Wang et al. BMIC Genomics (2019) 20:877
https://doi.org/10.1186/s12864-019-6152-9

BMC Genomics

RESEARCH ARTICLE Open Access

Transcriptomic analysis of Verbena
bonariensis roots in response to cadmium

stress

Check for
updates

Meng-gi \/\/ang”, Zhen-yu Bai'", Ya-fang Xiao', Yan Li%, Qing-lin Liu"'®, Lei Zhang1, Yuan-zhi Pan’,

Bei-bei Jiang' and Fan Zhang'

Abstract

well as an overall analysis of transcriptome.

phytoremediation.

Background: Cadmium (Cd) is a serious heavy metal (HM) soil pollutant. To alleviate or even eliminate HM
pollution in soil, environmental-friendly methods are applied. One is that special plants are cultivated to absorb the
HM in the contaminated soil. As an excellent economical plant with ornamental value and sound adaptability, V.
bonariensis could be adapted to this very situation. In our study, the Cd tolerance in V. bonariensis was analyzed as

Results: In this study, the tolerance of V. bonariensis to Cd stress was investigated in four aspects: germination,
development, physiological changes, and molecular alterations. The results showed that as a non-
hyperaccumulator, V. bonariensis did possess the Cd tolerance and the capability to concentration Cd. Under Cd
stress, all 237, 866 transcripts and 191, 370 unigenes were constructed in the transcriptome data of V. bonariensis
roots. The enrichment analysis of gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway revealed that differentially expressed genes (DEGs) under Cd stress were predominately related to cell
structure, reactive oxygen species (ROS) scavenging system, chelating reaction and secondary metabolites,
transpiration and photosynthesis. DEGs encoding lignin synthesis, chalcone synthase (CHS) and anthocyanidin
synthase (ANS) were prominent in V. bonariensis under Cd stress. The expression patterns of 10 DEGs, validated by
quantitative real-time polymerase chain reaction (QRT-PCR), were in highly accordance with the RNA-Sequence
(RNA-Seq) results. The novel strategies brought by our study was not only benefit for further studies on the
tolerance of Cd and functional genomics in V. bonariensis, but also for the improvement molecular breeding and
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Background

HM pollution in soil has long jeopardized the susten-
ance of plants. As a kind of poisonous HM, Cd served as
a botanic destroyer [1]. Absorbed by roots, HMs in soil
are transported to the aboveground parts of plants. The
accumulation of HMs hampers the growth and
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development of plants. Accordingly, through food chain,
this toxic matter endangers animals and human.

The excessive concentration of HMs has a severe im-
pact on the growth, plasma membrane permeability,
physiological and biochemical processes and nutritional
status of plants [2]. The increased production of ROS
under HM stress damages cell membranes, decomposes
nucleic acids and declines photosynthesis of plants [3,
4]. ROS ruins balance between production and the activ-
ity of antioxidative system. Cd disrupts the growth and
development of the plant by trespassing. The chelation
is in response to HM stress in the plants. There are four
main chelating agents in plants, including phytochelatin
(PC), metallothionein (MT), organic acid and amino acid
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[5]. PCs plays an important role in detoxification of in-
tolerable HMs to balance the internal metal elements. It
is synthesized non-translationally from reduced glutathi-
one (GSH) in a transpeptidation reaction catalyzed by
the enzyme PC synthase. The sensitivity of secondary
metabolites to HM is species-specific [6]. The diversity
as well as functions of soil microbial community struc-
ture were determined by the generation of root exud-
ation in plants [7]. The study of ‘Plants call for support’
posed a hypothesis that the alteration of pollution-
induced root exudation aided the botanical selection of
microbial communities to reduce the stress of the pollu-
tion to the root system [8]. It is suggested that to adapt
to HM stress, metabolism is modified, along with the
production of secondary metabolites, in plant tissues [9].

The RNA-Seq platform was used for the detection of
plants under Cd stress. Gu et al. [10] investigate the
transcriptome in Iris lactea var. chinensis under Cd and
Pb stresses. Yongkun et al. [11] conducted a transcrip-
tome analysis of Cd responses in Phytolacca americana
L. Gao et al. [12] demonstrated that several genes in-
volved in modifying cell wall and translocating metal ion
had higher expressed levels in S. alfredii Hance shoots
than that in non-hyperaccumulating ecotype shoots
under exposing Cd stress. Similar results were also re-
ported in Populus x canescens [13], Noccaea caerules-
cens [14], N. caerulescens [15], Viola yedoensis Makino
[16] and Arabidopsis thaliana [17] using transcriptome
analysis.

Due to strong adaptability, vigorous growth and highly
ornamental value of V. bonariensis, especially with the
popularity of sightseeing farms, it owned the potential in
large scale cultivation. Therefore, the rehabilitation abil-
ity of V. bonariensis under HM stress secured the spot-
light. In this study, we investigated the germination,
morphologic and physiologic response along with the
Cd** accumulation in V. bonariensis. In addition, a high-
throughput sequencing technique was applied to con-
struct the transcriptome database of V. bonariensis
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under Cd stress. The molecular mechanism of transpor-
tation and detoxification of Cd was analyzed based on
sequence annotation. This study would made contribu-
tion to the discovery of potential Cd defensive strategies
in V. bonariensis.

Results

The germination and cd accumulation in V. bonariensis
under different cd concentration stress

Table 1 showed that the influence of Cd** on the seed
germination depended on its concentration. Germin-
ation rate and Germination index (GI) was higher at 20
mg/L than that of controlling groups. In 20 mg/L and
below, vigor index (VI) and fresh weight were promoted
on various degrees. At 14 d, all the seedlings treated
with over 50 mg/L concentrations of Cd died.

The contents of Cd in the shoots and roots increased
with Cd concentration and time, while the Cd contents
in roots were significantly higher than those in the
shoots (Fig. 1a, b). When the Cd concentration in the
soil increased to 400 mg/kg (T5) for 30 d, Cd content
reached the maximum, 133.11 mg/kg, in whole plants
(Fig. 1c). According to Fig. 2a, the minimum bioaccumu-
lation factor (BCF) (at the root of the plant) was in pro-
portion to duration and concentration of Cd stress. The
range of variation is 0.309 to 0.999. According to Fig. 2b,
translocation factor (BTF) reached to the maximum
(0.3344) at the 50 mg/kg Cd concentration. The absorp-
tion of HMs is one of the signaling indicators for the
HM purifications of the hyperaccumulator. It could be
found in Fig. 2c that under all concentration Cd absorp-
tion reached its peak at 30 d. The maximum is 31.66 pg/
pot in the 300 mg/kg (T4).

The morphological and physiological changes of V.
bonariensis under 100 mg/kg cd stress

According to the measurement of various morphological
(Additional file 1: Figure S1; Additional file 2: Figure S2)
and physiological (Additional file 3: Figure S3) indexes

Table 1 Effect of Cd concentration on germination of Verbena bonariensis

7d 14d
Concentration (mg/L) Germination rate (%) Germination index Vigor index fresh weight per plant (mg) Survival rate (%)
0 97.78 + 1927 2533 + 0297 0.0532 + 0.0020™° 210 + 0.10% 9778 + 1.92%°
5 97.78 + 192% 2567 + 029%° 0.0573 + 0.0056 223 +023° 9778 + 1.92*°
10 97.78 + 1927 2567 + 0587 0.0574 + 0.0050° 223 +015° 9778 +1.92%°
20 100,00 + 0.00° 2650 + 0507 0.0565 + 0.0025% 213 + 006™ 9889 + 1.92°
50 97.78 + 192% 2550 + 1507 0.0494 + 0.0043° 1.93 + 0.06™ 4667 + 667°
100 96.67 + 5777 24.83 + 0.77°¢ 00471 + 00011 1.90 + 0.10° 0.00 + 0.00°
150 9556 + 1937 2400 = 1.00% 0.0449 + 0.0069° 187 + 021 0.00 + 0.00°
200 9222 + 509° 2350 + 0.50° 0.0423 + 0.0009¢ 1.80 + 0.00° 0.00 + 0.00°

Note: Data represent means=SE of three replicates. The different letters above the columns express significant differences (P < 0.05) on the basis of Duncan’s

multiple range test
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Fig. 1 Enrichment of Cd in plants. a Cd content in plant shoots. b Cd content in plant roots. ¢ Total Cd content in Verbena bonariensis. A total of
50 mg/kg (T1), 100 mg/kg (T2), 200 mg/kg (T3), 300 mg/kg (T4), and 400 mg/kg (T5) were set up for 5 Cd concentrations. Standard error of the
mean for three repetitions is represented by the error bars. The different letters above the bars indicate the significant difference at P < 0.05
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in the prophase, the seedlings treated in 100 mg/kg solu-
tion was selected for RNA-Seq. The morphological and
physiological changes of the plants treated respectively
under the control group (CK) and 100 mg/kg Cd con-
centration for 20 d were compared.

The dwarf plants, yellow leaves, slight dark roots were
inspected on Fig. 3a. A large amount of H,O, and O,
produced in leaves were observed on Fig. 3b. The petiole
length (PL), the root length (RL), number (RN) and dry to
fresh ratio (Dw/Fw) were significantly reduced by 17.39,
31.87, 35.29 and 27.92%, respectively. The height of upper
part (HP) and leaf area (LA) declined slightly. All morpho-
logical indexes declined (Fig. 3c). The content of lignin
and anthocyanidin (Fig. 4), the activity of ANS and CHS
were higher than that of the control (Fig. 5). Cd** in-
creased the content of malondialdehyde (MDA) and pro-
line (PRO) as well as the GSH activity in leaves and roots.
The superoxide dismutase (SOD), peroxidase (POD), cata-
lase (CAT) and ascorbate peroxidase (APX) were elevated
in leaves while decreased in roots under Cd stress (Fig. 6).
Net photosynthetic rate (Pn), stomatal conductance (Gs),
transpiration rate (Tr), Chlorophyll a (Chla) and chloro-
phyll b (Chlb) decreased on various degrees. CO, concen-
tration (Ci) slightly increased (Fig. 7).

Sequence analysis and assembly
Large amounts of data were produced by sequencing the
two libraries (CK and Cd) of V. bonariensis with the

Mlumina HiSeq 2500. After data filtering, a total of 55,
962, 351 and 61, 462, 567 clean reads with 93.33 and
93.36% Q30 bases were selected for the CK and Cd li-
braries, respectively. With the Trinity program, all 237,
866 transcripts and 191, 370 unigenes with an average
length of 1103 bp and 1298 bp were constructed in total.
Data files obtained by Illumina HiSeqTM was submitted
to the NCBI database with accession number
GSE113569.

Sequence annotation and classification

Compared with the public seven databases, a total of
153, 895 (80.41%) annotative unigenes were obtained.
The successful rate of the functional annotation in the
seven databases was shown in (Additional file 4: Figure
S4). Sesamum indicum (97,567 unigenes) offered a prior
similarity with V.bonariensis, then did the Erythranthe
guttata (20,692).

Using the GO annotation database, a total of 101,
415(52.99%) unigenes were annotated and there were
50.98% in Biological process (BP), 35.44% in Cellular
component (CC), and 13.57% in Molecular function
(MF) (Additional file 5: Figure S5). In all three data sets,
‘cellular process’, ‘metabolic process’ and ‘single-organ-
ism process’ were the most highly represented under BP;
‘cell’, ‘cell part’ and ‘organelle’ terms were dominant in
CC, and ‘binding’ and ‘catalytic activity’ were the most
significant terms in the MF. Using the KEGG database, a

Bioaccumulation factor

Fig. 2 The impacts of Cd in soil on the bioaccumulation factor, translocation factor and Cd uptake of Verbena bonariensis. a bioaccumulation
factor of Cd in roots. b translocation factor of Cd in Verbena bonariensis. ¢ Cd uptake by Verbena bonariensis

~

Cd uptake (ug/pot)




Wang et al. BMC Genomics (2019) 20:877

Page 4 of 14

@

'\O
K/% g

AN

H202

% \

Cd

Cd
Oy

C

Morphological characteristics

\

14

12

10

0

Fig. 3 Effects of Cd stress on external morphology and active oxygen metabolism in Verbena bonariensis. a The comparison of vitro morphology
of plants from CK and Cd treated. b The comparison of ROS staining of leaves from control and Cd-treated Verbena bonariensis plants. ¢ The
indexes of morphological characteristics. Plants were grown with 100 mg/kg Cd for 20 d
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total of 57,061 unigenes were grouped into five
branches. Among these pathways, ‘Carbohydrate metab-
olism’ was the group with the greatest number of genes
(5164, 9.06%), followed by ‘Translation’ (4284, 7.50%)
and ‘Folding, sorting and degradation’ (3767, 6.60%).

Analysis of GO term and KEGG pathway involving DEGs
In order to further understand the alteration in gene ex-
pression of V. bonariensis responding to Cd stress, dif-
ferential expression analysis with DEGseq was
performed. All 23, 424 DEGs were obtained, of which
12,558 were up-regulated while 10,866 were down-
regulated under Cd treatment.

A total of 16,580 DEGs in V. bonariensis were
enriched in 60 GO terms. BP, CC and MF accounted for
55.28, 12.83 and 28.65%, respectively. Among the top 15

significantly enriched GO terms for DEGs, seven GO
terms were related to cell wall (Table 2).

A total of 8600 DEGs were assigned to 124 KEGG
pathways. Table 3 showed the top-ten significant up-
regulation and down-regulation pathways involving
DEGs, respectively. In top-ten up-regulated pathways,
the ‘glutathione metabolism’ was the most significantly
up-regulated pathway. All 133 DEGs were up-regulated
and accounted for 76% of all DEGs of this pathway.
There were three pathways relating to organic acid me-
tabolism in top-ten up-regulated pathway, including
‘Citrate cycle (TCA cycle) (88 up- and 10 down-
regulated DEGs), ‘Glyoxylate and dicarboxylate metab-
olism’ (82 and 40) and ‘alpha-Linolenic acid metabol-
ism’ (60 and 23). The ‘Photosynthesis-antenna proteins’
and ‘photosynthesis’ were the first two significantly
down-regulated pathways. In ‘Photosynthesis-antenna
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proteins’ pathway, all 76 DEGs (75 down- and 1 up-
regulated DEGs) were related to the light-harvesting
chlorophyll protein complex (LHC). Eighteen DEGs
were related to Lhca, while 58 DEGs were involved in
Lhcb. In ‘Photosynthesis’, only 9 genes in all 78 DEGs
were up-regulated. In addition, the secondary metabol-
ism pathway was worth mentioning. In ‘phenylpropa-
noid biosynthesis’, all the 18 DEGs associated with
lignin synthesis was up-regulated (Additional file 6:
Table S1). CHS (5 DEGs) and ANS (9) were related to
flavonoid biosynthesis (Additional file 7: Table S2).

qRT-PCR
To confirm the reliability of high-throughput sequencing
results, ten DEGs were selected and analyzed for qRT-
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Fig. 7 Effects of photosynthesis under Cd stress in Verbena
bonariensis leaves. Pn and Tr were expressed as umol-m™ 2571 Gs
was expressed as 10~ “molm~2s~", Ci as ml.L™", Chla and Chlb
as mg-g~ |

PCR. It proved that the fold variation between RNA-Seq
expression and qRT-PCR analyses was almost the same
(Fig. 8).

Discussion

The germination and morphological alteration of V.
bonariensis under differential cd stress

During germinal and individual development, seeds was
sensitive to environmental stress [18]. Therefore, the
study on this stage reflected the tolerance to these stress
in plants. Previous studies have demonstrated that 10
mg/L Cd concentration severely affected the germination
of Medicago sativa [19]. Coreopsis drummondii and Im-
patiens walleriana Hook. f seeds, compared with the
controlling group, the germination rate of experimental
group was reduced by about 50% [20]. Our results
showed that the threshold Cd concentration on V.
bonariensis germination was about 50 mg/L. Cd solu-
tions within 20 mg/L concentration promoted the ger-
mination and growth on seedlings.

The growth and morphology alteration served as the
basic adaptation mechanisms. The roots were suffered
primarily from HMs in soil sites. Botanical growth was
hindered, pigmentation, lateral root numbers, root activ-
ity were lessened. The absorption of water and nutrient
utilization were disturbed [21]. With the HM ions
shifted to shoot, the symptoms of toxicity altered: plant
dwarfism, leaf chlorosis, reduced biomass, inhibited
photosynthesis occurred, eventually death happened
[22]. Under Cd stress, these changes were present in V.
bonariensis (Fig. 3). Under Cd stress the roots elongation
was severer inhibited than in the aboveground part of V.
bonariensis, which was consistent with studies of Pinus
sylvestris L and hyperaccumulator S. nigrum [23, 24].
Petiole was the transportation channel of water and
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Table 2 The top-15 significant enriched GO terms involving DEGs under Cd stress
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Description

Term_type

Up-regulated DEGs number

Down-regulated DEGs number

structural constituent of cell wall
oxidation-reduction process

oxidoreductase activity

plant-type cell wall organization

plant-type cell wall organization or biogenesis
catalytic activity

cell wall

external encapsulating structure

cell wall organization

heme binding

tetrapyrrole binding

external encapsulating structure organization
cell wall organization or biogenesis

cell wall biogenesis

single-organism metabolic process

molecular_function
biological_process
molecular_function
biological_process
biological_process
molecular_function
cellular_component
cellular_component
biological_process
molecular_function
molecular_function
biological_process
biological_process
biological_process

biological_process

101
1354
1337
111
(AR
5244
160
181
145
333
333
148
187
141
2820

3
802
773
5

5
3879
35
48

21
160
167
21
40
20
1954

nutrient from leaf to stem [25]. By speeding up the
transportation of water and nutrients, the shorten peti-
ole of V. bonariensis elevated the resistance to Cd stress.
For leaf chlorosis, there existed two possible reasons:
one was that the certain amount of Cd in the leaves

rendered chlorophyll destruction and leaves chlorosis;
the other was that due to the serious affliction to the
root system and the malfunction of water transportation
system, water shortage occurred in leaves. The above
speculation was supported by the decrease of chlorophyll

Table 3 The top-ten significant enriched KEGG pathways involving DEGs under Cd stress

Regulation Pathway term Rich factor FDR Gene number

Up-regulated Glutathione metabolism 0.223529 242E-10 133
Citrate cycle (TCA cycle) 0.226221 3.80E-07 88
Phenylpropanoid biosynthesis 0.179342 9.83E-07 158
Proteasome 0.233974 1.13E-06 73
Carbon fixation in photosynthetic organisms 0.180113 0.000261 9%
Glycolysis / Gluconeogenesis 0.157366 0.001086 141
Flavone and flavonol biosynthesis 0377778 0.00125 17
Galactose metabolism 0.169091 0.001704 93
Glyoxylate and dicarboxylate metabolism 0.172632 0.002082 82
alpha-Linolenic acid metabolism 0.180723 0.004917 60

Down-regulated Photosynthesis - antenna proteins 0.675676 2.18E-35 75
Photosynthesis 0.345 1.82E-19 69
Glycerophospholipid metabolism 0.16109 6.45E-12 130
Glycerolipid metabolism 0.179704 6.71E-10 85
Carotenoid biosynthesis 0.193133 3.94E-06 45
Ether lipid metabolism 0.181818 3.94E-06 50
Circadian rhythm - plant 0.178439 9.42E-06 48
Starch and sucrose metabolism 0.112982 4.09E-05 161
Vitamin B6 metabolism 0301587 4.65E-05 19
Plant hormone signal transduction 0.108998 0.000395 149
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content, petiole length, leaf area, root length and num-
ber in V. bonariensis (Fig. 3c).

Cd accumulation and transportation in V. bonariensis
Typically, most positively charged HM ions tended to
bind negative-charged compounds in tissues. Conse-
quently, these ions accumulated in roots [26]. In our re-
sults, Cd accumulation in roots was significantly higher
than that in aboveground parts, for the retention on
Cd** in root system. Through Cd enrichment in root,
Cd** were prevented from interrupting photosynthesis
and metabolism in plants. Consequently, botanical sur-
vival under stress could be possible. The biomass of V.
bonariensis were significantly reduced in 100 mg/kg Cd
solution. This very consistency was significantly higher
than the critical concentration of S. migrum, Cd stress
over 25 mg/kg inhibited the growth of S.nigrum and de-
creased its biomass (Additional file 1: Figure S1) [27].
BCF indicated the transportation difficulty of HM ele-
ments in soil plant system [27]. The transportation and
accumulation level of HMs from plant roots to the
upper part of the plant were assessed by the BTF. For a
hyperaccumulator, the BCF and BTF should be greater
than 1 (Fig. 2a, b). The results proved that V. bonariensis
showed no sign of hyperaccumulator. The absorption
amount of Cd was 31.66 pg/pot in V. bonariensis (Fig.
2¢). By contrast, Cd hyperaccumulator Bidens pilosa L.
was only 17.92 pg/pot [27].

Based on the research results, V. bonariensis did not
meet the standard of Cd hyperaccumulator. However, it
had strong tolerance and absorption ability to Cd. A

large amount of Cd was accumulated in roots of V.
bonariensis under Cd stress. Consequently, the reduced
amount of Cd in leaves and other sensitive organs cast
lighter toxic effects on plants. This was consistent with
the results of the study that Lonicera Japanica Thunb
[28] and Helianthus annuus [29]. In brief, with rapid
growth capability, large biomass, strong Cd tolerance
and absorption ability, V. bonariensis possessed potential
application value in the remediation of Cd pollution.

Effects of cd stress on cell wall and cell membrane of V.
bonariensis

The cell wall weighed significantly in botanical HM
defense and detoxification [30]. As the first HMs barrier,
it was firstly affected by Cd**. The cell wall and carbohy-
drates protected Cd from entering roots by bounding it
to the pectin site, which prevents HM ions from enter-
ing the protoplasm of the cell and protecting it from
harm [31]. When exposed to HMs, the cell wall could
activate hundreds of specific stress-responsive signaling
proteins to protect the cell from crashing into the proto-
plast on susceptible sites. The lignin had a strong ad-
sorption capacity for HM ions because it means a lot of
radical groups, such as oxhydryl, methoxy and carbonyl
group. The particle size of lignin was small, which was
beneficial to the exposure of more radical groups and
more HM ions could be adsorbed [32]. In our results,
there were 7 GO entries with cell wall tissue correlation,
which suggested that V. bonariensis might increase its
tolerance to HMs by combining the root cell wall with
Cd**. The lignin relating to phenylpropanoid pathway
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could reinforce specialized cell walls [33]. All 18 DEGs
associated with lignin synthesis was up-regulated. The
content of lignin under Cd stress was significantly higher
than that of the control. This indicated that the cell wall
of V. bonariensis might be reinforced and substantial
Cd* in soil be absorbed under Cd stress.

The cell membrane served as the second barrier
against trespassing of HMs. Cd was an important muta-
gen of plasma membrane peroxidation. MDA was in-
duced by more ROS produced under Cd stress, causing
membrane lipid peroxidation as well as destroying mem-
brane ion channel structure [34]. The membrane lipid
peroxidation in the cell of V. bonariensis was demon-
strated by the significant elevation of MDA in leaves and
roots under Cd stress.

Effects of cd stress on ROS scavenging system in V.
bonariensis

Previous studies have shown that HM may injure plants
by two biological pathways [35, 36]. On one side, the
HM stress oxidation inhibited the activity of protective
enzyme. The main biological macromolecules such as
proteins and nucleic acids were destroyed by the in-
duced free radicals. On the other side, when absorbed
into the plant, HM ion not only combined with nucleic
acids, proteins, enzymes and other substances, but also
supplant some specific elements exercising the function
of enzymes and proteins, which make the related en-
zymes and proteins denature or reduce their activities.
Under Cd stress, the ROS scavenging system played a
vital role in plants. As the primary defense enzyme pur-
ging ROS in cell, SOD converted O, disproportionation
into H,O, and eliminated -OH by catalyzing the Fenton
reaction [37]. Cd stress is thought to elevate SOD activ-
ity in plants, but this promotion to SOD activity vary
with HM treatment concentration and duration, plant
species, and plant size [38]. In our study, the SOD activ-
ity in leaves and roots decreased under Cd treatment, it
was speculated that excessive Cd** or stress time could
inhibit the activity of SOD. Under Cd stress, the activ-
ities of POD, CAT and APX elevated in leaves of V.
bonariensis. However, the results were opposite in roots.
For its contact with soil, the roots were primarily sus-
ceptible to HM. Consequently, the stress level in roots
was higher than that in leaves. When antioxidant en-
zyme activities in the root were hampered, the very ac-
tivities in leaves continued coping with Cd stress. In the
up-regulated GO enrichment categories relating to oxi-
dative reactions, the enrichment degree of ‘oxidation-re-
duction process’, ‘oxidoreductase activity’ and ‘catalytic
activity’ were high. The result showed that the oxidative
reactions might be activated in response to Cd stress. By
gearing the antioxidant system up, V. bonariens
refrained from HM damage.
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Effects of cd stress on chelating reaction in V. bonariensis
Upon exposure to HMs, plants synthesized diverse me-
tabolites, particularly specific amino acids, such as PRO
and histidine, peptides (glutathione and phytochelatins
(PC) etc), and organic acids [39]. These matters men-
tioned above interacted with Cd** to form chelates, such
compounds reduced the concentration of Cd** in soil.
Furthermore, direct contact between Cd** and organ-
elles were eliminated. Thereby the toxicity of Cd was re-
duced in soil.

Amino acid, as one of the plant’s fundamental metabo-
lites, counted great deal in the alleviation of HM stress.
It served as integral part of the involved coenzyme and
ligand in the metal complexation [40]. Cd stress resulted
in a significant increase in the content of some amino
acids, which might be a plant specific genetic trait. PRO
regulated plant osmotic/redox reactions and participated
in the metal complexation. In our study, Cd stress in-
creased the accumulation of PRO in aboveground part
by 29.76%, whereas in roots the percentage was 4.68%.
Similarly, the amount of PRO in leaves was higher than
that in roots of Bacopamonnieri under Cd stress [41].

For the great affinity to HMs, PCs chelate various
HMs to deactivation [42]. When the Cd** entered the
cytoplasm through the cell wall and cell membrane, it
combined with PC to form LMW complex, which was
transferred into vacuole under the action of html mem-
brane transportation protein. Then HMW complexes
were synthesized by LMW and Cd, eventually immobi-
lized in vacuole. The HMW complexes were less toxic
to plants. PCs was a sulthydryl polypeptide composed of
cysteine, glutamic acid and glycine. As the precursor of
PC synthesis, GSH composed some sulfur-containing
compounds in root cells and Cd** to form stable che-
lates [43]. In our study, 76% of the DEGs involved in the
‘glutathione metabolism’ pathway was up-regulated.
GSH content increased (Fig. 6). In this result, the pro-
motion of PC content was predictable.

The organic acids of plants, such as oxalic acid, malic
acid and citric acid, could be transformed the toxic Cd
into low toxic or non-toxic form by chelating, promoting
the tolerance of plants [44]. The pathways of organic
acids in V. bonariensis were significant up-regulated in
our results. It was estimated that the efficiency of or-
ganic acid synthesis was elevated. This promoted the
binding of Cd** to organic acids in the cytoplasm or
vacuoles, and alleviated the damage of HMs to V. bonar-
iensis. The organic acids secretion capacity in Cd-
tolerant plants such as Rorippaglobosa was far greater
than that in non-tolerant plants Rorippa [45]. The im-
provement of organic acid raised the soil acidity of the
rhizosphere as well as reducing the Cd uptake by plants.
Exposed to low concentration of Cd, Bechmerianivea
could secrete organic acids in its rhizosphere. With Cd
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chelating, the consistency of Cd** around the rhizo-
sphere of Bechmerianivea decreased [46]. In transcrip-
tome data of V. bonariensis under Cd stress, there were
three pathways relating to organic acid metabolism
among top-ten up-regulated pathway, including ‘Citrate
cycle’, ‘Glyoxylate and dicarboxylate metabolism’ and
‘alpha-Linolenic acid metabolism’. The result proved the
significant function of organic acid metabolism in V.
bonariensis under Cd stress.

Effects of cd stress on secondary metabolites of V.
bonariensis

Although minor to plant growth and development, sec-
ondary metabolites were often involved in environmental
stress [47]. The phenolic metabolism was an important
process in plants’ secondary metabolism. Under Abiotic
stresses, a large number of phenolic compounds was in-
duced to form mechanical barriers in order to prevent
osmotic stress, or to remove excessive amounts of ROS
in cells [48]. Most of the phenolic compounds were
composed of flavonoids, simple phenols and quinones.
The flavonoids, as an important botanical antioxidant,
played a key role in resistance to stress [49]. The synthe-
sis efficiency of flavonoids could be improved by the ac-
tivation of peroxidase under Cd stress [50]. CHS and
ANS relating to flavonoid biosynthesis belonged to the
family of oxidoreductases. CHS was the first enzyme to
spur phenylpropane metabolic pathway to conduct flavo-
noids synthesis. It served as a natural defense enzyme as
well as a synthetic intermediate in plants [51]. Anthocya-
nin was a strong antioxidant, it can alleviate the toxicity
of oxygen free radicals in plant cells. In our results, only
one gene down-regulated in 5 CHS and 9 ANS genes,
respectively. The content of anthocyanidin, the activity
of CHS and ANS were significantly elevated. The results
showed that CHS and ANS genes may play an important
regulated role in V. bonariensis resist the damage of Cd
stress.

The phenylpropanoid biosynthesis has been demon-
strated to contribute to various aspects of plant biotic
and abiotic responses [52]. The improvements of phen-
olic compound content under abiotic stress, particularly
with respect to phenylpropanoid, have been extensively
described [53]. In Lupinus luteus L., the phenylpropa-
noid pathway metabolites elevated Pb tolerance in its
roots [54]. Occupied the third place in up-regulated
pathway, the ‘Phenylpropanoid biosynthesis’ was essen-
tial under Cd stress in V. bonariensis (Table 3).

Effects of cd stress on transpiration and photosynthesis in
V. bonariensis

Under Cd stress, the Tr of V. bonariensis decreased. The
entrance of Cd** in guard cells through Ca** ion chan-
nel might induce stomatal closure through ‘Abscisic
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acid’ (ABA) pathway and inhibit transpiration in plants.
These elements disturbed stomatal opening. In addition,
Cd stress reduced the length and number of roots, limit-
ing water intake (Fig. 3a). Therefore, the leaf area of V.
bonariensis decreased to maintain water in cell. Simi-
larly, Tr and leaf area of Brassica juncea were hampered
under Cd stress [55].

Cd** damaged nucleoli in the cell of root tip, preclud-
ing the synthesis of RNA and the activities of RNAase,
ribonuclease and proton pump. This process decreased
nitrate reductase activity, reduced the uptake and trans-
portation of nitrate from the root to the aboveground
part. With the HM ions shifted to the upper part of
plants, dwarfism and decreased biomass occurred. The
upward transportation of nutrients was forestalled by
the factors mentioned above. The lack of nutrients hin-
dered photosynthesis and the growth of the plants. This
action decreased photosynthetic rate, destroyed photo-
synthetic organs, damaged photosynthetic systems, dis-
turbed carbon dioxide fixation, and even death [56].

In our experiment, Pn and Gs decreased whereas CO,
concentration (Ci) increased (Fig. 7). Stomatal and non-
stomatal components were closely related to the Pn de-
crease [57]. Besides, as a non-stomatal limitation, chloro-
phyll decomposition accounted for the decline of Pn.
The results illustrated that under Cd stress photosyn-
thesis in V. bonariensis leaves were abated. As a result of
Gs decline, CO, supply decreased. The non-stomatal
factors that hindered the utilization of CO,, resulted in
the accumulation of intercellular CO,. Non-stomatal
factors took a great to injure the chloroplast of V. bonar-
iensis under stress and decrease the photosynthetic cell
activity.

In ‘Photosynthesis-antenna proteins’ pathway, only
one gene encoding LHC was up-regulated. As a periph-
eral antenna system, antenna proteins in LHC elevated
the efficiency of absorption of light energy [58]. Most of
the DEGs associated with the ‘Photosynthesis’ were
down regulated, indicating that Cd stress arose disorders
in photosynthetic responses. Cd stress prevented light
harvesting, electron transportation and carbon assimila-
tion efficiency during photosynthesis in V. bonariensis.
This was consistent with previous studies on the re-
sponse of Maize to Pb [59]. These physiological and mo-
lecular changes suggested that down-regulation of the
photosynthetic pathway might be a responsive step in V.
bonariensis under Cd stress.

Conclusions

In this study, the Cd tolerance of V. bonariensis was ex-
haustively analyzed on physiological and molecular
scales. The large-scale transcriptional data set of V.
bonariensis in response to Cd stress was firstly obtained,
V. bonariensis was identified as a HM tolerant plant in
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the first time. ROS system, transpiration and photosyn-
thetic, secondary metabolism and Chelating reaction in
V. bonariensis under Cd stress were understood by tran-
scriptional data. Some promising DEGs that aided the
tolerance to Cd in plants were found. In conclusion, our
research will be beneficial for understanding the mech-
anism of Cd resistance in V. bonariensis. The clues for
further studies on the relationships between plants and
HMs in other Verbena plants were listed.

Methods
Materials and germination experiment design
V. bonariensis seeds were purchased from Germany Ben-
ary seed company. The treatment solution was prepared
with deionized water and CdCl,+2.5H,0. The concentra-
tions were 5mg/L, 10 mg/L, 20 mg/L, 50 mg/L, 100 mg/
L, 150 mg/L, 200 mg/L. The Reverses Osmosis (RO)
pure water was used as controlling group. The two
sheets of filter paper were placed in a culture dish of 9
cm in diameter. Ten milliliters of treatment solution
were added to saturate filter paper. The wet filter paper
was used as a bed for germination. Thirty seeds were
placed in each dish, sorted to a total of three replicates.
All experiments were performed three times to ensure
biological repetitions. The dishes were placed in the in-
cubator (16h  photoperiod, 25°C/16 °C day/night
temperature). The culture dish was sealed with a sealing
film to keep humidity. The germination condition was
observed daily until the germination of the controlling
group revealed unchanged. The incubation time was
about 2 weeks.

Germination rate (%) =number of germinated seeds
within 7 days/ total seed * 100%;

GI = XGt /Dt (Gt for germination number of t days, Dt
for corresponding days);

VI =GI * biomass (the biomass was the fresh weight of
individual seedling) [60].

Cd treatment

The robust plants with health growth were selected for
soil Cd stress treatment. Seedling age was 30-day old.
One seedling was planted in each plastic flowerpot. Fif-
teen pots were involved in each treatment. The perlite
and peat soil (PINDSTRUP, DK) were mixed evenly at 1:
1 (v: v) and sterilized with right amount of carbendazim.
With 15-day air-dry, the mixed soil was put into the cir-
cular plastic flowerpot (d = 12 cm) on the standard of 1
kg per pot. The soil moisture content was controlled as
70% using the RO water (about 180 ml).

(1) Cd treatment of different concentration was de-
signed. In order to obtain detailed and accurate data, the
content of Cd in V. bonariensis was measured. A total of
50 mg/kg (T1), 100 mg/kg (T2), 200 mg/kg (T3), 300
mg/kg (T4), and 400 mg/kg (T5) were set up for 5 Cd
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concentrations. The CK were treated without Cd solu-
tion. Three seedlings were planted in each pot, each
treatment with 10 pots. During the experiment, plants
and soil samples were collected every 10days for 4
times.

(2) Cd treatment for RNA-Seq was arranged. The ex-
periment was repeated three times with a total of 90
pots. The CK were treated without Cd solution. The
concentration of Cd in the experimental group was 100
mg/kg. CdCl,-2;/2H,0 and RO water were mixed to
form 150 ml Cd solution with different concentrations.
The mix solution was applied evenly into the corre-
sponding flowerpot on the first day. After 20 days under
Cd stress, the roots were harvested. The root samples
were immediately frozen in liquid nitrogen and stored at
- 80°C. In this experiment, the seedings were grown in
ambient conditions with a photoperiod of 14 h at 25°C
and a relative humidity of 75%.

Determination of cd in plants and soils
Plant (root, stem and leaf) and soil samples were col-
lected and dried. These samples were crushed. Then the
samples were digested by HNO3-HCLO, per 0.5g. The
atomic absorption flame spectrophotometer was applied
to determine the content of Cd. All of the above experi-
ments were repeated three times.

BCF = Cplant /Csoil;

BTF = Coverground part /Csubterranean party

In the formula, Cpj,ne Was the concentration of HM in
a part (root, stem and leaf) of the plant (mg/kg); Cson
was the concentration of corresponding HM element in
soil (mg/kg); Coverground part Was the concentration of
HM in the upper part of the plant (mg/kg); Csubterranean
part Was the concentration of HM in lower parts of plant
(mg/kg) [61].

Determination of morphological characteristics and
physiological indexes

The leaf and root samples were collected. Some of them
was used for morphological measurement. Others were
immediately frozen in liquid nitrogen and stored at -
80°C for physiological measurements. Morphological
features were measured according to Bai et al. [62].
Histochemical staining of ROS (H,O, and O,”) methods
referred to Wang et al. [63]. The content of MDA was
determined by thiobarbituric acid colorimetric assay
proposed by Cakmak and Marschner [64]. Nitro-blue
tetrazolium photoreduction method, Guaiacol method
and Ultraviolet absorption method were used to deter-
mine the activity of SOD, POD and CAT, respectively
[65]. APX activity was determined by reference to
Nakano et al. and the OD,gq changes were measured per
minute [66]. The activity of GSH and the content of
PRO were determined according to Quessada et al. [67]
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Table 4 gRT-PCR reaction system

Reagent Quantity
SsoFast EvaGreen supermix 10ul
cDNA template 2ul
Forward Primer (10uM) 0.8 ul
Reverse Primer (10uM) 0.8 pl
RNase/Dnase free water 64l
Total 20l

and Bates et al. [68], respectively. Blade gas exchange
parameter was measured at nine o’'clock in the morning
and the endogenous light intensity was 800 pmol quanta
m~ s [69].

The content of lignin and anthocyanidin in roots was
measured by referring to the method of Chang XF et al.
[70] and Dedaldechamp et al. [71], respectively. The ac-
tivity of chalcone synthase and anthocyanidin synthase
in roots were measured by A Special Kit for the deter-
mination of Plant anthocyanin activity in TSZ Company
of the United States.

RNA isolation, library construction and RNA-Seq analysis
Roots with two different treatments were collected from V.
bonariensis. RNA-Seq analysis were performed with three
replicates. Total RNA isolation was performed with Trizol
Reagent (Invitrogen) according to the manufacturer’s
protocol. RNA purity and concentration were checked
using the NanoPhotometer® spectrophotometer (IMPLEN,
CA, USA) and Qubit” RNA Assay Kit in Qubit® 2.0 Flurom-
eter (Life Technologies, CA, USA), respectively. In brief,
mRNA was enriched from total RNA using poly-T-oligo-
attached magnetic beads. as template to synthesize double
stranded cDNA, mRNAs were purified with AMPure XP
beads (Beckman Coulter, Beverly, USA). the purified double
stranded cDNA was subjected to terminal repair and then
supplemented with A tail to connect sequencing connector.
In order to select cDNA fragments of preferentially
150~200 bp in length, the library fragments were purified
with AMPure XP system. At last, PCR was performed with
Phusion High-Fidelity DNA polymerase, universal PCR
primers and Index (X) Primer. The qualifed libraries
assessed on the Agilent Bioanalyzer 2100 system were se-
quenced on an Illumina Hiseq2500 platform.

Raw sequence procession, assembly and functional
annotation

After filtering, clean data was obtained. Transcriptome
de novo assembly was accomplished using Trinity with
min-kmer-cov set to 2 by default. A BLASTx search was
used for further functional annotation of the unigenes
against the NCBI non-redundant protein sequences
(Nr), NCBI nucleotide sequences (Nt) and Swiss-prot
with an E-value of <107 °, while compared with
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euKaryotic Ortholog Groups (KOG) with an E-value of
<10™ %, The HMMERS3 program was used to assign Pro-
tein family (Pfam) with an E-value=0.01. GO using
Blast2GO v2.5 program with an E-value = 1le” . Accord-
ing to the KEGG database, pathway assignments were
carried out using BLASTx with E-value = 1e™ *°.,

The analysis of differential expression

The input data of gene differential expression is the read
count data obtained in the analysis of gene expression
level. The read count data were standardized by trimmed
mean of M-value. DESeq [72] was used to carry out the
differential analysis. The Benjamini and Hochberg’s ap-
proach [73] to control the False Discovery Rate (FDR)
was applied to adjust p-value of the results. DEGs
screening condition was FDR < 0.05.

RT-PCR validation

To further validate the DEGs identified in analysis of the
RNA-Seq data, ten DEGs were selected randomly to per-
form qRT-PCR analysis with three replicates. The RNA
from the isolated RNA sequencing samples mentioned
above. The qRT-PCR reaction system was showed in
Table 4. The PCR cycling conditions was 95 °C for 30s,
followed by 40 cycles of 95 °C for 15s and 60 °C for 30s.
The gene-specific primers were designed by Primer 5.
The Actin gene (F: GAAAGATGGCTGGAAGAGGG; R:
GCTATGAACTCCCTGATGGTC) was served as a ref-
erence control to detect expression level of 10 DEGs.
The primer sequences were shown in (Additional file 8:
Table S3). The data was analyzed using the 2744¢T
method.

Statistical analysis

The experimental data were statistically analyzed by
SPSS17.0 (SPSS Inc., Chicago, USA). The significance
test of difference was made by the LSD method, signifi-
cance level setting P = 0.05.
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