As one of the
most destructive wheat diseases in the world, stripe rust
that is caused by fungus Puccinia striiformis Westend. f.

sp. tritici Erikss. (Pst) is a serious threat to wheat produc-
tion [2]. Therefore, improving wheat yield under stripe
rust stress is extremely urgent. Thus, identifying loci
associated with yield-related traits under stripe rust stress
may provide favourable alleles and their useful markers
for breeding wheat cultivars with high yield in combin-
ation with stripe rust resistance.
The productive spike number per unit area, kernel

number per spike (KPS) and thousand-kernel weight
(TKW) are key components of wheat yield. The product-
ive spike number per unit area mainly depends on the
fertile tiller number (FTN). Most spike-related traits,
such as spike length (SL), spikelet number per spike
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(SlPS), kernel number per spikelet (KPSl) and the spike-
let compactness (SlC), affect the KPS and thus also affect
the yield [3–5]. Many studies have showed that the SL
has a positive correlation with KPS and SlPS [3, 4, 6, 7].
Moreover, Mohsin et al. [8] reported that the SL and the
KPS had a positive effect on grain yield. Würschum et
al. [7] demonstrated that KPSl was positively correlated
with the KPS. The SlC is positively correlated with SlPS,
but negatively related to SL [3, 6, 9]. The TKW, which
depends on the kernel weight, is associated with the ac-
cumulation of starch produced by photosynthesis [10,
11]. Therefore, wheat yield is a complex quantitative
trait contributed by many morphological, physiological
and biochemical components, all of which can be im-
proved to increase the yield directly or indirectly.
Genome-wide association study (GWAS) is a powerful

tool to identify loci associated to target traits based on
linkage disequilibrium (LD) using natural populations. It
is a rapid and cost-effectiveness way to detect target
markers for marker-assisted breeding. GWAS was first
used in human research and has made great contribu-
tions to identify genes associated to human diseases
[12–16]. The GWAS approach has been widely used in
plant and animal research [17–21]. For wheat, GWAS
has been successfully used for identifying quantitative
trait loci (QTLs) for disease resistance and yield [22–25].
The release of the high-quality genome reference IWGSC
RefSeq v1.0 [26] has provided great assistance to detect
linked markers and candidate genes for target traits. The
availability of marker arrays for high throughput genotyp-
ing is a key for GWAS. There are many SNP arrays have
been developed for wheat, such as 9 K, 35 K, 55 K, 90 K,
660 K and 820 K. These arrays are able to provide high-
density maps for detecting loci associated with target
traits.
In the present study, 244 wheat accessions (including

79 landraces and 165 cultivars) from Sichuan Province,
China were genotyped by using the wheat 55 K SNP
Array [27]. Based on multi-environmental yield-related
traits data under stripe rust stress, a GWAS was con-
ducted to identify the associated loci for yield-related
traits, such as FTN, SL, SlPS, Kernel weight per spike
(KWPS), TKW and SlC. The research further analysed
the genetic architecture of the yield-related traits, pro-
vide molecular markers to use in genome selection for
wheat high-yield breeding and may provide new insights
for genetic dissection of other complex quantitative
traits in wheat.

Results
Phenotypic characterization of eight yield-related traits
The yield-related traits were collected from Chongzhou
in 2017, 2018 (CZ17, CZ18), Mianyang in 2017 (MY17)
under stripe rust stress, and Chongzhou in 2017, 2018

without Pst inoculation as control (CZ17ck, CZ18ck).
The materials in CZ17ck and CZ18ck were set as
control without inoculating with Pst. The materials in
CZ17, MY17 and CZ18 were inoculated with mixed Pst
isolates. The Pearson correlation coefficient analysis
showed the significant correlations among the five envi-
ronments when the seven yield-related traits except
FTN were analysed separately. FTN had significant
correlation among the four test environments except for
CZ18 (Additional file 1). Shown as Fig. 1, the genotype-
by-year interaction was significant for all measured
yield-related traits except KWPS, while the genotype-by-
location interaction was not significant. The FTN, SL,
KPSl and KPS in 2017 all performed better than in 2018,
while the SlPS, TKW and SlC all performed better in
2018 than in 2017. Moreover, the plants in CZ17 and
MY17 showed lower KPS, KWPS and TKW than in
CZ17ck, and the plants in CZ18 showed lower KWPS,
TKW and SlC than in CZ18ck.
The phenotypic variations of eight yield-related traits

under stripe rust stress were determined based on their
best linear unbiased prediction (BLUP) values (Table 1).
FTN and KPSl ranged from 6 to 9 and from 3.7 to 4.3,
respectively. SL ranged from 9.3 to 14.1 cm. The ranges
of SlPS and KPS were 18 to 25 and 41 to 62, respect-
ively. The lowest KWPS was 1.21 g (g) and TKW 24.26
g, while the highest KWPS was 2.99 g and TKW 52.02 g.
The maximal SlC was 2.53, and the minimum value was
1.54. In addition, SlPS, TKW and SlC had high heritabil-
ities (0.78, 0.80 and 0.86, respectively) whereas FTN and
KPSl had relatively low heritabilities (0.37 and 0.31,
respectively). The Shannon-Weaver diversity index
analysis showed that KPS (H′ = 0.86) and TKW (H′ =
0.85) exhibited relatively high diversity compared to
FTN (H′ = 0.68) and SlPS (H′ = 0.67).

Phenotypic differences between landraces and cultivars
under stripe rust stress
The 244 entries consisted of 79 landraces and 165 culti-
vars. The t-test identified significant differences between
landraces and cultivars in FTN, SlPS, KPSl, KWPS,
TKW and SlC under stripe rust stress based on the
BLUP values (Table 2). The mean BLUP value of the
landrace group was significantly higher than that of the
cultivar group for FTN (7.3), SlPS (21) and SlC (1.95),
whereas the cultivar group exhibited significant higher
KPSl (4.1), KWPS (2.19) and TKW (42.14) values than
the landrace group (Table 2). In addition, analysis of the
Shannon-Weaver diversity indices showed that the land-
race group exhibited higher phenotypic diversity in FTN,
SL, SlPS and SlC than the cultivar group, whereas the
latter group had higher diversity in KPSl, KWPS and
TKW (Table 2).
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Correlations among yield-related traits under stripe rust
stress and stripe rust reaction
Pearson correlation coefficient analysis among the yield
components and stripe rust reaction measured as IT

(Additional file 2) showed that IT was significantly nega-
tively correlated with FTN, KPS, KWPS and TKW; SlC
was significantly negatively correlated with SL and
TKW; FTN negatively correlated with KPSl, KWPS and

Fig. 1 The box plots of eight yield-related traits in multiple environments. It clearly showed that the genotype-by-year interaction variance was
significant for all yield-related traits we measured except for KWPS. FTN, Fertile tiller number; SL, Spike length; SlPS, Spikelet number per spike;
KPSl, Kernel number per spikelet; KPS, Kernel number per spike; KWPS, Kernel weight per spike; TKW, Thousand-kernel weight; SlC, Spikelet
compactness. CZck = Chongzhou without Puccinia striiformis f. sp. tritici (Pst) inoculation; CZ = Chongzhou with Pst inoculation; MY = Mianyang
with Pst inoculation
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TKW; and SlPS negative correlated with TKW (Fig. 2).
Positive correlation was detected between SlC with FTN
and SlPS; between FTN and SlPS; between SlPS with
KPS and SL; and among KPS, SL, KPSl, KWPS and
TKW except between TKW and KPS (Fig. 2). In
addition, the correlation network analysis showed a very
strong correlation between KWPS and TKW (0.79), and
between KPS and KWPS (0.62) (Fig. 2).

The impact of stripe rust on yield-related traits
The Pearson correlation coefficient analysis showed IT
was negatively correlated with FTN, KPS, KWPS and
TKW. In order to further understand the stripe rust
effects on yield traits, we compared the control plots
(CZ17ck and CZ18ck) and the inoculated plots (MY17,
CZ17, and CZ18) (Table 3). The control plots had higher
KPS, KWPS and TKW than inoculated plots, whereas
the inoculated plots had higher FTN than the control
plots (Table 3). Based on the IT data in the inoculated
fields, of the 244 accessions, 169 were resistant and 75
susceptible (Additional file 2). The resistant accessions
exhibited higher FTN, KPS, KWPS, and TKW than the
susceptible accessions in both inoculated and non-inoc-
ulated plots (Table 3). However, compared with the non-
inoculated plots, FTN increased by 15.5 and 15.4% for
the resistant and susceptible accessions inoculated with
Pst, respectively. In addition, with Pst inoculation, KPS,
KWPS and TKW of resistance accessions were reduced
by 1.5, 8.5 and 5.6%, and KPS, KWPS and TKW of sus-
ceptible ones reduced by 2.7, 11.8 and 10.2%,
respectively (Table 3).

Genome-wide association analyses
Based on the genotyping data generated using the 55
K SNP array (Affymetrix Axiom Wheat55K), a total

of 44,059 high-quality SNP markers were selected for
genetic variation (Additional file 3) [27]. The previous
result of the analysis of population structure (Q-
matrix) showed the optimal ΔK value was 2, indicat-
ing that the 244 accessions could be divided into 2
sub-populations. Sub-population 1 harboured 78 ac-
cessions, including 77 landraces and one cultivar.
Sub-population 2 contained 166 accessions, including
164 cultivars and 2 landraces [27]. Significant differ-
ences were observed in the BLUP values of five yield-
related traits (FTN, SlPS, KWPS, TKW and SlC)
between two sub-populations. The sub-population 1
mainly contained landraces exhibited higher FTN,
SlPS and SlC than those in sub-population 2, while
the accessions in sub-population 2 showed higher
KWPS and TKW than those in sub-population 1
(Fig. 3, Additional file 4). The LD half decay distance
was 2.12Mb based on the r2 values between signifi-
cant pairs of intra-chromosomal SNP markers with
physical distances [27]. Significant associated loci
within a genomic region of 2.12 Mb or less on the
same chromosome were treated as a same QTL.
Subsequently, GWAS was conducted to identify loci

associated with yield-related traits in three environments
under stripe rust stress based on the MLM model with
Q + K as covariates. We identified 7, 9 and 6 high confi-
dence markers (−log10 P > 3) associated with SL, TKW
and KWPS, respectively. Of them, four markers associ-
ated with both TKW and KWPS (Table 4). All of these
high confidence markers were detected in at least two of
the environments. Moreover, 16 favourable SNP alleles
were detected (Table 4, Additional file 5). Accessions
possessing the favourable alleles performed better in SL,
KWPS and TKW than those did not have the favourable
alleles (Fig. 4). Shown as Fig. 5, the loci with high confi-
dences of association in the three environments were
displayed as Manhattan plots with P values across the 21
wheat chromosomes. Based on the LD distance of 2.12
Mb, the associated loci were determined as 13 QTLs
(Table 4). The six QTLs associated with SL were mapped
on chromosome 1AL, 2AL, 2DS, 4AS and 5AL, three
QTLs associated with TKW were located on chromo-
some 1BL, 2AS, and 4AL, two QTLs associated with
KWPS were all mapped on chromosome 4AL, two QTLs
associated with both KWPS and TKW were mapped on
chromosome 1BL and 2AS. The two QTLs associated
with KWPS located on chromosome 4AL explained up
to 20% phenotypic variation, and the QTL on 1AL asso-
ciated with SL also explained high phenotypic variation,
ranging from 8.3 to 10.6% and was detected in all three
environments. Moreover, comparing with the physical
locations of reported QTLs or genes associated with SL,
KWPS and TKW based on the reference RefSeq v1.0
[26], three of the QTLs were potentially novel (Table 4).

Table 1 The phenotypic variations for 244 wheat accessions
under stripe rust stress based on BLUP values

Trials FTN SL (cm) SlPS KPSl KPS KWPS (g) TKW (g) SlC

Min 6 9.3 18 3.7 41 1.21 24.26 1.54

Max 9 14.1 25 4.3 62 2.99 52.02 2.53

Mean 6.8 11.6 21 4.0 53 2.09 39.54 1.88

STDEV 0.64 0.85 1.16 0.11 3.94 0.30 5.68 0.17

CV 0.09 0.07 0.06 0.03 0.07 0.14 0.14 0.09

H2 0.37 0.69 0.78 0.31 0.51 0.59 0.80 0.86

H′ 0.68 0.79 0.67 0.79 0.86 0.80 0.85 0.78

BLUP The best linear unbiased prediction
FTN Fertile tiller number, SL Spike length, SlPS Spikelet number per spike, KPSl
Kernel number per spikelet, KPS Kernel number per spike, KWPS Kernel weight
per spike, TKW Thousand-kernel weight, SlC Spikelet compactness, cm
centimetre, g gram
STDEV Standard deviation, CV Coefficient of variation, H2, The broad sense
heritability; H′, The Shannon-Weaver diversity index
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Putative candidate genes of the three potentially novel
QTLs
Based on the Chinese Spring reference RefSeq v1.0
(IWGSC) and RefSeq Annotation v1.1 [26], 59, 29
and 33 genes included in QSL.sicau-1AL, QTKW.-
sicau-4AL and QKWPS.sicau-4AL.1 region were se-
lected. Of them, 21 candidate genes were predicted to
be involved in the regulation of phytohormone, cell
division and proliferation, meristem development,

plant or organ development, and carbohydrate trans-
port (Additional file 6).

Discussion
Characterization of yield-related traits under stripe rust
stress
We evaluated 244 wheat accessions in three field envi-
ronments under stripe rust stress (CZ17, MY17 and
CZ18) and two sites without inoculating Pst (CZ17ck

Fig. 2 The correlations matrix and network analysis among eight yield-related traits and infection type (IT). FTN, Fertile tiller number; SL, Spike
length; SlPS, Spikelet number per spike; KPSl, Kernel number per spikelet; KPS, Kernel number per spike; KWPS, Kernel weight per spike; TKW,
Thousand-kernel weight; SlC, Spikelet compactness. *, Significant at p < 0.05; **, Significant at p < 0.01

Table 3 The difference in yield-related traits between resistant and susceptible accessions with or without Pst inoculation

Traits Type Range Mean values Differencec

Controla Inoculationb Controla Inoculationb

FTN** R 3–11 6–9 5.94 6.86 + 15.5%

S 4–10 6–8 5.65 6.52 + 15.4%

SL (cm) R 7.7–15.7 9.3–13.9 10.96 11.57 –

S 8.0–16.0 9.8–14.1 10.78 11.51 –

SlPS R 17–25 18–23 20.85 20.80 –

S 18–24 18–25 20.49 20.39 –

KPSl R 3.0–5.5 3.7–4.3 4.18 4.05 –

S 3.0–5.0 3.7–4.3 4.10 4.03 –

KPS** R 28–75 43–62 54.53 53.72 −1.5%

S 30–72 41–60 52.49 51.09 −2.7%

KWPS (g)** R 0.84–3.61 1.32–2.99 2.36 2.16 −8.5%

S 0.68–3.36 1.21–2.52 2.20 1.94 −11.8%

TKW (g)** R 24.91–61.23 28.27–52.02 42.95 40.54 −5.6%

S 23.38–54.88 24.26–45.26 41.54 37.31 −10.2%

SlC R 1.44–2.76 1.54–2.53 1.91 1.89 –

S 1.50–2.44 1.58–2.33 1.90 1.86 –

FTN Fertile tiller number, SL Spike length, SlPS Spikelet number per spike, KPSl Kernel number per spikelet, KPS Kernel number per spike, KWPS Kernel weight per
spike, TKW Thousand-kernel weight, SlC Spikelet compactness, cm centimetre, g gram
R Resistant materials, S Susceptible materials
a,the locations without Pst inoculation;b, the locations with Pst inoculation.c, comparing with control, the increase (+) or decrease (−) percentage of yield-related
traits under stripe rust stress
**,the significant difference in the traits between control and inoculation at p < 0.01
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and CZ18ck) in Sichuan. The seven yield-related traits
displayed significant differences between 2017 and 2018
except KWPS. FTN, SL, KPSl and KPS in 2017 per-
formed better than in 2018, while SlPS, TKW and SlC in
2018 were better than in 2017. Different traits are
formed in different growth periods and required and

also affected by different growth conditions, such as
water, temperature, soil fertility, light and others.
Compared the weather conditions during the wheat
growing seasons between 2017 and 2018, we considered
temperature was the main factor for the difference in
FTN between the 2 years (Additional file 7). From the

Fig. 3 Significant difference in five yield-related traits under stripe rust stress between two sub-populations based on Q-matrix. FTN, Fertile tiller
number; SlPS, Spikelet number per spike; KWPS, Kernel weight per spike; TKW, Thousand-kernel weight; SlC, Spikelet compactness. CZ17 = Chongzhou
2017; MY17 =Mianyang 2017; CZ18 = Chongzhou 2018; BLUP, the best linear unbiased prediction
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three-leaf stage to the beginning of stem-elongation in
the vegetative growth period was the important time to
produce tillers [28], and one of the key factors is
temperature. Temperatures below 3 °C are not good for
tiller development, and the optimal range is 13–18 °C
[29, 30]. Wheat in Sichuan Province is sowed from late
October to early November, and the vegetative growth is
about from planting time to the following March. The
weather conditions from December, 2016 to February,
2017 (CZ17 and MY17) were warm, but the tempera-
tures in December, 2017 to February, 2018 (CZ18) were
lower than in CZ17 and MY17. The lowest temperature

in CZ18 was less than 0 °C (Additional file 7), which
seriously reduced the tiller number. Thus, we speculated
that the warm weather was the main factor for the
higher number of fertile tillers during the vegetative
growth period from 2016 to 2017.
Yield-related traits SlPS, TKW and SlC exhibited rela-

tively higher broad-sense heritabilities, while FTN and
KPSl showed lower broad-sense heritabilities (Table 1).
The results indicated that the environments had a great
influence on FTN and KPSl, but less effect on SlPS,
TKW and SlC. In other words, SlPS, TKW and SlC were
more stable than FTN and KPSl. Consistent with many

Table 4 The details of QTLs associated with yield-related traits under stripe rust stress

QTL name SNP Marker Chr.a Position Allelesb Traits P values
(−log)e

Marker R2

(%)
Environments Reference

QSL.sicau-1AL AX-
110408975

1A 590,994,
911

T/C SL 3.9–4.3 8.3–10.5 CZ17, CZ18,
MY17

d

QTKW.
sicau-1BL.1 &
QKWPS.sicau-1BL

AX-
109335890

1B 670,593,
327

A/C KWPS &
TKW

4.0–4.3 &
3.7–4.5

6.7–7.7 &
6.5–8.6

CZ17, MY17 Börner et al. 2002

AX-
109849833

1B 670,678,
079

G/T KWPS &
TKW

4.2–6.3 &
3.6–4.7

8.9–13.6 &
7.8–10.6

CZ17, MY17

AX-
111525685

1B 670,781,
552

C/G KWPS &
TKW

3.3–4.5 &
3.7–3.9

6.8–9.3 &
7.6–8.5

CZ17, MY17

AX-
109299717

1B 670,794,
681

G/A TKW 3.6–4.5 7.6–9.7 CZ17, MY17

QTKW.
sicau-1BL.2

AX-
111471952

1B 681,682,
184

A/G TKW 3.3–3.5 7.1–7.5 CZ17, MY17 Nezhad et al. 2012

QTKW.
sicau-2AS.1

AX-
108781797

2A 2,795,252 G/C TKW 3.2–4.5 6.5–9.5 CZ17, MY17 Cui et al. 2014; Zhang et al.
2014

AX-
111079592

2A 3,541,651 G/A TKW 3.1–3.4 6.4–7.0 CZ17, MY17

QTKW.
sicau-2AS.2 &
QKWPS.sicau-2AS

AX-
108919444

2A 24,057,
418

T/G KWPS &
TKW

3.3–5.1 &
3.2–3.4

5.5–9.2 &
5.4–6.2

CZ17, MY17 Zhang et al. 2014

QSL.sicau-2AL AX-
110079477

2A 432,588,
841

T/A SL 3.2 6.5–6.6 CZ17, MY17 Deng et al. 2017

QSL.sicau-2DS AX-
110647062

2D 23,025,
488

A/T SL 3.5–3.7 7.1–7.6 CZ17, MY17 Chai et al. 2018

QSL.sicau-4AS AX-
109296730

4A 68,155,
791

C/A SL 3.5–3.7 7.2–7.5 CZ17, MY17 Luo et al. 2016

QTKW.sicau-4AL AX-
109993853

4A 538,150,
807

G/T TWK 3.2–3.7 7.7–9.0 CZ17, MY17 d

QKWPS.
sicau-4AL.1

AX-
109830112

4A 569,760,
052

G/A KWPS 3.4–8.7 7.4–20.4 MY17, CZ18 d

QKWPS.
sicau-4AL.2

AX-
111088719

4A 620,950,
639

T/C KWPS 3.1–8.5 6.5–20.0 MY17, CZ18 Cui et al. 2013

QSL.sicau-5AL.1 AX-
109624254

5A 595,708,
738

G/A SL 3.3–4.5 7.8–9.2 CZ17, CZ18 Gao et al. 2015

AX-
110717909

5A 595,950,
156

C/A SL 3.1–3.4 7.7–8.0 CZ17, CZ18

QSL.sicau-5AL.2 AX-
110521338

5A 621,939,
257

T/C SL 3–3.4 7.4–7.6 MY17, CZ18 Liu et al. 2014

a,Chromosome; b,The alleles marked with underline are favorable alleles
d, the potentially novel QTL
SL Spike length, KWPS Kernel weight per spike, TKW Thousand-kernel weight
CZ17 Chongzhou 2017, MY17 Mianyang 2017, CZ18 Chongzhou 2018
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other reports, FTN had a low heritability and was strongly
influenced by environments [5, 9, 31] and KPSl also dis-
played relatively low heritability, whereas SlPS, TKW and
SlC had relatively higher heritabilities [3, 9, 32–34].
The Shannon-Weaver diversity indices reflected the

phenotypic diversity to some extent. KPS and TKW
showed the highest phenotype diversities and FTN

and SlPS displayed the lowest diversities in this study,
which were consistent with the reports of Li et al.
[35] and Liu et al. [36]. A high phenotypic diversity is
beneficial to phenotypic improvement in breeding. As
the important components of yield, KPS and TKW
exhibited high phenotypic diversities, and accessions
with favourable alleles for these traits can be used as
elite germplasm for breeding whet cultivars high yield
potential.
Compared with the non-inoculation control experi-

ments (CZ17ck and CZ18ck), the accessions under
stripe rust stress (CZ17, MY17 and CZ18) exhibited
lower KPS, KWPS and TKW. The further comparison
between the non-inoculation control and Pst-inoculation
indicated that many accessions exhibited significantly
lower KPS, KWPS and TKW, but higher FTN under
stripe rust stress. However, stripe rust did not
significantly affect SL, SlPS, KPSl and SlC. The resistant
accessions exhibited higher mean values of yield-related
traits than susceptible accessions no matter inoculated
or not inoculated indicating that stripe rust resistance
protects most of the yield-related traits.
Interestingly, both resistant and susceptible accessions

under stripe rust stress exhibited higher FTN. As we
discussed above, FTN is mainly determined during the
vegetative growth period from the three-leaf stage to the
beginning of stem-elongation stage [28]. This period is
prior to the Pst inocultion. So, we speculated that the
stripe rust should not have significant effects on FTN.
There were many reports also demonstrated that the
stripe rust didn’t affect tiller number [37, 38]. The differ-
ences in FTN between the control and Pst-inoculation
fields could be due to other conditions such as weather,
water, and soil fertility rather than stripe rust.
There is no doubt that stripe rust can reduce yield,

especially the KPS, KWPS and TKW [39–41]. In the
present study, the values of KPS, KWPS and TKW of
resistant accessions under stripe rust stress were reduced
by 1.5, 8.5 and 5.6%, while those of susceptible acces-
sions under stripe rust stress were reduced 2.7, 11.8 and
10.2% separately. Thus, susceptible accessions had more
serious reduction by stripe rust than resistant accessions.
In other words, resistance can effectively reduce the
losses of KPS, KWPS and TKW under stripe rust stress.
We inoculated wheat plants with Pst around the shoot-
ing stage in January and rust appeared on flag leaves at
the heading stage, and reached the highest severity
around the anthesis to grain filling stage. The anthesis
stage is the important time to product kernels (e.g. KPS)
[42] and the grain filling period is the key time to deter-
mine the kernel weight (e.g. KWPS and TKW) [43]. The
Pst pathogen produced abundant urediniospore during
the flag-leaf stage, and thus reduced the photosynthetic
area, which caused the decrease of sugar production

Fig. 4 The difference in traits between accessions with and without
favourable allele were displayed as histogram. The accessions with
favourable allele showed higher mean values of spike length, kernel
weight per spike and thousand-kernel weight than that without
favourable allele in three environments under stripe rust stress and
BLUP values. CZ17 = Chongzhou 2017; MY17 = Mianyang 2017;
CZ18 = Chongzhou 2018; BLUP, the best linear unbiased prediction
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[44]. The decrease of sugar supply to the spike results in
the fewer grains and smaller grains, and thus exhibited
the lower KPS, KWPS and TKW.
Spikes are mainly produced from the 4-leaf stage to

the heading stage, and thus SlPS is mainly determined
around the 5-leaf stage to 6/7-leaf stage [28]. SlC was
calculated by dividing SL by SlPS. In our study, both SL
and SlPS might just escape from the major damage
period of stripe rust, and thus, did not show significant
differences.
The yield is the complex and comprehensive trait,

which was affected by many factors. The degree of Pst
infection, the time of the Pst infection, the weather, the
water, the soil fertility, even the personal error for meas-
urement, many parameters like above may affect our
study. But most of all, we can be sure the infection of
stripe rust can result in the decrease of KPS, KWPS and
TWK in this study, which were the important compo-
nents to results in the yield loss.

Landraces as elite germplasm for breeding
The 244 accessions used in this study, including 79 land-
races and 165 cultivars, belong to two different germplasm
resources in Sichuan Province. The classification based on
the Q-matrix with Bayesian model-based clustering also

clearly divided the 244 accessions into two sub-popula-
tions. Except one cultivar, accessions in sub-population 1
were all landraces, whereas those in sub-population 2
were primarily cultivars. Obvious distinctions were found
in both phenotypes and genotypes between landraces and
cultivars. Therefore, the utilization of these landraces
should broaden the genetic background in the wheat
breeding programs in Sichuan Province.
The comparison analysis for the eight yield-related

traits under stripe rust stress between landraces and
cultivars showed the significant differences in FTN, SlPS,
KPSl, KWPS, TKW and SlC (Table 2). The landraces
showed higher FTN, SlPS and SlC than cultivars. Never-
theless, the cultivars had higher KPSl, KWPS and TKW
than the landraces. Besides, the landraces exhibited
higher diversities in FTN, SL, SlPS and SlC based on the
Shannon-Weaver diversity index, while the cultivars
displayed higher diversity in KPSl, KWPS and TKW.
The wheat landraces may have been shaped by trad-
itional growth practices, while the cultivars have been
developed for adapting the local cropping systems. The
higher adaptability to different environments, diversity
and inheritability are the basic characteristics of land-
races [45]. The cultivars were bred by human-mediated
selection mainly aiming at achieving high-yield. As one

Fig. 5 The P values of associated loci with yield-related traits under stripe rust stress exhibited as Manhattan plots. The associated loci with SL,
KWPS and TKW in three test environments were displayed as Manhattan plots with P values across 21 wheat chromosomes. The significant
associated loci were considered as –log10(P) > 3 which upper the blue lines. SL, Spike length; KWPS, Kernel weight per spike; TKW,
Thousand-kernel weight. CZ17 = Chongzhou 2017; MY17 =Mianyang 2017; CZ18 = Chongzhou 2018
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of the three yield components, kernel weight (KWPS
and TKW) has been the main target of breeding. The
higher KWPS and TKW of the tested cultivars were the
outcomes of yield breeding for cultivars. Different from
the pursuit of high yield in cultivars, the wheat landraces
mainly selected by local farmers, they reserved seeds for
planting, the plants with more seeds were their targets,
and thus exhibiting higher FTN, SlPS and SlC and
higher diversities for these traits. The traits with higher
diversities are easy to modify in breeding. Many studies
have demonstrated that landraces are excellent germ-
plasm sources, especially for abiotic and biotic stresses
[46–50]. Landraces also have many elite yield-related
genes [51–54]. Many Chinese wheat cultivars have been
developed using landraces, such as Bima 1, Shannong
205, Wuyimai, and Yulin 3 [55, 56]. The represent study
provides additional evidence for taking the advantages of
landraces with favourable alleles for yield-related traits
under stripe rust stress.

Markers associated to yield-related traits
Here, we identified 13 QTLs associated with SL, KWPS
and TKW, which were located on 1AL, 1BL, 2AS, 2AL,
2DS, 4AS, 4AL and 5AL. The QTLs associated with SL,
KWPS and TKW was named as QSL.sicau, QKWPS.-
sicau and QTKW.sicau, respectively (Table 4). Compared
the physical locations of QTLs in this study with
reported QTLs or genes based on the Chinese Spring
reference RefSeq v1.0 [26], three potential novel QTLs
were identified. They were QSL.sicau-1AL, QTKW.sicau-
4AL and QKWPS.sicau-4AL.1, which were located at dif-
ferent physical positions from previously reported genes
related to SL, TKW and KWPS.
The six QTLs were identified associated with SL, in-

cluding one potentially new (QSL.sicau-1AL) and five
previously reported QTLs. QSL.sicau-2AL was located
around the position of 432.58Mb at 2A, which was the
same as QSl.sdau-2A [57]. QSL.sicau-2DS overlapped
with QPht/SL.cau-2D.2 [58], and the QSL.sicau-4AS was
covered by QSl.sau-4A [59]. Two QTLs were located at
5AL. One was QSL.sicau-5AL.1, which was the same as
QSL.caas-5AL that was flanked by marker JD_c15758_
288 and BS00041911_51 [32], and another was QSL.-
sicau-5AL.2, which overlapped with QSl-5A1 that was
flanked by SSR marker Xbarc261 and Xbarc151 [60].
Three QTLs were associated with TKW and two with

KWPS. QTKW.sicau-4AL and QKWPS.sicau-4AL.1 were
potentially new based on their physical locations.
QTKW.sicau-1BL.2 was located in the distal region of
1BL was covered by QTgw.ipk-1B-FS4 [61]. QTKW.-
sicau-2AS.1 was mapped on the short end of 2AS, which
was overlapped with QTkw-2A.2 [9] and Qtkw2A-2 [62].
QKWPS.sicau-4AL.2 associated with KWPS was a major

QTL, with up to 20% PVE. This QTL was covered by
QKwps|Tkw-WJ-4A.1 [63].
We also consistently detected two QTLs associated

with both TKW and KWPS. QTKW.sicau-1BL.1 and
QKWPS.sicau-1BL were located in the same region
around 670Mb. They were overlapped with Qgwe.ipk-1B
that was associated with KWPS [64]. However, there are
no reports on the association of this QTL with TKW.
Our results indicated that this QTL is also related to
TKW. In addition, QTKW.sicau-2AS.2 and QKWPS.-
sicau-2AS were also mapped at the same position of
24.05Mb, which was very close to Qtkw2A-1 [62].
Qtkw2A-1 associated with TKW but not KWPS [62]. We
found that this QTL is related to both KWPS and TKW.
We identified Qyrsicau-1BL.1 around the position of

670Mb that was associated with stripe rust IT and DS
[27], which belonged to the same QTL block of both
QTKW.sicau-1BL.1 and QKWPS.sicau-1BL. These re-
sults indicate that this QTL block around the position of
670Mb on 1BL confers stripe rust resistance, and thus
related to KWPS and TKW under stripe rust stress in
the present study. In addition, Qyrsicau-1BL.2 around
the region of 681Mb associated with stripe rust IT [27]
was the same as QTKW.sicau-1BL.2 which was also
associated with TKW in this study. This is another QTL
block conferring stripe rust resistance and thus associ-
ated to TKW. These two QTLs might be with pleiotropy
were both located on 1BL and just 11Mb apart. Thus,
1BL harbours numerous QTLs for stripe rust resistance
and other traits.

Candidate genes for the three potentially novel QTLs
A total of 121 genes were selected for the analyses of can-
didate genes of the three potential novel QTLs. Of these
genes, 11, 3 and 7 candidate genes were identified for
QSL.sicau-1AL, QTKW.sicau-4AL and QKWPS.sicau-
4AL.1, respectively (Additional file 6). Eleven presumptive
candidate genes (TraesCS1A02G439500, TraesCS1A02
G440000, TraesCS1A02G442400, TraesCS1A02G443700,
TraesCS1A02G444100, TraesCS1A02G444500, TraesC-
S1A02G444700, TraesCS1A02G445100, TraesCS1A02G445200,
TraesCS1A02G445300 and TraesCS1A02G445400) were
speculated to exist in QSLsicau-1AL. TraesCS1A02G439500
is homologous to Arabidopsis gene EAF1B (early flower-
ing 1B) which involved in the regulation of transition from
vegetative to reproductive phase [65] and the regulation of
photoperiodism [66]. The period from vegetative to repro-
ductive growth is important time for spike development
in wheat, and the spike development is sensitive to light
[28, 67–69]. TraesCS1A02G440000 is aligned with rice
gene GH3.8 (Probable indole-3-acetic acid-amido synthe-
tase), that is the auxin-responsive gene [70]. Auxin is an
important hormone in plant development and we consid-
ered the homologous gene in wheat of auxin-responsive

Ye et al. BMC Genomics          (2019) 20:640 Page 11 of 17



gene GH3.8 associates with spike development and affects
the SL. TraesCS1A02G442400 is an uncharacterized pro-
tein in wheat and orthologous with Arabidopsis gene
BTAF1 (TATA-binding protein-associated factor 1) in-
volved in the positive regulation of shoot apical meristem
development [71]. The shoot apical meristem is respon-
sible for the initiation of many organs, such as nodes,
leaves, spike, and inflorescence [72]. Here, we speculate
that shoot apical meristems also play an important role in
spike development. TraesCS1A02G443700 is the U6
snRNA-associated Sm-like protein LSM8, its orthologous
gene is LSM8 in Arabidopsis, which plays a critical role in
the regulation of development-related gene expression
[73]. The LSM8 in wheat may also regulate the expression
of spike development-related gene. TraesCS1A02G444500
is homologous to gene BAM2 (derived from barely any
meristem 1) in Arabidopsis, which involved in the cell div-
ision and differentiation, floral organ development, gam-
etophyte development and regulation of meristem growth
[74, 75]. The cell division and differentiation and meri-
stem growth are all associated with the plant develop-
ment. Hord et al. [76] reported the BAM1/BAM2
receptor-like kinases regulate the early anther develop-
ment through cell division and differentiation. The spike
development along with the anther development, maybe
also regulated by the BAM2 in wheat. TraesC-
S1A02G444700 is orthologous with the aspartic proteinase
NANA in Arabidopsis. It’s involved in the carbohydrate
metabolic process, maintenance of shoot apical meristem
identity and general morphology and development [77,
78]. The carbohydrate metabolic can provide the energy
for spike development. The shoot apical meristem and
general morphology and development all maybe involved
in the spike development [79]. TraesCS1A02G444100,
TraesCS1A02G445100, TraesCS1A02G445200, TraesC-
S1A02G445300, and TraesCS1A02G445400 were all
aligned with rice gene RR42 (Two-component response
regulator 42), which is involved in the cytokinin-activated
signaling pathway and phosphorelay signal transduction
system [80, 81]. Cytokinin is the classic plant growth phy-
tohormones and functions to promote the cell division
and cell differentiation, which may contribute to the spike
development in wheat.
There were three putative candidate genes for

QTKW.sicau-4AL, TraesCS4A02G229100, TraesCS4A02
G229600, and TraesCS4A02G229700. TraesCS4A02G2
29100 is the auxin regulated gene involved in organ size
(TaARGOS-A). Zhao et al. [82] studied the TaARGOS in-
fluenced plant growth and stress tolerance, and the GO
annotation showed it involved in the positive regulation
of organ growth. Its homologous gene ARGOS in rice re-
sponds to auxin stimuli, positively regulate cell and
organ growth [83]. Auxin is an important hormone in
plant development. In Arabidopsis, ARF2 functions as

an auxin response factor playing a vital role in determin-
ing final size of the seed [84]. In rice, auxin transporters
can affect kernel size and increase the TKW [85]. We
speculate that TraesCS4A02G229100 as an ARGOS gene
also respond to auxin and regulated the organ (spike or
grain) growth in wheat. TraesCS4A02G229600 and
TraesCS4A02G229700 were all orthologous with Arabi-
dopsis gene At2g43860, as a polygalacturonase, involved
in the carbohydrate metabolic process [86]. Carbohy-
drate is a main product of photosynthesis, and it can be
transported to spikes for kernel growth and further de-
termining kernel size and weight [10, 87].
Seven putative candidate genes, TraesCS4A02G255800,

TraesCS4A02G256500, TraesCS4A02G256700, TraesC-
S4A02G257100, TraesCS4A02G257200, TraesCS4A02G
257700, and TraesCS4A02G258000, were detected in
QKWPS.sicau-4AL.1. TraesCS4A02G255800 is homolo-
gous to the transcription factor bHLH74 (basic helix-
loop-helix 74) in Arabidopsis. It involved in cell elong-
ation, plant development and triggering flowering in
response to blue light [88–90]. In rice, the homolo-
gous gene bHLH74 can regulate the cell elongation
and finally control the grain size [91]. Grain size, as
an important yield component, may also be regulated
by bHLH74 homologous gene in wheat. TraesC-
S4A02G256500 is aligned with rice gene ACC1 (1-ami-
nocyclopropane-1-carboxylate synthase 1). The ACC1
is a kind of synthase, which could catalyze the forma-
tion of 1-aminocyclopropane-1-carboxylate that’s a dir-
ect precursor of ethylene in higher plants. Ethylene is
well known as the effect on fruit ripening and organ
abscission. Yang et al. [92] found the abscisic acid and
ethylene in wheat grains can respond to the drought
during the grain filling. Naik and Mohapatra (2000)
[93] reported the ethylene had effect on the grain fill-
ing of basal rice kernels. The grain filling is the im-
portant stage to determine the kernel yield in wheat.
We speculated the homologous gene ACC1 in wheat
can regulate the ethylene as well and further impact
the kernel yield. TraesCS4A02G256700 is the gene
Wknox1a, which mainly expresses in shoot apical
meristem-containing shoots and young spikes in wheat
[94]. Wknox1a is aligned with rice gene OSH1, which
affects the inflorescence morphology [95]. In addition,
OSH1 regulates the auxin mediated signalling pathway
[96], and as a member of the KNOX protein family, it
plays an important role in shoot apical meristem
maintenance [97]. Auxin and shoot apical meristems
are all involved in the inflorescence development and fur-
ther affect kernel traits [72, 84]. TraesCS4A02G257100
was the homolog of GDP-mannose transporter GONST1
in Arabidopsis. One of the important functions of
GONST1 is carbohydrate transport [98]. It is involved in
transporting carbohydrates from leaves to spikes, a vital
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activity to support kernel growth. The condition of the
kernel growth would affect KWPS in wheat. TraesC-
S4A02G257200 is orthologous with Arabidopsis gene
AMSH3. AMSH3 is essential for plant growth and
development [99]. KWPS is determined by many
aspects of growth and development, such as spike de-
velopment, spikelet and kernel development. TraesC-
S4A02G257700 is the inositol-tetrakisphosphate 1-kinase
and the GO annotation showed it’s involved in inositol
trisphosphate metabolic process. Its orthologous gene
ITPK1 in maize, also involved in inositol trisphosphate
metabolic process, participates in phytic acid biosynthesis
in developing seeds. Phytic acid is an important storage
form of phosphorus in cereal grains [100], which may
influence the kernel yield directly. TraesCS4A02G258000
is homologous to COMPASS-like H3K4 histone methyl-
ase component WDR5a (WD40-REPEAT 5a) in Arabi-
dopsis. It involved in vegetative to reproductive phase
transition of meristem, and expressed in developing em-
bryos and endosperms, shoot and root apical regions [101,
102]. The differentiation of meristem from vegetative to
reproductive growth is important time for the initial of
spikelet development in wheat and further impacts the
yield components [28, 67].
Although the putative candidate genes were ana-

lysed based on collinearity analysis with the limited
known information about the gene/protein function,
it still provides us much important information to
identify the possible candidate genes. We will further
study these candidate genes by genetic mapping or
reverse genetics in the future.

Conclusions
Molecular marker-assisted breeding is an effective and
environment-friendly way to improve yield and disease
resistance. In this study, we collected 244 accessions
with high diversity from Sichuan, the phenotypic
comparison analysis between resistance and susceptible
accessions with or without Pst inoculation showed that
the resistance accessions had much reduced yield losses
(KPS, KWPS and TKW). Combined with 44,059 effective
markers, we identified three potential novel loci and 16
favourable alleles through GWAS analysis, providing
reliable markers and elite genetic stocks for molecular
marker-assisted breeding.

Materials and methods
Plant materials
A total of 244 wheat accessions (Additional file 2) were
used in this study, including 79 landraces and 165 culti-
vars which have been used or developed by different
breeding programs in Sichuan Province since 1997.

Evaluation of yield-related traits and stripe rust infection
type
The 244 wheat accessions were evaluated in two loca-
tions in Sichuan with different years but all under stripe
rust stress: Chongzhou (30°33′37.3″ N, 103°38′45.4″ E,
elevation 513 m) in 2017 (CZ17) and 2018 (CZ18);
Mianyang (31°23′N, 104°49′E, elevation 440 m) in 2017
(MY17). All experimental fields were inoculated with
mixed urediniospores of the local Pst races, including
CYR32, CYR33, CYR34, G22–14, Su11–4, Su11–5,
Su11–7 [27]. The 244 wheat accessions were also
planted in different fields in Chongzhou (30°33′46.3″N,
103°38′38.5″E, elevation 514 m) without inoculation in
2017 (CZ17ck) and 2018 (CZ18ck). This field is about
0.5 km away from the inoculated field and sprayed with
fungicide 25% Triadimefon at the rate of 0.2 kg/ha at the
early infection stage (around booting stage for twice)
and heading stage. In all test environments, twenty seeds
of each accession were evenly planted in a 2 m row with
a 0.3 m between rows. The accessions with three replica-
tions planted in each location were evaluated for eight
yield-related traits: FTN, SL, SlPS, KPSl, KPS, KWPS,
TKW, and SlC which was calculated by dividing SL by
SlPS. All of the traits were measured on five randomly
selected plants for each accession at harvest. The rule of
identification of infection type (IT) for stripe rust was
the same as Ye et al. [27]. In order to reduce the envir-
onmental impacts on yield-related traits, the best linear
unbiased prediction (BLUP) values were calculated based
on linear model using the lme4 package in the R pro-
gram [103]. The broad-sense heritability (H2) estimates
for each of the yield-related traits were calculated across
all test environments using formula H2 = VG/(VG + VE)
using the lme4 package [103], where VG and VE are the
genotypic and environmental variances, respectively
[104]. The phenotypic variation was determined by the
range, mean, standard deviation (STDEV) and coefficient
of variation (CV) for each trait and BLUP value. The
Pearson correlation coefficient and the t-test were
achieved using SPSS 20.0 (IBM Corp., Armonk, NY,
USA). The Shannon-Weaver diversity index (H′) was
calculated for each trait using the BLUP values [105].

Genotyping analysis
The genomic DNA was extracted from the mixed leaves
collected from 5 one-week-old seedings using the plant
DNA kits (Biofit Co., China) for each accession. A total
of 244 DNA samples were genotyped using the 55 K
SNP array (Affymetrix Axiom Wheat55K) at the China
Golden Marker Biotechnology Company Ltd. (Beijing,
China). The effective markers used for further analyses
were selected with missing values ≤10% and minor allele
frequency (MAF) ≥ 5%.
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Population structure, kinship and linkage disequilibrium
analysis
The population structure (Q-matrix) was analysed using
software STRUCTURE v2.3.4 with Bayesian model-
based clustering [106]. Five independent STRUCTURE
runs were performed with the K from 2 to 10 using the
admixture model with 100,000 replicates for burn-in
length and 100,000 replicates for Markov chain Monte
Carlo (MCMC) iterations. The optimal K value was
chosen using the ΔK method in web-based software
STRUCTURE HARVESTER [107]. The kinship (K-
matrix) was estimated between pairs of accessions as a
measure of relatedness based on the identity-by-state
(IBS) method using TASSEL v5.2.38 [108]. The pairwise
measure of linkage disequilibrium (LD) was estimated as
squared allele frequency correlation (r2) between pairs of
intra-chromosomal markers with known chromosomal
position using TASSEL v5.2.38 [108]. Significant pair-
wise markers were chosen using the threshold pDiseq
< 0.001 and r2 > 0.1 [108]. The LD decay plot and half
decay distance were generated with the r2 values and the
distances between markers using the ggplot2 package in
the R program [109]. All high confidence associated loci
in the half decay distance region on the same chromo-
some were defined as the same QTL block.

Genome-wide association analyses
Combining the yield-related traits under stripe rust stress
with 44,059 effective SNP markers, GWAS analyses were
performed on the 244 accessions using software TASSEL
v5.2.38 based on the mixed linear model (MLM) with Q
and K as covariates [108, 110, 111]. For GWAS results, a
threshold P-value of 0.001 (−log10 P = 3) was considered as
the significant association markers. To make significant
associated loci more reliable, the high confidence associated
loci were selected for further analyses. The high confi-
dence associated loci should be the significant associ-
ation loci which must be detected in at least two test
environments. The associated loci with related traits
were visualized with Manhattan plots with P values
using the ggplot2 package in the R program [109].

Analyses of high confidence significant associated loci
There are many QTLs associated with yield-related
traits previously reported. In order to identify poten-
tially novel loci, the physical location of each QTL
was determined based on the high-quality Chinese
Spring reference IWGSC RefSeq v1.0 [26] using soft-
ware BLAST+ v2.7.1 [112].

Analyses of putative candidate genes in three potentially
novel QTLs
By referencing the Chinese Spring reference genome
(IWGSC RefSeq v1.0) and RefSeq Annotation v1.1

[26], the genes included in three potentially novel
QTLs were selected based on the LD decay distance
2.12Mb. The collinear analysis was carried out using on-
line BLAST at the EnsemblPlants website (https://plants.
ensembl.org/Multi/Tools/Blast) with default parameters.
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