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Benchmarking variant identification tools
for plant diversity discovery
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Abstract

Background: The ability to accurately and comprehensively identify genomic variations is critical for plant studies
utilizing high-throughput sequencing. Most bioinformatics tools for processing next-generation sequencing data
were originally developed and tested in human studies, raising questions as to their efficacy for plant research. A
detailed evaluation of the entire variant calling pipeline, including alignment, variant calling, variant filtering, and
imputation was performed on different programs using both simulated and real plant genomic datasets.

Results: A comparison of SOAP2, Bowtie2, and BWA-MEM found that BWA-MEM was consistently able to align the
most reads with high accuracy, whereas Bowtie2 had the highest overall accuracy. Comparative results of GATK
HaplotypCaller versus SAMtools mpileup indicated that the choice of variant caller affected precision and recall
differentially depending on the levels of diversity, sequence coverage and genome complexity. A cross-reference
experiment of S. lycopersicum and S. pennellii reference genomes revealed the inadequacy of single reference
genome for variant discovery that includes distantly-related plant individuals. Machine-learning-based variant
filtering strategy outperformed the traditional hard-cutoff strategy resulting in higher number of true positive
variants and fewer false positive variants. A 2-step imputation method, which utilized a set of high-confidence SNPs
as the reference panel, showed up to 60% higher accuracy than direct LD-based imputation.

Conclusions: Programs in the variant discovery pipeline have different performance on plant genomic dataset.
Choice of the programs is subjected to the goal of the study and available resources. This study serves as an
important guiding information for plant biologists utilizing next-generation sequencing data for diversity
characterization and crop improvement.
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Background
Genomic technologies provide unprecedented opportun-
ities to reveal the history of crop domestication, to
discover novel genetic diversity, and to understand the
genetic basis of economically important traits, collect-
ively contributing to crop improvement and food secur-
ity [1]. One of the most important steps in genomic
analyses is the ability to accurately and comprehensively
identify genetic variations. As sequencing cost continues
to decrease, whole genome sequencing (WGS) strategies
are increasingly employed for plant diversity and domes-
tication studies [2–5]. Accompanying improvements in
sequencing technology is the need to not only improve

but also better understand the algorithms that enable
variant calling from sequencing data. Many of the
algorithms used in the processing of sequencing data
were originally developed and evaluated in human WGS
studies yet are frequently used by plant genomic
researchers [6–9]. The underlying assumption is that the
performance of a given algorithm for human data will be
similar for plant data, in spite of significant differences
between the human and plant genomes.
The variant discovery pipeline for WGS dataset can be

roughly divided into four steps: read mapping, variant
calling, variant filtering, and imputation. Sequence
aligners for the read mapping step can be grouped
according to their indexing methodologies [9]. Programs
such as Novoalign (http://www.novocraft.com) and
GSNAP [10] use hash tables indexing methods; whereas
BWA [11], SOAP2 [12] and Bowtie2 [13] use Burrows-
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Wheeler Transformation indexing algorithms. Variant
calling programs can be categorized into alignment-based
programs such as SAMtools [14] and FreeBayes [15], and
assembly-based programs, such as GATK HaplotypeCaller
[16] and FermiKit [17]. Variant filtering steps remove low-
quality variants based on various quality metrics such as
base quality, read depth, and mapping quality. The purpose
of this step is to remove false positive variants while minim-
izing false negative variants, a source of “hidden diversity”.
The basic filtering strategy, termed “hard-filtering” [18], sets
empirical cutoffs on quality metrics to eliminate false posi-
tive variants.
Over the past decade, extensive progress in human

genomic studies has developed and applied machine-
learning based variant filtering methods [16] which uses
adaptive cutoffs that adapt to a specific dataset, often by
finding variants within the dataset that were previously
identified with high confidence. The final step in variant
discovery often employs imputation methods by lever-
aging external information to infer missing genotypes
due to technical limitations. The standard way of imput-
ation in human genomic studies utilizes a reference
panel [19, 20], where a previously identified set of haplo-
types link missing variants with successfully genotyped
variants. Many of these advanced methods have yet to
be readily adopted by plant researchers. In some in-
stances, there are clear obstacles to implementation,
such as the lack of extensive plant haplotype panels of
similar quality to the 1000 Genomes Project [21] or
HapMap [22]. Though some species, such as maize [23]
and rice [24], are rapidly building these resources. Even
though both plants and human genomics share a similar
computational workflow, the structure and composition
of plant genomes pose unique challenges that are not
present in humans. As a result, the evaluation of these
emerging computational genomic technologies is ur-
gently needed in agriculture.
A major challenge for crop genomics is the ability to

accurately and comprehensively characterize genetic di-
versity in domesticated crops, diverse landraces, and wild
crop relatives. Genetic diversity in plants can be much
greater than that found in human genomes. These sources
of diversity, especially in the wild species, provide a reser-
voir of genetic variation for future crop improvement
[25–27]. For example, introgression from related wild spe-
cies into domesticated tomatoes has been used to improve
agronomic performance such as abiotic tolerance [28–31].
For example, a gene from a wild relative of bread wheat
has been shown to confer resistance to one of the most
destructive stem rust pathogen races, Ug99 [32]. Charac-
terizing these rich pools of diversity is an important chal-
lenge facing plant genomics because the regions
containing this diversity may pose the most challenges for
algorithms designed and optimized for human studies.

The second challenge for variant discovery in plant
genomics is the quality of available reference genomes.
The human reference genome has been in a constant
state of improvement for decades (https://www.ncbi.nlm.
nih.gov/grc/human). Once released, however, most plant
reference genomes see little improvement, resulting in
references that are less accurate and less complete than
that found in humans. Other key challenges are the large
amounts of repetitive sequences, structural variations
and, in some crops, complex polyploid genomes [33, 34].
Diversity may be underestimated because of presence-
absence variations (PAV) that are common to most
plant genomes [35]. The diverse nature of plant genomes
together with low quality or incomplete reference assem-
blies can negatively affect read alignment and variant
calling steps, leading to inaccurate genotypes and miss-
ing variants [1, 36, 37].
Here, we benchmarked the performance of programs

that are commonly used for variant discovery in plant
studies. The comparison included three highly-cited
sequence aligners, BWA-MEM, Bowtie2 and SOAP2,
and two popular variant callers, GATK HaplotypeCaller
(GATK-HC) and SAMtools mpileup (SAMtools-mpi-
leup) using domesticated tomatoes, wild relatives and
simulated genomic datasets. We show that as diversity
and genome complexity increased, the ability of these al-
gorithms to identify variants varied strongly. In addition,
the inadequacy of a single reference genome was uncov-
ered after a cross-reference comparison was performed.
Finally, we evaluated the performance of machine learn-
ing based variant filtering method and reference panel
assisted imputation methods on the high diversity plant
datasets.

Results
Alignment program evaluation
The performance of three different aligners, BWA-MEM,
Bowtie2, and SOAP2, was evaluated using Illumina paired-
end read datasets from 52 domesticated tomato, 30 related
wild relatives (Additional file 1: Table S1) [38], and simu-
lated genomic sequences from different crops. Mapping
percentage, alignment accuracy, and processing time for
each aligner were evaluated.
The ability to align reads to a domesticated tomato refer-

ence genome, Solanum lycopersicum [39], was assessed
using default and tuned parameters on Bowtie2 (Bowtie2
and Bowtie2-tuned), SOAP2 (SOAP2 and SOAP2-tuned),
and default parameters for BWA-MEM. Parameter tuning
(see details in Methods) for Bowtie2 and SOAP2 was neces-
sary to attempt to match the mapping percentage to the de-
fault used by BWA-MEM. BWA-MEM showed the highest
alignment percentage, 99.54 and 95.95% in domesticated
and wild relatives, respectively, while SOAP2 showed the
lowest alignment percentage, 91.25 and 40.58%, respectively
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(Additional file 2: Table S2). In the domesticated tomato
datasets, all of the five alignment settings resulted in more
than 90% mapping percentage with standard deviation
ranging from 0.34 to 3.77% (Fig. 1a). Greater variation in
mapping percentage existed when analyzing the sequences
from wild species with standard deviation ranging from
1.91 to 24.25%. The mapping percentage in the wild tomato
samples displayed a bimodal distribution (Fig. 1a). The

distribution of the group with higher alignment percentage
contained wild species that were closely related to domesti-
cated tomatoes, whereas the lower group contained
distantly related wild species based on previous domestica-
tion and diversity studies [3, 40]. Alignment percentage was
found to be negatively correlated with the IBS distance of
each sample to the S. lycopersicum reference genome
(Fig. 1b). When the sample was distantly related to the

Fig. 1 Aligner performance comparison using real and simulated plant genomic datasets. a Alignment percentage of five different aligner settings:
SOAP2, SOAP2-tuned, Bowtie2, Bowtie2-tuned and BWA-MEM calculated for domesticated tomatoes and wild relatives. The width of violin plot is
proportional to the density of the data. Boxplots inside violin plot indicate quantiles and outliers. b Mapping percentage of each sample is shown
relative to the IBS distance to the reference genome. c Alignment accuracy of five aligner settings using simulated dataset with varied number of SNPs
per read and fixed 600 nt fragment size. Each axis represents the number of SNPs in the corresponding simulation. The blue color represents
percentage of true positive (TP) alignments, pink color represents the percentage of false positive alignment (FP) and gold color represents the
percentage of false negative (FN) alignments. d Alignment accuracy of five aligner settings using simulated dataset with varied size of INDELs per read
and fixed 600 nt fragment size. Each axis represents the size of INDELs in the corresponding simulation. e Alignment accuracy of BWA-MEM on
different crop species. Each axis represents different mutation rate which includes both SNP and INDEL mutations
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reference genome, BWA-MEM resulted in the highest
mapping percentage and SOAP2 resulted in the lowest
mapping percentage. In terms of processing time, SOAP2
was the fastest aligner in both domesticated and wild
tomato datasets, and it was up to five times faster than the
slowest alignment setting, Bowtie2-tuned (Additional file 6;
Figure S1A).
We next determined whether greater alignment per-

centage or shorter alignment time could result in trade-
offs on accuracy and sensitivity by using simulated
datasets and calculating the ratio of true positive (TP),
false positive (FP) and false negative (FN) alignments.
Simulated datasets were derived from the reference
genome by permuting fragment sizes, and number of
SNPs or size of small indels per read. For all alignment
methods, the ratio of FP alignment increased as more
SNPs or indels were introduced per read (Fig. 1c-d)
when the fragment size was fixed at 600 nt. When the
number of introduced SNPs was equal or less than 2,
the average percent of FP alignments of BWA-MEM,
Bowtie2-tuned and SOAP2-tuned was 0.94, 1.15 and
0.88%, respectively (Fig. 1c). When the number of intro-
duced SNPs was greater or equal to 4, the average FP
alignment rate of BWA-MEM, Bowtie2-tuned increased
to 6.41 and 2.54%, respectively, while SOAP2, and
SOAP2-tuned were no longer able to find alignments.
BWA-MEM was the only aligner that was capable of
finding TP alignments with 15 SNPs per read with FP
alignment rate of 18.26%. Similar results were also
observed in the indel simulation experiment (Fig. 1d).
Only BWA-MEM was able to find TP alignments of
reads with INDELs up to 40 nt in size at the cost of 26%
false alignment rate. While differences in alignment per-
centages were observed, alignment length distributions
were not found to differ for each aligner (Additional
file 6: Figure S1B).
To indirectly determine the true vs false positive rates

of BWA-MEM and Bowtie2 in real data, one million
randomly selected reads from six samples (2 S. lycoper-
sicum, 2 S. pennellii and 2 other wild relatives) were
aligned to both S. lycopersicum and Solanum pennellii
reference genomes [41]. The positions of alignments
with mapping quality (MQ) ≥40 were compared against
the synteny map of the genome generated by nucmer
[42]. When the alignment position of read matched to
the nucmer conversion of the S. lycopersicum coordin-
ate to the S. pennellii coordinate, the read was consid-
ered to be syntenic. If the positions did not match, the
read was considered non-syntenic. BWA-MEM was
able to align approximately 4.22 times more reads per
sample than Bowtie2 (Additional file 3: Table S3), but
only 65.71% (SD ± 2.68%) of these alignments were con-
sidered as syntenic compared to 88.17% (SD ± 1.59%) of
Bowtie2 alignments.

To extend the study to other crop species, simulated
sequencing datasets were generated from rice, soybean,
maize and wheat reference genomes by varying the
mutation rate from 0.001 to 0.2 (Fig. 1e). In these stud-
ies, both SNP and INDEL were included in the simula-
tion. When the mutation rate is equal to or lower than
0.04, BWA-MEM was able to align at least 92% of the
sequences correctly for rice, tomato and soybean,
whereas it was only able to correctly align 81.5 and 82%
of the sequences for maize and wheat, respectively. As
mutation rate increased, difference in both true positive
and false positive alignment was seen among different
crops. On average, BWA-MEM was able to find 18.1,
20.2 and 17.0% more true positive alignments in rice,
tomato and soybean than in wheat and maize at muta-
tion rate 0.08, 0.1, and 0.15, respectively. On the other
hand, BWA-MEM was able to generate 18.8, 22.5, and
24.5% less false positive alignments in rice, tomato and
soybean than in wheat and maize at mutation rate 0.08,
0.1, and 0.15, respectively.

Variant calling program comparison
Four variant datasets were produced from the permuta-
tion of the aligners, Bowtie2-tuned, and BWA-MEM,
and the variant callers SAMtools-mpileup and GATK-
HC using 52 domesticated and 30 wild tomatoes. Results
showed nearly a two-fold difference in the number of
unfiltered SNPs ranging from 69.2M to 133.7 M. A
greater difference in the variant count in wild species
was observed than that found in domesticated ones
(Table 1). In domesticated species, dataset sizes ranged
from 11.8M to 17.8M unfiltered SNPs, while in wild
species they ranged from 66.4M to 128.3M. The pri-
mary determinant of variant count between datasets was
whether Bowtie-2 or BWA-MEM was used. In domesti-
cated species, 10.7M SNPs were commonly identified by
different aligners and variant callers, and when BWA-
MEM was used as the aligner, about 83% (14.7 M) SNPs
were identified by both GATK-HC and SAMtools-mpi-
leup (Additional file 6: Figure S2A). In wild species, 59
M SNPs were commonly identified by different aligners
and variant callers, and when BWA-MEM was used as
the aligners, about 84% (109.8M) SNPs were identified
by both GATK-HC and SAMtools-mpileup (Additional
file 6: Figure S2B). The inbreeding coefficient was calcu-
lated for each tomato individual, no significant differ-
ence (Wilcoxon rank sum test, p-value 0.47) was found
between GATK-HC and SAMtools-mpileup identified
SNP variants.
To further evaluate the differences in the ability of identi-

fying variants, both individual-level and population-level
simulated datasets were generated with varied mutation
rates, sequencing coverage and population size. In the sim-
ulated population-level datasets, evaluation was performed
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on both raw and filtered variants. In the comparison of raw
variants, GATK-HC was able to identify more true SNPs at
the cost of accuracy as sequencing coverage increased in
diversity populations. At 5x and 10x coverages, SAMtools-
mpileup was able to identify similar recall ratio with higher
precision ratio than GATK in the low diversity population.
When dealing with high diversity populations, GATK-HC
always outperformed SAMtools-mpileup in both precision
and recall aspects (Additional file 6: Figure S2C). When
functional annotation was applied to each identified coding
SNP, nearly identical percentages of missense, nonsense
and silent SNPs were found between GATK-HC and SAM-
tools-mpileup (Additional file 4: Table S4). In the compari-
son of raw INDELs, GATK-HC always outperformed
SAMtools-mpileup in terms of precision and recall in the
low diversity population. In the high diversity populations,

GATK-HC was able to identify greater number of true
INDELs at the cost of accuracy (Additional file 6: Figure
S2D). The true size of simulated INDELs ranged from − 6
bp to 6 bp. The size of the raw INDELs identified by GATK
ranged from − 170 bp to 241 bp, and size of the raw
INDELs identified by SAMtools-mpileup ranged from − 5
bp to 7 bp.
In the filtered SNP results, when the sequencing

coverage is at 5x and 10x, GATK-HC provided a higher
precision ratio in all coverage and diversity permutations
without compensating the recall ratio (Fig. 2a). In the 1x
coverage simulation dataset, even though SAMtools-
mpileup identified variants with lower precision ratio, it
generated a higher recall ratio in the dataset. In the fil-
tered INDEL results, GATK-HC always outperformed
SAMtools-mpileup in terms of precision and recall ratio

Table 1 Summary of SNPs identified by combinations of aligners and variant calling programs

Unfiltered SNPs Filtered SNPs

Total Domesticated
tomatoes

Wild
tomatoes

Common Total Domesticated
tomatoes

Wild
tomatoes

Common

BWA-MEM +
GATK-HC

131,449,946 17,771,072 128,294,973 14,616,099 93,739,759 13,628,974 91,482,115 11,371,330

Bowtie2-tuned +
GATK-HC

73,393,338 11,813,500 70,453,383 8,873,545 30,307,811 8,261,729 28,243,136 6,197,054

BWA-MEM +
SAMtools-mpileup

133,734,683 17,268,821 130,886,221 14,420,359 80,709,232 10,366,835 78,727,565 8,385,168

Bowtie2-tuned +
SAMtools-mpileup

69,219,499 12,390,916 66,416,422 9,587,839 46,436,709 8,832,598 44,626,459 7,022,348

Fig. 2 Evaluation of variant calling programs using simulated plant genomic datasets. a The comparison of the performance of GATK-HC and
SAMtools-mpileup on filtered SNPs at different coverages, population diversity and population size. b The comparison of the performance of
GATK-HC and SAMtools-mpileup on filtered INDELs at different coverages, population diversity and population size
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in the low diversity population. In the high diversity
population, SAMtools-mpileup resulted in a higher pre-
cision ratio at the cost of a much lower recall ratio
(Fig. 2b). Noticeably, SAMtools-mpileup was only able
to result in 3.08 and 1.61% recall ratio in the high diver-
sity populations for SNPs and INDELs, respectively.
In the individual-level simulated dataset, a consistent

pattern of trade-off between precision and recall was
observed. SAMtools-mpileup was able to generate higher
precision ratio for both SNPs and INDELs, however,
GATK-HC was able to result in a higher recall ratio for
both SNPs and INDELs as coverage and mutation rate
increased in most case (Additional file 6: Figure S3A-D).
Among four different crop species, rice, tomato and
soybean had similar results in both variant calling
programs. Nevertheless, results from simulated maize
datasets showed lower precision and recall ratios.
Noticeably, when the mutation rate was at 0.1 and 0.15,
both variant calling programs resulted lower precision
ratio for SNP detection as coverage increased. Maize
datasets had the largest magnitude of reduction in

precision whereas other crop species resulted similar
reduction.

Wild reference genome alignment and variant calling
The large increase in the number of SNPs in wild sam-
ples was expected due to both greater distance from the
domesticated reference genome and increased diversity
relative to the domesticated samples. Expectedly, as the
distance from the reference genome increased, a greater
proportion of reads was unmapped. The variants in
these unmapped reads, especially in the wild species,
could represent “missing diversity”. To test this hypoth-
esis, we evaluated how variants discovery in these 82 to-
mato samples were changed by mapping reads to a wild
reference genome (S. pennellii) [41].
The read alignment to the S. pennellii reference was

performed under identical settings as above. As previ-
ously seen, BWA-MEM showed the highest mapping
percentage and SOAP2 showed the lowest (Fig. 3a). In
general, mapping percentage in domesticated and wild
tomato groups were similar regardless of aligner settings

Fig. 3 Alignment and variant calling using a wild reference S. pennellii genome. a Alignment percentage of five different aligner settings: SOAP2,
SOAP2-tuned, Bowtie2, Bowtie2-tuned and BWA-MEM calculated for domesticated tomatoes and wild relatives using the S. pennellii reference
genome. The width of violin plot is proportional to the density of the data, and boxplot is plotted inside violin plot showing quantiles and
outliers. b Mapping percentage of samples for different aligner setting. The mapping percentages are relative to the IBS distance to the reference
genome. c SNP identification of four tomato samples was performed in chromosome 1 in S. pennellii reference genome. The corresponding
physical positions of SNPs in the S. lycopersicum reference were plotted. The grey dots represented the SNPs that were able to be located at the
corresponding positions in S. lycopersicum genome, red dots represented the SNPs that were unable to be located to corresponding positions in
S. lycopersicum genome. The percentage of corresponding SNPs were written next to the species name
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used (Fig. 3a). The single outlier with high alignment
percentage was a S. pennellii sample with an alignment
of 95.13% (or 99.69%) as opposed to 34.22% (or 94.87%)
against the S. lycopersicum reference using SOAP2-
tuned (or BWA-MEM). Interestingly, the 82 samples, ex-
cept for the S. pennellii sample, had similar IBS distances
to the reference genome. As with the S. lycopersicum
reference, alignment percentage to the S. pennellii refer-
ence was inversely proportional to IBS distance to the
reference genome (Fig. 3b), suggesting this relationship
was independent of reference genome used.
To investigate how diversity estimation varied by refer-

ence genome, reads from randomly selected eight do-
mesticated tomatoes and eight wild relative accessions
were aligned to the S. pennellii reference. Alignment to
the S. pennellii reference genome generated a total of 96,
712,749 unfiltered SNPs and 59,944,499 filtered SNPs,
while a total of 77,718,102 raw SNPs and 53,036,666 fil-
tered SNPs were identified using the S. lycopersicum ref-
erence genome. Compared to using the S. lycopersicum
reference genome, significantly more SNPs (Two-sample
T-test, p-value = 2.3*10− 10) were identified from 8 do-
mesticated tomato samples when S. pennellii reference
genome was used for variant discovery (Additional file 6
Figure S4A).
To further investigate the source of this additional

variation, a cross-reference comparison was performed
between SNPs identified using S. pennellii and S. lyco-
persicum reference genomes. One hundred nucleotides
of DNA sequence flanking each filtered SNP identified
using one reference genome was aligned to the other
reference. Results in the Fig. 3c showed that majority of
the filtered SNPs identified in the S. pennellii located on
the synteny path of S. lycopersicum genome. In the S.
lycopersicum sample, and similarly, majority filtered
SNPs identified using S. pennellii reference were located
on the synteny path of S. lycopersicum genome. This
result indicated that using S. pennellii reference genome,
we were able to identify SNPs that were fixed in the S.
lycopersicum domesticated varieties.
Since these SNPs were fixed in S. lycopersicum, they

would not have been identified from alignment to the S.
lycopersicum reference. Outside of these fixed SNPs in
the domesticated species, 4.55% of flanking sequences of
SNPs identified using S. pennellii genome in chromo-
some 1 could not be mapped to the S. lycopersicum
reference. Similarly, 11.15% of the flanking sequences of
SNPs identified in the S. pennellii sample using the S.
pennellii genome were not found in the S. lycopersicum
genome (Fig. 3c). Switching to the domesticated refer-
ence genome, 7.13% of the downstream sequences of
SNPs identified in a S. lycopersicum sample using S. lyco-
persicum genome could not be found in the S. pennellii
genome (Additional file 6: Figure S4B). These results

indicated that a great portion of variation in the wild
species would be missed if a single domesticated genome
was used as the reference, and vice versa.

Hard-filtering and machine-learning based variant
filtering
Variant filtering is required to minimize both false positive
and negative genotype calls. Comparisons were made be-
tween three variant filtering methods: setting empirical
hard-cutoffs (HARD) on metrics such as read depth, strand
bias, and variant quality and so on, a newly implemented
machine-learning based (ML) variant filtering [16], and a
combination between HARD and ML (COMBINED) filter-
ing. Filtered datasets generated from the 602 WGS tomato
datasets, including a wide range of domesticated and wild
tomato samples [28], were analyzed. A training dataset of
8401 markers from SolCap was used for the training phase
of ML [43]. The SolCap is a high confidence dataset
consisting of verified markers previously used in genetic
studies. In the COMBINED method, the HARD filters were
first applied to SolCap to remove low-confidence markers
and yield a training set of 7633 variants. Results indicated
that the HARD-filtered method retained the fewest SNPs
(94.2M), which was 26.3 and 7.1% fewer than ML-filtered
(127.8M) and COMBINED-filtered (101.4M) datasets, re-
spectively (Additional file 5 Table S5). SNPs in the first 10
million bases in Chromosome 1 (Additional file 5 Table S5)
were cross-compared between the three datasets. 70% of
SNPs in this segment were shared among all three filtered
datasets (Additional file 6 Figure S5A), while each dataset
had a subset of unique variants.
Two methods were used to indirectly infer the quality of

filtered datasets: recapitulation of diversity estimates gener-
ated by a “gold standard” set of 22,336,965 SNPs (See de-
tails in Methods) in the form of PCA (Additional file 6
Figure S5B) and IBS analyses (Additional file 6; Figure
S5C), and calculation of LD decay distance for each filtered
dataset. SNPs identified by all three filtering methods were
removed for this analysis so that the efficacy of each
method could be evaluated independently. The underlying
assumption of these analyses was that true diversity would
recapitulate the known population structure, whereas the
population structure would begin to break down as the
number of artifacts increased. Using the “gold standard”
variant dataset, samples were grouped into four clusters
based on PCA and IBS results. All three filtering methods
were able to resolve Cluster 1 and Cluster 4, whereas the
HARD and ML filtering methods were not able to clearly
resolve Cluster 2 from Cluster 3 (Fig. 4a-b). In contrast, the
COMBINED filtering method was able to identify all four
original clusters to reconstruct the population structure of
82 Solanum genomes (Fig. 4c).
Next, the contribution of false positive SNPs in each

filtered dataset was evaluated by calculating the rate of
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LD decay. The assumption was that false positive SNPs
were random noise that would be found not in LD with
nearby SNPs. Therefore, the apparent rate of LD decay
in a dataset would increase as the number of false posi-
tives increased. As predicted, a greater rate of LD decay
was found in all three filtered datasets than that found
in the high-confidence dataset. Of the three filtered
datasets, the COMBINED method, however, had the
lowest rate of LD decay (Fig. 4d) approximating the rate
of LD decay seen in the high-confidence SNP dataset.
To quantitively measure the difference between hard

filtering and machine-learning based filtering, simulated
datasets with varied population size, mutation rate and
sequencing coverage were generated (Additional file 6:
Figure S6A-B). In the simulation analysis, 30% of the
simulated gold standard variants were used as the train-
ing dataset, and no hard-filtering was performed on the
training dataset. In the low diversity population datasets,
machine-learning based SNP filtering always outper-
formed hard SNP filtering by 7.38 and 14.14% on aver-
age for precision and recall ratio, respectively. In terms

of INDEL filtering in the low diversity dataset, machine
learning based filtering and hard filtering resulted com-
parable precision results, however, machine learning
based filtering was able to result 12.49% higher recall
ratio than hard filtering. In the high diversity population,
SNP and INDEL had similar results from different filter-
ing methods. Minor difference was observed in the recall
ratio between machine-learning based and hard filtering.
No difference was found in the precision ratio between
machine-learning based and hard filtering in the high
diversity population.

Two-step imputation method
Missing genotypes, possibly due technical limitations,
are commonly resolved via imputation. In human stud-
ies, standard imputation methods leverage linkage
disequilibrium (LD) and reference panels [44]. Beagle 4.1
is a commonly used imputation algorithm in plant stud-
ies that can function with or without a reference panel.
To determine the importance of a reference panel for
SNP imputation, both LD-based and reference panel-

Fig. 4 Comparison between three variant filtering methods using PCA and LD decay to estimate false positive and false negative ratios. a
Unshared HARD filtered SNPs were not able to clearly separate cluster 2 and 3. b Unshared ML filtered SNPs were not able to clearly separate
cluster 2 and 3. c Unshared COMBINED filtered SNPs were able to clearly separate 4 clusters. d Comparison of LD decay among four sets of SNPs
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assisted imputation were applied to several datasets. A
reference panel of 22,336,965 high-confidence, phased
SNPs was generated from 82 high coverage (30x) WGS
tomato datasets. Imputation results were compared
between the two methods. In the first method, missing
SNPs were imputed without a reference panel. In the
second method, imputation was performed in two steps:
in the first step a reference panel was used to impute
missing calls only for missing reference variants; and
then a second step was employed to impute the
remaining missing, non-reference SNPs. Samples were
placed in four groups and varying percentages of high
confidence genotypes were masked to act as “missing” data
(See details in Methods). The concordance (r-squared)
between the original masked and imputed genotypes was
calculated to estimate imputation accuracy.
Results showed that no difference between LD-based

and 2-step imputation was observed in 100 domesticated
(DOM) tomato samples (Fig. 5a) or the 50 Solanum
pimpinellifolium (PIM) samples (Additional file 6: Figure
S7A) datasets. In the dataset of 200 randomly selected
tomato samples (RANDOM), at 47% missing data, a 4%
difference was observed (Additional file 6: Figure S7B).
When the parameter of missing percentage was set at
72%, 2-step imputation methods showed 60% higher
accuracy than LD-based imputation in the dataset of 36
wild tomato species (WILD) (Fig. 5b). High LD between
SNPs may reduce the need for a reference panel in
imputation. The calculated LD decay for each dataset
showed that DOM had the slowest LD decay and WILD
had the fastest LD decay (Additional file 6: Figure S7C).
Due to the fact that limited samples of wild tomato were
available, the number of samples we used in the simulation
in DOM (100) was also considerably higher than that in
WILD (36). As such, considerably more information was

present in the DOM dataset for imputation, as opposed to
the WILD dataset which not only had a smaller number of
samples but also contained multiple species. To determine
if LD continued to be sufficient for imputation in small
domesticated panels when the amount of missing data was
considerable, 15 randomly selected domesticated tomato
samples that were also included in the reference panel (15-
DOM-REF) had up to 85% of their genotypes masked. Both
methods were applied to the 15-DOM-REF dataset. The
results showed two-step imputation was 9.25 times more
accurate than Beagle v4.1 direct imputation by when the
missing percentage was 85% (Fig. 5c).

Discussion
The ability to accurately and comprehensively identify
genetic variation is a critical step for studying diversity,
trait mapping and breeding in plant genomics. Many
plant studies involve high levels of genetic diversity and,
in some instances, incorporating distantly related var-
ieties and wild relatives. Neither of these conditions are
common in human studies, and as such pipelines
designed and evaluated on humans may perform differ-
ently than expected. Therefore, we evaluated programs
that are commonly used by plant genomic studies on
SNP discovery steps including read alignment, variant
calling, variant filtering and missing data imputation in
the context of plant diversity discovery.
One of the first computational steps in the variant

discovery pipeline is the alignment of reads to a suitable
reference genome. Previous aligner evaluation studies
have been performed using either human or microbial
genomic datasets [45, 46], which may not represent the
levels or types of diversity expected in plant studies. We
performed alignment using both real and simulated
plant datasets and found that different aligners were very

Fig. 5 Comparison of imputation accuracy using direct imputation and 2-step imputation methods. a Imputation accuracy using direct
imputation and 2-step imputation relative to missing SNPs in 100 domesticated tomato samples. b Imputation accuracy using direct imputation
and 2-step imputation relative to missing SNPs in 36 wild samples. c Imputation accuracy using direct imputation and 2-step imputation relative
to missing SNPs in 15 domesticated samples used in reference panel
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different in their tolerance of sequence variation in
paired-end reads. BWA-MEM outperformed four other
alignment settings in mapping percentage while still
being able to maintain high mapping accuracy. Neither
SOAP2 nor Bowtie2 was able to align as many reads,
even after optimizing their settings to account for in-
creased variation. In this study, we chose not to tuned
BWA-MEM mostly because the mapping percentage
was high with the default settings and there is no obvi-
ous parameter such as numbers of mismatches allowed,
or fragment size as found in Bowtie2 or SOAP2. Besides,
many program users, especially non-experts in bioinfor-
matics, may stay with the default settings of programs.
BWA-MEM’s increased sensitivity may come at a cost

in that, as the number of SNPs or size of INDELs per
read increased, the false positive rate also became
slightly higher than that of Bowtie2-tuned (Fig. 1c-d).
The increased number of false positive alignments may,
in turn, result in erroneous variant identifications.
Nevertheless, given the relatively high sensitivity and
accuracy of BWA-MEM, our results indicate that under
most circumstances it is probably the most suitable algo-
rithm for read mapping for plant datasets, especially
when distantly related samples are included in the ana-
lysis. If high accuracy at the cost of less sensitivity is
desired, Bowtie2 may be the better choice. Although
SOAP2 was the fastest aligner tested, its difficulty in
aligning reads with high variance from the reference
genome make it unsuitable for studies where significant
levels of genomic diversity may be present.
The next step in an analysis pipeline is variant calling.

Comparisons between aligner-variant caller combinations
indicated that the alignment algorithm had a greater
impact on the number of variants discovered than the vari-
ant caller used. For a given aligner, SAMtools-mpileup and
GATK-HC had similar results in the total number of SNP
identified in the real tomato genomic dataset. This further
emphasizes the importance of selecting an aligner appropri-
ate to the goals of the experiment, especially when high
diversity samples such as wild relatives and related species
are included in the study. According to the simulation
results, GATK-HC was able to identify more true positive
variants at higher precision ratio in most population-based
variant discovery cases. Especially in the high diversity
population simulation, GATK-HC was more preferred than
SAMtools-mpileup because SAMtools-mpileup resulted
very low recall ratio in both SNP and INDEL detection. In
the simulation analysis, the size of INDELs identified by
GATK-HC had larger range than those identified by SAM-
tools-mpileup and ground truth INDELs, which partially
explained why GATK-HC had lower precision in the
INDEL identification than SAMtools-mpileup. One of the
possible explanations is that GATK-HC performs local-as-
sembly to identify the haplotypes whereas SAMtools-

mpileup only utilizes read alignments. Plant genomes, in
general, are rich in repetitive sequences which are difficult
to assemble correctly using short reads. Therefore, the local
assembly strategy taken by GATK-HC will not only identify
true variants, but also generate false positive variants,
INDELs especially. Consistent with a previous research
[47], SAMtools-mpileup resulted higher precision value
than GATK-HC for variant identification in the individual-
based genotyping. However, the high precision of SAM-
tools-mpileup is at the trade-off of low recall value.
In general, we recommend GATK-HC for variant calling

and filtering for several reasons. First of all, GATK-HC out-
performed SAMtools-mpileup in most of our situation tests
resulting a higher precision and recall ratio for SNP and
INDEL detection. Second, GATK-HC allows rapid incorpor-
ation of multiple samples into a dataset without needing to
recall genotypes for all samples, even previously genotyped
ones, from aligned reads by using the GVCF system. This
saves considerable time and computational expense when
adding samples to a dataset. The third reason to recom-
mend GATK-HC is that it supports multi-thread processing
which is not available in the SAMtools-mpileup. Taking the
advantage of high-performance clusters, multi-thread feature
can significantly save processing time especially for large
studies. Finally, the GATK package supports sophisticated
machine learning based variant filtering (VQSR) which
showed superior performance than empirical hard cutoffs.
We did, however, find situations that SAMtools-mpileup is
more preferable depending on the goal of the study. For
example, for a low diversity population with very low
sequencing coverage (1x), SAMtools-mpileup was able to
identify more true SNPs than GATK-HC but at the cost of
lower precision. If the purpose of the experiment is to iden-
tify as many true positive SNPs as possible, then SAMtools-
mpileup could be used in this particular situation. Another
situation that SAMtools-mpileup may be preferable is iden-
tifying SNPs from a closely related sample. According to the
simulation results from single samples, SAMtools-mpileup
resulted slightly higher precision and recall values than
GATK-HC results when the mutation rate was lower than
0.05. If the experiment aims at charactering SNPs in a geno-
type that is closely related to the reference genome, SAM-
tools-mpileup could be used in this particular situation.
Variant filtering is the third step in a diversity assess-

ment pipeline. Three approaches to this were evaluated:
hard filtering of various quality metrics, machine learn-
ing as implemented in GATK, and a combined
approach. The combined approach which utilized hard
filtered SolCap markers as the training dataset showed
significant improvements over other variant filtering
methods. According to the PCA plots (Fig. 4a-c) and LD
decay figure (Fig. 4d), the combined method was able to
generate more true positives, with fewer false negative
SNPs and fewer false positive SNPs when an appropriate
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training dataset was used. This indicates that machine-
based learning methods may be better suited at identifying
true positives and eliminating false positive SNPs than em-
pirical hard-filtering. The difference in the results of com-
bined and machine learning filtering suggested the
importance of the training dataset. The machine learning
model will learn from errors in the training dataset that
might contribute to false positive variants. The downside of
machine-learning-based filtering is that its implementation
is complicated and requires experimentally validated (high-
confidence) training datasets. In human studies, this
information can be obtained from numerous genomic re-
sources such as HapMap, the 1000 Genomes Project and
omni SNP array datasets. Only in few major crops, such as
maize [23], rice [48] and soybean [49] have these resources
available. Similar conclusions were found from the simula-
tion tests. According to the simulation results, machine
learning filtering outperformed hard filtering in general.
Nevertheless, only minor difference was found when the
simulated population had high diversity for both SNP and
INDEL filtering suggesting the quality metrics used by ma-
chine learning filtering may not be sophisticated enough to
differentiate true variants from false positive variants. This
also indicates new quality metrics may be necessary, espe-
cially for the genomic regions that can be hyper-variable.
The final step in the variant discovery pipeline is imput-

ation. Reference panels are routinely employed in human
studies, but these have not been routinely employed in
plant genomics. To evaluate the importance of a reference
panel for imputation, Beagle v4.1 [19] was used to impute
masked genotypes in four sample groups without the use
of a reference panel and with a reference panel in a two-
step process where SNPs contained in a reference panel
were first imputed, and then imputation was extended to
the entire dataset. Our results showed that the two-step
imputation method was able to utilize a de novo reference
panel of SNPs generated from high coverage sequencing
data to assist imputation in the low coverage samples.
Results from these studies indicated that the two-step im-
putation method was superior to the LD-based imputation
method in sample groups that contained wild species. In
addition, even for closely related samples, a certain num-
ber of samples must be present for LD-based imputation
to produce valid results. Further, if there are insufficient
samples, a reference panel may be required (Fig. 5c). The
tradeoff was that 2-step imputation doubled the running
time and would incorrectly impute missing SNPs which
were not due to technical issues but because of structural
variations. Therefore, care must be taken not to introduce
false positive since presence-absence variations are com-
mon in plants. These genomic regions could be identified
prior to imputation to avoid this pitfall.
The effect of presence-absence variation on identifying

missing genetic diversity is a special concern in studies

that include high diversity samples. This issue can be
seen from the results of the cross-reference experiment.
Up to 11.15% of the variations identified using the wild
reference could not be mapped back to the domesticated
S. lycopersicum genome, and vice versa. These results
indicated the inadequacy of single reference genome for
comprehensive variant discovery. It also indicated that
employing multiple reference genomes could identify
additional sources of diversity that went undetected
when using a single reference. These results have impli-
cations for the utility of pan-genomes. Multiple references
or pan genomes would likely increase the detection of
“missing diversity” that is due primarily to PAV between
samples. Moreover, using a distantly related reference
genome may allow the detection of SNPs that would be
undetected using a closely related reference genome.
These species-specific, fixed variants have implications in
the evolutionary history of plant species such as domesti-
cation events. To date, several crop pan-genomes have
been reported [50–52] that show significant amount of
structural variations in the genome. Pan-genomes re-
sources should be included into the diversity discovery
pipeline in the future. Yet, one of the potential issues that
will need to be addressed is that pan-genome assembled
from diverse individuals may introduce more assembly
errors than a single reference assembly. The quality of the
reference genome will impact variant discovery because
bioinformatic tools assume the reference genome is cor-
rect and only identify differences accordingly. Moreover,
the level of heterozygosity of the reference introduced by
the pangenome may require additional fine-tuned param-
eters [53]. The most effective approach of utilizing a pan-
genome reference will be a subject of future investigation.

Conclusion
In conclusion, we found that BWA-MEM was better overall
at detecting more true-positive alignments, especially in
distantly related samples, while Bowtie2 was better at min-
imizing the incorrect alignments. Incorporating multiple
reference genomes gave a more complete picture of varia-
tions, especially when the samples showed considerable
presence-absence variations. For filtering, the optimal ap-
proach found in our test was to incorporate a combination
of machine learning and hard filtering, in which a set of
“known” SNPs was used as the training set for machine
learning. This requires a panel of known, high-quality
SNPs, however, which may be unavailable for many plant
species. Finally, the importance of high-quality reference
panels was emphasized during the imputation step espe-
cially when genotype imputation was challenging due to
small LD blocks or not enough samples. Above all, the
computational pipeline to discover variation from plant se-
quencing data will depend upon the diversity of the data-
sets, whether the goals of the experiment benefit from
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higher sensitivity or accuracy, the depth of sequence cover-
age, and the availability of external resources such as refer-
ence panels and gold-standard SNPs.

Methods
Simulated multi-species genomic dataset and real tomato
genomic dataset
We used publicly available 602 WGS datasets representing
514 domesticated and 88 related wild species of tomato.
The data were retrieved from the NCBI BioProjects under
accession PRJNA259308, PRJNA353161 and PRJEB5235.
The raw sequence data was quality trimmed using Trimmo-
matic (version 0.36) [54] with the options ILLUMINACLIP:
TruSeq3-PE-2.fa:2:30:10:8:TRUE SLIDINGWINDOW:4:20
LEADING:5 TRAILING:5 MINLEN:36. PCR duplicates
were removed using Picard MarkDuplicates (version 2.14.1)
(http://broadinstitute.github.io/picard/). Simulated tomato
sequencing reads were generated from the S. lycopersicum
reference genome. A custom Python script was used to
introduce from 0 to 20 SNPs per read, fragment sizes ran-
ging from 200 to 10,000 nt, and INDELs ranging from 0 to
40 nt. In order to evaluate the performance of BWA-MEM
on multiple crop species, simulation of the Illumina sequen-
cing reads was also performed on rice, soybean, tomato,
maize and wheat using mason (version 2.0.9) [55]. The mu-
tation rate including SNPs and INDELs was simulated at
0.001, 0.005, 0.02, 0.04, 0.08, 0.1, and 0.15. The proportion
of the SNPs and INDELs were 0.85 and 0.15, respectively.
Sequencing error was modeled as the default settings.

Evaluation of read alignment programs
Different aligners were evaluated using high-coverage data-
sets from PRJEB5235 and simulated datasets. BWA-MEM
(version 0.7.17-r1188), SOAP2 (version 2.21), SOAP2-
tuned, Bowtie2 (version 2.3.3.1) and Bowtie2-tuned were
tested. SOAP2-tuned was used with the following options:
-m 100 -× 888 -s 35 -l 32 -v 3 [28]. Bowtie2-tuned was used
with the following options: --very-sensitive -N 1 -I 100 -X
888. To determine mapping percentages, these five aligner
settings were used to align one million reads that were
randomly selected from high coverage genomes from 52
domesticated and 30 wild relative samples. The IBS (Iden-
tity-By-State) distance was calculated using SNPrelate (ver-
sion 1.16.0) [56]. The true positive alignment ratio was
calculated by comparing the known ground truth location
and aligned location. BWA-MEM was also evaluated on
multiple crop species with a mixture of SNPs and INDELs
in the simulated datasets.

SNP discovery comparison
Eighty-two high-coverage datasets from PRJEB5235 was
used for SNP discovery comparisons. SNPs were called with
SAMtools-mpileup (version 1.9) and GATK-HC (version
3.8–0-ge9d806836) using BWA-MEM and Bowtie2-tuned

alignments. In GATK, variants were firstly identified by
HaplotypeCaller using the option --emitRefConfidence
GVCF, and then joint genotyping was performed using
GenotypeGVCFs. In SAMtools-mpileup, genotyping was
done in one step and the option -C 50 was used as recom-
mended in the manual. Only polymorphic SNPs were used
as data for the Venn diagram. Simulated datasets with
known variants were generated for tomato, rice, soybean,
maize using mason. Each crop species was simulated at
different coverages (5x, 15x, 30x, and 50x) and mutation
rates (0.001, 0.01, 0.05, 0.1, 0.15). In addition to individual
simulated datasets, population-level simulated datasets were
also generated with varied diversity (low diversity: 0.001
mutation rate and high diversity: 0.1 mutation rate), popu-
lation size (25, 50, 75, and 100) and sequencing coverage
(1x, 5x, and 10x). SAMtools-mpileup and GATK-HC were
evaluated on both individual and population simulated
datasets by comparing the precision and recall ratios. The
functional annotations of the variants were predicted by
snpEff (version 4.3) [57].

Precision ¼ True Positive
True Positiveþ False Positive

Recall ¼ True Positive
True Positiveþ False Negative

Imputation algorithm comparison
Beagle v4.1 [19] direct imputation and 2-step imputation
method were compared using 602 tomato genomes. The
raw SNPs were called using BWA-MEM and GATK-HC
pipeline, and then hard filtered using GATK recom-
mended options: “QD <2.0 || FS > 60.0 || MQ < 40.0 ||
SOR > 3.0”. The high-confidence set of SNPs for the 2-
step imputation was identified from 82 high-coverage
dataset using BWA-MEM and GATK-HC. GATK hard-
filtering and VCFtools [58] with options: --missing 1 and
--mac 2. SNPs with heterozygosity above 20% were re-
moved. Beagle v4.1 was used to phase the high-confidence
set of SNPs. The comparison was performed on four
groups of samples: 200 random tomato and wild samples
(RANDOM), 100 domesticated tomato samples (DOM),
50 Solanum pimpinellifolium samples (PIM), and 36 dis-
tantly related wild species (WILD). The one hundred do-
mesticated samples from PRJNA353161 only, 15 DOM-
REF samples from PRJEB5235 only, 50 PIM samples and
36 WILD samples were randomly selected for generating
simulated datasets. Polymorphic SNPs in each dataset
were randomly masked using a custom Python script if
there were more than 7 reads supporting the genotypes.
Both Beagle v4.1 and 2-step imputation methods were
used to impute missing genotypes in five simulated data-
sets. The concordance R2 ratio between genotyped and
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imputed values were calculated as imputation accuracy
using BCFtools [59].

Variant filtering algorithms comparison
The 602 tomato datasets were used to generate raw SNPs
using BWA-MEM and GATK-HC pipeline. Hard-filtered,
machine-learning based and combined filtering methods
were individually applied to the raw dataset. The parameters
used for hard-filtering included QualByDepth (QD< 2),
FisherStrand (FS > 60), RMSMappingQuality (MQ< 40) and
StrandOddsRatio (SOR> 3.0), which were suggested by the
GATK hard filtering tutorial (https://gatkforums.broadinsti
tute.org/gatk/discussion/2806/howto-apply-hard-filters-to-a-
call-set). For INDELs, hard filtering was performed using
“QD <2 || FS > 200 || ReadPosRankSum < -20”, as sug-
gested by the GATK tutorial. The machine learning based
methods, for both SNPs and INDELs, followed the GATK
Best Practice Workflow (https://software.broadinstitute.org/
gatk/documentation/article.php?id=2805). To summarize,
the first step was to build a variant recalibration model using
the program VariantRecalibrator. In the real tomato gen-
omic dataset, SolCap and filtered SolCap markers were used
as the training dataset with prior likelihood set to 90 and
95%, respectively. In the simulated dataset, 30% of the simu-
lated gold standard variants were used as the training dataset
with the prior likelihood set to 95%. All the annotations
generated by GATK-HC including coverage, coverage by
depth, FisherStrand, StrandOddsRatio, MappingQualityR-
ankSumTest, ReadPosRankSumTest, RMSMappingQuality
and InbreedingCoeff, were used to build the recalibration
model. The second step was to apply the recalibration
model to variants using the program ApplyRecalibration
with the option --ts_filter_level 99.9. Polymorphic SNPs in
the first 10 million base pairs of Chromosome 1 were se-
lected to test the performance of different filtering methods.
PCA was performed using SNPrelate after LD pruning
(R2 > 0.2). LD decay was calculated using the PopLDdecay
package [60] with default parameters.
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