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Abstract

Background: Copy number variation (CNV) is thought to actively contribute to adaptive evolution of plant species.
While many computational algorithms are available to detect copy number variation from whole genome
sequencing datasets, the typical complexity of plant data likely introduces false positive calls.

Results: To enable reliable and comprehensive detection of CNV in plant genomes, we developed Hecaton, a novel
computational workflow tailored to plants, that integrates calls from multiple state-of-the-art algorithms through a
machine-learning approach. In this paper, we demonstrate that Hecaton outperforms current methods when applied
to short read sequencing data of Arabidopsis thaliana, rice, maize, and tomato. Moreover, it correctly detects dispersed
duplications, a type of CNV commonly found in plant species, in contrast to several state-of-the-art tools that
erroneously represent this type of CNV as overlapping deletions and tandem duplications. Finally, Hecaton scales well
in terms of memory usage and running time when applied to short read datasets of domesticated and wild tomato
accessions.

Conclusions: Hecaton provides a robust method to detect CNV in plants. We expect it to be of immediate interest to

both applied and fundamental research on the relationship between genotype and phenotype in plants.

Keywords: Copy number variation, Structural variation, Plant adaptation, Machine learning

Background

Phenotypic variation between individuals of the same
plant species is caused by a host of different types of
genetic variation, including single nucleotide polymor-
phisms (SNPs), small insertions and deletions, and larger
structural variation. One major class of structural varia-
tion is copy number variation (CNV), which is defined as
deletions, insertions, tandem duplications and dispersed
duplications of at least 50 bp. CNV comprises a large
part of the genetic variation found within plant popu-
lations and is thought to play a key role in adaptation
and evolution [1]. One clear example of such adaptive
evolution is presented by the weed species Amaran-
thus palmeri, which rapidly became resistant to a widely
used herbicide through amplification of the EPSPS gene,
resulting in increased expression [2]. Similar relationships
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between CNV and adaptation were found in domesti-
cated crop species [3], indicating that CNV may offer a
pool of genetic variation that can be used to improve crop
cultivars.

Given the increasing interest of the plant research com-
munity in CNV [1, 3, 4], the question arises whether
current methods accurately detect copy number variants
(CNVs) in plants. Currently, CNVs are mainly analyzed
by whole genome sequencing (WGS). After a sample of
interest has been sequenced and the resulting sequencing
data has been aligned to a reference genome, compu-
tational methods can extract various signals from the
alignments to detect CNV between the sample and the
reference [5]. While long reads are better suited for detect-
ing CNVs than short paired-end reads [6, 7], sequencing
data of plants is still commonly generated using short read
sequencing platforms, due to their far lower cost.
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Although current state-of-the-art CNV detection algo-
rithms generally perform well when applied to human
datasets [8], the typical complexity of plant data likely
introduces false positive calls. First, reference genome
assemblies of plants generally contain a larger num-
ber of gaps than the human reference genome, as plant
genomes are difficult to assemble due to their repeti-
tive nature. Yet, the genomic sequence contained in such
gaps is still present in WGS data of samples. The reads
representing this sequence generally share high similar-
ity with other assembled regions of the reference, to
which they are incorrectly aligned as a result. Second,
sampled plant genomes can differ significantly from ref-
erence genome assemblies, particularly if samples rep-
resent out-bred or natural accessions. If a region in a
sample genome has undergone several mutations rela-
tive to the reference, reads sequenced from this region
may map to a different region than the one it is syn-
tenic to. This is particularly likely to happen if the region
that the reads originated from is highly repetitive. Third,
several CNV detection algorithms erroneously process
alignments resulting from dispersed duplications [9]. We
expect that this issue introduces a significant number of
false positives when working with plant data, as duplica-
tion and transposition of genomic sequences is consid-
ered to be one of the main drivers of adaptive evolution
in plants [10].

To enable reliable and comprehensive detection of copy
number variants in plant genomes, we developed Heca-
ton, a novel computational workflow that combines sev-
eral existing detection methods, specifically tailored to
detect CNV in plants. Combining methods generally
results in higher recall and precision than using a single
tool [11, 12], as the recall and precision of individual tools
varies among different types and sizes of CNVs, depend-
ing on their algorithmic design [8]. However, determining
the optimal strategy to integrate different methods is
not straightforward. A suboptimal integration approach
may vield only a small gain of precision, while signif-
icantly decreasing recall [8, 13]. Hecaton tackles this
challenge in two ways. First, it makes use of a cus-
tom post-processing step to correct erroneously detected
dispersed duplications, which are systematically mispre-
dicted by some state-of-the-art tools. Second, it utilizes
a machine-learning model which classifies detected calls
as true and false positives by leveraging several features
describing a detected CNV call, such as its type and
size, along with concordance among the callers used to
detect it. In this paper, we demonstrate that Hecaton out-
performs existing individual and ensemble computational
CNYV detection methods when applied to plant data and
provide an example of its utility to the plant research
community.
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Implementation

Selected CNV calling tools

To maximize the performance of Hecaton, we combine
predictions of a diverse set of popular, open-source tools
that complement each other in terms of the signals and
strategies used to call CNVs. The selected tools include
Delly [14] (version 0.7.8), GRIDSS [15] (version 1.8.1),
LUMPY [16] (version 0.2.13), and Manta [17] (version
1.4.0). Delly detects CN'Vs using discordantly aligned read
pairs and refines the breakends of detected events using
split reads. LUMPY improves upon this method by inte-
grating both of these signals to detect CNVs, as opposed
to using them sequentially. Manta and GRIDSS further
enhance this strategy by performing local assembly of
sequences flanking breakends identified by discordantly
aligned read pairs and split reads. We considered includ-
ing CNVnator [18] (version 0.3.2), Control-FREEC [19]
(version 10.4), and Pindel [20] (version 0.2.5b9). Pin-
del was dropped after showing an excessively long run
time when applied to simulated high coverage datasets.
CNVnator and Control-FREEC were excluded as they
performed poorly during evaluations (Additional File 1:
Figure S1).

Implementation of hecaton

Hecaton is a workflow specifically designed to reliably
detect CNVs in plant genomes. We aimed to imple-
ment it in such a manner that it is both reproducible
and easy-to-use. To this end, Hecaton is run with a sin-
gle command using the Nextflow [21] framework, which
provides a unified method to chain together and paral-
lelize the different processes that are executed. It con-
sists of three stages: calling, post-processing, and fil-
tering (Fig. 1). Currently, Hecaton only supports the
four CNV detection algorithms used during the calling
stage, but can be relatively easily extended to include
other tools.

Stage 1: Calling

The calling stage takes paired-end Illumina WGS data of
a sample of interest and a reference genome as input and
calls CNVs between the sample and reference using four
different tools. First, it aligns the sequencing data to the
reference using the Speedseq pipeline [22] (version 0.1.2)
with default parameters. This pipeline utilizes bwa mem
[23] (version 0.7.10-r789) to align reads, SAMBLASTER
[24] (version 0.1.22) to mark duplicates and Sambamba
[25] (version 0.5.9) to sort and index BAM files. The
resulting sorted BAM file is processed by Delly, LUMPY,
Manta and GRIDSS to call CNVs. Each of these tools is
run with default parameters, except for the number of
supporting reads required by LUMPY and Manta for a
CNV to be included in the output (lowered to 1 to max-
imize recall). Delly and GRIDSS do not apply any filters
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Fig. 1 Overview of Hecaton. CNVs are first called using four different tools. The resulting calls are corrected and merged into a set of features. These
features are used by the random forest model to discriminate between true and false positives

by default. The final output of the calling stage consists of  cess the output files of different tools using a common
four VCEF files containing CN'Vs, one for each tool. representation, which is necessary to properly integrate
Stage 2: Post-processing them. Second, it corrects dispersed duplications that have
The post-processing stage of Hecaton serves three pur-  been detected by CNV tools as overlapping deletions and
poses. First, it provides an automated method to pro- tandem duplications by mistake. Third, it merges calls
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produced by different tools that likely correspond to the
same CNV event.

The common representation of CNVs used by Heca-
ton is based on the concept that each structural variant
can be represented as a set of novel adjacencies. A novel
adjacency is defined as a pair of bases that are adjacent
to each other in the genome of a sample of interest, but
not in the genome of the reference to which the sample
is compared. Bases that are linked by a novel adjacency
are called breakends and two breakends that corresponds
to the same adjacency are referred to as mates. Although
Delly, GRIDSS, LUMPY, and Manta all generate a VCF file
as output, the way in which CNV calls and the evidence
supporting them are represented in this file is different
for each tool. For example, the output of Delly, LUMPY,
and Manta contains both CNVs and breakends, while that
of GRIDSS solely consists of breakends that need to be
converted to CN'Vs by the user.

To convert the output of each tool to a common
CNYV format and correct erroneous dispersed duplica-
tions, Hecaton reclassifies the adjacencies underlying the
CNV calls produced by each tool. First, it infers and col-
lects adjacencies from all sets of CN'Vs generated during
the calling stage. For example, it represents deletions as a
single adjacency containing two breakends positioned on
the 5" and 3’ end of the deleted sequence. Next, it clusters
adjacencies generated by the same tool of which the break-
points are located within 10 bp of each other on either
the 5" end or 3’ end, as these are likely to be part of the
same variant. Finally, it converts each cluster to a deletion,
insertion, tandem duplication, or dispersed duplication,
based on the relative positions of the breakends and the
orientation of the sequences that are joined in a clus-
ter. Deletions, insertions, and tandem duplications are
represented by single adjacencies, while dispersed dupli-
cations are represented by two (Additional File 1: Figure
S2). As the objective of Hecaton is to detect CNV and
not any other form of structural variation, it excludes
any set of adjacencies that cannot be classified as one of
these four types from further analysis. However, Hecaton
can be extended to support additional types of structural
variation if needed.

Hecaton collapses calls produced by different tools that
are likely to correspond to the same CNV event. Calls are
merged if they fulfill all of the following conditions: they
are of the same type; their breakpoints are located within
1000 bp of each other on both the 5’ and 3’ end; they share
at least 50% reciprocal overlap with each other (does not
apply to insertions); and the distance between the inser-
tion sites is no more than 10 bp (only applies to dispersed
duplications and insertions). The regions of the merged
calls are defined as the union of the regions of the “donor"
calls. For instance, one call that covers positions 12-30
and one call that covers positions 14-32 are merged into a
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call covering positions 12-32. The number of discordantly
aligned read pairs and split reads supporting a merged
call are both defined as the median of the numbers of the
donor calls. The final result of the post-processing stage is
a single BEDPE file containing all merged calls.

Stage 3: Filtering

In the filtering stage, Hecaton applies a machine-learning
model to remove erroneous CNV calls. First, it generates
a feature matrix that represents the set of merged calls.
The rows of the matrix correspond to CNV calls and the
columns correspond to features (Additional file 2: Table
S1), which are extracted from the INFO and FORMAT
fields of the VCF file containing the calls.

Hecaton classifies calls as true or false positives using a
random forest model. We chose to implement this partic-
ular type of machine-learning model, as it outperformed
a logistic regression model and a support vector machine.
The model assigns a probabilistic score to each merged
call based on the set of features defined for it. These scores
are posterior probability estimates of calls being true pos-
itives and range between 0 and 1. Calls with scores below
a specified user-defined cutoff are dropped, producing a
BEDPE file containing the final output of Hecaton.

To obtain a random forest model that strikes a good bal-
ance between recall and precision, we trained it using a
set of CN'Vs detected from real WGS data for which the
labels (true or false positive) were known, based on long
read data (see Additional file 3: Supplementary Meth-
ods for details on the validation procedure). We did not
include CN'Vs obtained from simulated data in the ground
truth set, as the recall and precision attained by Delly,
LUMPY, Manta, and GRIDSS on such data generally does
not accurately reflect their performance in real scenarios.
For example, LUMPY and Manta obtained almost per-
fect precision when we applied them to simulated datasets
with minimum filtering, if dispersed duplications were
excluded from the simulation. They showed significantly
lower precision in previous benchmarks when applied to
real human data [16, 17].

The training and testing set were constructed by run-
ning the calling and post-processing stages of Hecaton on
[llumina data of an Arabidopsis thaliana Col-0-Cvi-0 F1
hybrid and a sample of the Japonica rice Suijing18 cultivar
(Additional file 2: Table S2). We detected CNVs in these
samples relative to the A. thaliana Col-0 (version TAIR10)
and Oryza sativa Japonica (version IRGSP-1.0) reference
genome. As we aimed to maximize the performance of the
model for low coverage datasets in particular, we subsam-
pled these datasets to 10x coverage using seqtk [26]. Calls
were labeled as true or false positives using long read data
of the same samples (See Additional file 3: Supplemen-
tary Methods for details). To obtain a test set, we held out
calls located on chromosomes 2 and 4 of A. thaliana and
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chromosomes 6, 10, and 12 of O. sativa, using the remain-
ing calls as the training set. In order to obtain a model that
generalizes to multiple plant species, one single model
was trained using both Col-0-Cvi-0 and Suijingl8 calls.
The training set contained 4983 deletions, 393 insertions,
604 tandem duplications and 106 dispersed duplications,
while the test set contained 2291 deletions, 174 insertions,
292 tandem duplications and 44 dispersed duplications.

We implemented the random forest model in Python
using the scikit-learn package [27] (version 0.19.1). The
hyperparameters of the model (n_estimators, max_depth,
and max_features) were selected by doing a grid search
with 10-fold cross-validation on the training set, using the
accuracy of the model on the validation data as optimiza-
tion criterion.

Benchmarking

The performance of Hecaton was compared to that of cur-
rent state-of-the-art tools using short read data simulated
from rearranged versions of the Solanum lycopersicum
Heinz 1706 reference genome of tomato [28]; the test-
ing set constructed from A. thaliana Col-0-Cvi-0 and
rice Suijingl8; and real short read data of A. thaliana
Ler, maize B73, and several tomato samples (Additional
file 2: Table S2). We determined the recall and precision
of tools with two validation methods that use long read
data: VaPoR [29] and Sniffles [6]. See Additional file 3:
Supplementary Methods for full details.

Results and discussion

We present Hecaton, a novel computational workflow to
reliable detect CN'Vs in plant genomes (Fig. 1). It consists
of three stages. In the first stage, it aligns short read WGS
data to a reference genome of choice and calls CN'Vs from
the resulting alignments using Delly, GRIDSS, LUMPY,
and Manta, four state-of-the-art tools that complement
each other in terms of their methodological set-up. In
the second stage, Hecaton corrects dispersed duplications
that are erroneously represented by these tools as over-
lapping deletions and tandem duplications. In the final
stage, Hecaton filters calls by using a random forest model
trained on CNV calls validated by long read data. Below,
we first describe how the design of Hecaton allows it to
outperform the current state-of-the-art and then we will
present an application of Hecaton to crop data.

Hecaton accurately detects dispersed duplications

Dispersed duplications are defined as duplications in
which the duplicated copy is found at a genomic
region that is not adjacent to the original template
sequence. Such variants are frequently found in plants,
as plant genomes typically contain a large number of
class I transposable elements that propagate themselves
through a “copy and paste” mechanism. While dispersed

Page 50f 13

duplications may play an important role in the adaptive
evolution of plants [10], they can also introduce a signif-
icant number of false positives, if they are not taken into
account while calling CNVs. To show the impact of this
problem, we applied Delly, GRIDSS, LUMPY, and Manta
to short read data simulated from modified versions of the
S. lycopersicum Heinz 1706 reference genome containing
different types of CN'Vs at known locations.

As Delly, LUMPY, and Manta systematically mispre-
dict dispersed duplications, they attained low precision
when applied to simulated data (Fig. 2a). We hypothe-
size that these tools misinterpret the complex patterns of
signals resulting from intrachromosomal dispersed dupli-
cations during alignment (Additional file 1: Figure S2),
as the false positives mostly corresponded to overlapping
pairs of large deletions and tandem duplications (Fig. 2b)
that cover the sequence located between the template
sequence and insertion sites of simulated intrachromoso-
mal dispersed duplications. Such signals consist of novel
adjacencies, pairs of bases that are adjacent to each other
in the genome of the sample of interest, but not in the
genome of the reference to which the sample is compared.
Deletions, insertions, and tandem duplications generate a
single novel adjacency as a signal. Dispersed duplications,
however, generate two novel adjacencies. Delly, LUMPY,
and Manta likely process these adjacencies in isolation,
resulting in overlapping deletion and tandem duplication
calls.

The post-processing step of Hecaton corrects dispersed
duplications that are erroneously predicted by Delly,
LUMPY, and Manta, which significantly improves their
performance. It recovered both intrachromosomal and
interchromosomal dispersed duplications when applied to
simulated data (Fig. 3a). Moreover, as the post-processing
step replaces false positive deletions and tandem duplica-
tions by true positive dispersed duplications, it strongly
increases the precision of Delly, LUMPY, and Manta
(Fig. 3b). The post-processing step also correctly pre-
dicts dispersed duplications from the output of GRIDSS,
which does not yield CNVs as output, but the adjacencies
underlying them (Fig. 3). Post-processing the adjacencies
reported by GRIDSS in isolation resulted in a similar trend
as seen for Delly, LUMPY, and Manta, underlining the
importance of correctly interpreting the signals generated
by dispersed duplications.

The performance of the post-processing step improved
with coverage (Fig. 3), as it fails to detect dispersed dupli-
cations if one or both of the adjacencies resulting from
them are missing from the output of Delly, LUMPY,
Manta, or GRIDSS. In line with this observation, the post-
processing script detected a lower number of dispersed
duplications simulated at low allele dosage compared to
those simulated at high dosage (Additional file 1: Figure
S3), as the effective coverage of variant alleles decreases
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Fig. 2 Performance of Delly, LUMPY, Manta, and GRIDSS on data simulated from diploid rearranged tomato genomes. Performance metrics are
reported as the mean over all 10 simulations with error bars depicting the standard error of the mean. The size distributions of the detected false
positives are depicted as box plots. The overall precision of Delly, LUMPY, and Manta was low (a) and false positives generally consisted of large
CNVs having a size of several tens of Mbs (b). These corresponded to pairs of large deletions and tandem duplications that covered the sequence
located between the template sequence and insertion sites of intrachromosomal dispersed duplications

when they are present in few haplotypes. If only one of
the two adjacencies could be detected, the post-processing
script classified it as a false positive deletion, false positive
tandem duplication, or generic breakend.

Hecaton generally outperforms state-of-the-art cNV
detection tools
Intuitively, it makes sense to combine the output of mul-
tiple CNV detection tools, as they typically generate com-
plementary results when applied to the same dataset [30].
However, designing a method that optimally integrates
tools is not trivial. In a past benchmark, an ensemble strat-
egy that combined tools through a majority vote did not
significantly improve upon the best performing individ-
ual tool [13]. Here, we demonstrate the benefits of using
a machine-learning approach, which aggregates and fil-
ters calls based on features including size, type and level
of support from different tools. We trained machine-
learning models using CN'Vs detected from 10x coverage
short read data of a highly heterozygous A. thaliana Col-
0—Cvi-0 sample and a Suijingl8 rice sample. The labels
(true or false positive) of these CNVs were determined
using long read data of the same samples. This approach
generated accurate validations of calls detected from the
simulated S. lycopersicum Heinz 1706 datasets.

The machine-learning approach used during the filter-
ing stage of Hecaton integrates calls of Delly, LUMPY,

Manta, and GRIDSS in such a manner so that it outper-
forms each individual tool. When applied to A. thaliana
Col-0-Cvi-0 and Suijing18 rice calls detected on chromo-
somes that were held out from model training, it generally
attained a more favourable combination of recall and
precision across a broad spectrum of thresholds and dif-
ferent CNV types (Fig. 4). For example, at a precision
level of 80%, Hecaton detected 43 true positive tandem
duplications, while the best performing state-of-the-art
tool, GRIDSS, detected only 19. Our results agree with
previous work in which a method that carefully merges
calls of different CNV calling tools attained a higher pre-
cision and recall than any of the individual tools [11].
As the approach performed about equally well when
using a random forest model trained on either 10x or
50x coverage data (Additional file 1: Figure S4), the ran-
dom forest framework itself is the main driver of the
improvement, rather than the sequencing coverage used
to train the models. To check whether the improved per-
formance held more generally, we applied Hecaton to an
lumina dataset of A. thaliana Ler, a sample that was
completely independent from model training. It again
improved upon the performance of individual tools (Addi-
tional file 1: Figure S5), corroborating the results observed
in A. thaliana Col-0—Cvi-0 and Suijing18 rice.

Besides outperforming individual tools, the machine-
learning approach employed by Hecaton significantly
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Fig. 3 Performance of the post-processing step of Hecaton on data simulated from diploid rearranged tomato genomes. Performance metrics are
reported as the mean over all 10 simulations with error bars depicting the standard error of the mean. Results of GRIDSS were generated by
processing adjacencies in isolation (no dispersed duplications) or by processing them in clusters (dispersed duplications). (a) Recall of CNV calling
tools for dispersed duplications, before and after post-processing. The post-processing script of Hecaton recalled dispersed duplications not
originally found in the output of Delly, LUMPY, Manta. (b) Overall precision of CNV calling tools, before and after post-processing. The
post-processing stage of Hecaton significantly increased the precision of tools by replacing pairs of overlapping false positive deletions and tandem
duplications by true positive intrachromosomal dispersed duplications

improved upon current state-of-the-art ensemble meth-
ods that are applicable to, but not specifically designed for
plant data. It attained a better combination of precision
and recall than MetaSV [31], SURVIVOR [32], and Par-
liament2 [33], three alternative approaches that aggregate
the results of different CNV detection tools, when applied
to datasets of Col-0—Cvi-0 and Suijingl8 (Fig. 4). The
poor performance of MetaSV and SURVIVOR sharply
contrasts with the good performance they showed in the
benchmarks of the publications describing them [31, 32].
One possible reason for this discrepancy could be that
both tools were evaluated in these benchmarks using sim-
ulated data, which likely does not accurately reflect the
distribution of CN'Vs in real data.

To evaluate Hecaton on more distantly related and
repetitive genomes than those of A. thaliana and rice, we
used it to detect CN'Vs between the two maize accessions
Mo17 and B73. As a large fraction of calls could not be
validated using long read data, due to the highly repeti-
tive nature of the Mo17 assembly (Additional File 2: Table
S3), we only report performance metrics for calls that
overlap for at least 50% of their length with genes or the
5000 bp interval upstream or downstream of genes. We
believe that this subset of calls still yields a representative
measure of performance, as downstream analysis of CN'Vs

detected by short reads generally focuses on genic, non-
repetitive regions. Consistent with the results of our pre-
vious benchmarks, Hecaton attained a better combination
of recall and precision compared to both individual state-
of-the art tools and ensemble approaches (Fig. 5). For
example, at a precision level of 90%, it detected a higher
number of true positive deletions (13991) than LUMPY
(11190), the second-most sensitive approach for deletions
at that level of precision. The large number of CNVs
detected by Hecaton between Mo17 and B73 confirms the
extensive structural variation between the two accessions
found by a whole genome alignment based approach [34].

Consistent with previous benchmarks performed with
long read data [6, 7], insertions remained difficult to reli-
ably detect using short paired-end Illumina reads in all
of our test cases, even after applying the filtering stage
of Hecaton. We manually investigated alignments cov-
ering tens of false positive insertions in A. thaliana Ler
and discovered that they all resulted from alignments
that were soft-clipped at the insertion site. These inser-
tions were all reported by Hecaton to have an unknown
size. With some of the insertions, the mates of the soft-
clipped reads mapped to a different chromosome, indi-
cating that some may be interchromosomal transpositions
instead.
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Fig. 4 Performance of different CNV detection algorithms on the test set containing Col-0-Cvi-0 and Suijing18 CNV events. Precision-recall curves of
Delly, LUMPY, Manta, and GRIDSS were constructed by varying the minimum number of discordantly aligned read pairs and/or split reads
supporting each call in the set. The curve of Hecaton was produced by varying the threshold of the probabilistic score used to define calls as true
positives. Performance is shown separately for deletions (a), insertions (b), tandem duplications (c), and dispersed duplications (d). Curves of LUMPY
and SURVIVOR are missing for insertions, as these tools are unable to detect this type of CNV. Curves are missing for all tools besides Hecaton for
dispersed duplications, as Hecaton is the only tool that can detect this type of CNV, owing to its post-processing stage. Hecaton generally improved
recall and precision compared to Delly, LUMPY, Manta, and GRIDSS. Moreover, it significantly outperformed MetaSV, SURVIVOR, and Parliament2,
three ensemble approaches applicable to plant data

The idea of predictor combination has been already
applied to improve detection of structural variants from
exome sequencing data [35], detection of somatic sin-
gle nucleotide variants [36], inference of gene regulatory
networks [37], and predictive models of breast cancer
prognosis [38]. Our results demonstrate that this concept
can be used to improve CNV detection as well, contrasting
a previous benchmark that combined structural variation
methods through a majority vote [13]. This suggests that
the aggregation approach used by Hecaton is better suited
to deal with the different treatment of each tool of specific
types of CNV than a majority vote. A possible reason for
this is that the random forest model employed by Hecaton

can capture interactions between tools and CNV types
to some extent during aggregation, while a majority vote
assigns an equal weight to each tool. Such an approach
does not work well if most tools are ill-suited to detect a
specific type of CNV.

We demonstrated that Hecaton can generalize to plant
species beyond those used in its training set (Fig. 5). The
performance of Hecaton can be further improved, as it is
relatively easy to extend it to include other CNV detection
tools or to train new random forest models using addi-
tional plant data. Nevertheless, Hecaton has some limita-
tions. First, it has limited recall for dispersed duplications
when applied to very low coverage (5x) data. Second,
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Fig. 5 Performance of different CNV detection algorithms on short read data of the maize B73 accession. CNV calls were called relative to the maize
Mo17 reference assembly. Precision-recall curves of Delly, LUMPY, Manta, and GRIDSS were constructed by varying the minimum number of
discordantly aligned read pairs and/or split reads supporting each call in the set. The curve of Hecaton was produced by varying the threshold of
the probabilistic score used to define calls as true positives. Performance is shown separately for deletions (a), insertions (b), tandem duplications (c),
and dispersed duplications (d). Curves of LUMPY and SURVIVOR are missing for insertions, as these tools are unable to detect this type of CNV.
Curves are missing for all tools besides Hecaton for dispersed duplications, as Hecaton is the only tool that can detect this type of CNV, owing to its
post-processing stage. Hecaton generally improved recall and precision compared to Delly, LUMPY, Manta, and GRIDSS. Moreover, it significantly
outperformed MetaSV, SURVIVOR, and Parliament2, three ensemble approaches applicable to plant data

although Hecaton has no upper limit in terms of the size
of CNV it can detect, we were not able to evaluate its per-
formance on CNVs that were larger than 1 Mb, as such
calls tended to be falsely validated by one of our valida-
tion methods, VaPoR (Additional file 1: Figure S6). Third,
it is not able to detect insertions with both high recall and
precision, a limitation it shares with other CNV detection
tools designed to work with short WGS data [6]. Finally,
we were not able to robustly assess the performance of
Hecaton in polyploid plant species, as we could not find
polyploid samples of which both short and long read data
were publicly available. We expect that the performance
of Hecaton on polyploids should be comparable to the

performance reported in this work on diploids, if the poly-
ploid sample does not show strong differences between
haplotypes. To deal with additional biases found in more
complex polyploid species, it may be worthwhile to obtain
ground truth annotations in order to train random forest
models specifically tailored to polyploids. Such annota-
tions can be obtained by generating a small set of poly-
ploid samples using both Illumina and PacBio sequencing
platforms. Simulated data could serve as ground truth
data as well, but we were unable to generate simulated
CNVs that accurately represent the distribution of CNVs
in real scenarios, a problem encountered in previous work
that benchmarked CNV detection tools [8].
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Hecaton provides a scalable method to detect CNVs in
plant species

Hecaton scales well to crop genomes when using conven-
tional computational server resources. By making exten-
sive use of parallelization, it processed samples of both
domesticated and wild tomatoes in reasonable time, tak-
ing a minimum of 7 h and a maximum of 40 h to process
a single sample (Table 1), when using Hecaton with 13
cores (Intel Xeon  CPU E5-2670 v3 @ 2.30 GHz) on a
Linux server (Ubuntu 16.04). For comparison, it would
have taken a minimum of 67 h and a maximum of 200 h to
run Hecaton on a single core (Table 1).

Although we do not know the true CNVs present in
these samples, we estimated that Hecaton attained lower
precision in the tomato samples than in the A. thaliana
and rice sets. We considered events to be likely false pos-
itives if they did not have a clear and uniformly lower
(deletions) or higher (duplications) read depth compared
to the rest of the chromosome its located on or to its
flanking regions, or if they showed excessive (over 1000x)
read coverage. Based on these criteria, we estimated that
30% of deletions, 20% of tandem duplications, and 80% of
dispersed duplications in the wild accession LYC4 sam-
ple were false positives, based on inspection of a random
sample of 20 CN'Vs of each type.

Additional filtering steps based on the median read
depth of CNV calls and the presence of gaps in the regions
flanking calls removed a significant number of CNVs from
the callsets of both the domesticated and wild acces-
sions (Table 2). However, they had little to no effect when
applied to the callsets of A. thaliana Col-0-Cvi-0 and
Suijing18 rice (Additional file 1: Figure S7). Therefore,
Hecaton does not perform these steps by default. They are
only meant to be used when working with samples that are
distantly related to the reference genome or for which the
reference genome assembly contains a significant number
of gaps.

Hundreds to thousands of CNVs remained after per-
forming additional filtering (Table 2), indicating that even
a conservative, high confidence set of events (see Addi-
tional file 1: Figure S8 for an example of such an event)
called by Hecaton can provide a sizable pool of genetic

Table 1 Hecaton running time and memory use
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Table 2 Number of CNVs detected in tomato samples before
and after filtering

Sample No filter Read depth filter Read depth and gap filter
P1158760 482 347 97
LA2706 934 701 403
TR00003 1487 1162 880
LA4451 1789 1482 1095
LA2157 7127 5372 4851
LAO716 10064 8472 7910
LYC4 11988 9950 9407

variation that can be further characterized. Given that the
reference genome of tomato used in this work is based
on a domesticated cultivar, an expectedly larger num-
ber of CNVs were found in the wild accessions (LA2157,
LA0716, LYC4) than in the domesticated ones (P1158760,
LA2706, TR0O0003, LA4451). Most of the CNVs between
the tomato samples and the reference genome consisted
of deletions (Table 3), following a similar trend as seen
in the A. thaliana Col-0-Cvi-0, A. thaliana Ler, and Sui-
jing18 rice samples. No insertions were reported for any
of the samples (Table 3). We expect that this result does
not reflect the actual underlying biology, but was rather
caused by the stringent cut-off used to filter calls. Most
events overlapped with repetitive elements (Table 4),
which is not unexpected as low-complexity regions are
thought to be one of the prime mediators of the forma-
tion of CNV [39]. A smaller, but non-negligible, fraction
of CNVs overlapped with genes and coding sequences
(Table 4), providing potential leads for CNV events having
a functional or phenotypic impact.

Conclusion

Hecaton is a computational workflow specifically
designed to detect CNV from WGS data of plant
genomes. It improves upon the performance of current
approaches primarily developed for human genomes,
indicating that such tools are less suitable to plant

Table 3 Types of CNV detected in tomato samples after filtering

Sample  Deletions  Insertions Tandem Dispersed  Total

Sample CPU time (h) Real time (h) Peak resident set size (Gb) duplications  duplications
P1158760 119.5 13.1 27.8 P1158760 82 0 15 0 97
LA2706 67.8 73 239 LA2706 295 0 106 2 403
TR00003 96.2 1.1 24.3 TR00003 777 0 103 0 880
LA4451 70.8 7.3 236 LA4451 901 0 193 1 1095
LA2157 196.1 325 26.6 LA2157 4261 0 561 29 4851
LA0716 1723 303 249 LAO716 7168 0 712 30 7910
LYC4 189.1 39.2 257 LYC4 8508 0 878 219407
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Table 4 Overlap of filtered CNVs with repeats, genes, and coding
sequences (CDS) in tomato samples

Sample Sequence Repeats Genes [@BN)
covered (Mb) (% of total) (% of total) (% of total)

P1158760 0.21 64.9 12.38 232
LA2706 046 7559 1247 1.73
TR00003 1.59 84.01 9.38 1.89
LA4451 1.21 76.26 11.78 .1
LA2157 8.59 8279 11.01 1.25
LA0716 12.11 8547 12.19 1.29
Lyc4 12.13 8153 1341 1.04

data without optimization. In contrast to several state-
of-the-art tools, Hecaton correctly detects dispersed
duplications. Moreover, the random forest model
employed by Hecaton improves upon current approaches
in terms of recall and precision. Finally, the running
time and memory usage of Hecaton scales well to crop
genomes, demonstrating its practical utility to plant
research.

We anticipate that Hecaton is of immediate interest
to both applied and fundamental research regarding the
relationship between genotype and phenotype in plants.
CNVs have been linked with several stress-resistant phe-
notypes in crop species [40], including frost tolerance in
wheat [41], aluminum tolerance in maize [42], and boron
tolerance in barley [43]. Hecaton can extensively query
crop and wild germplasm for resistant loci, that can be
characterized and eventually introgressed into elite culti-
vars. Besides its use in agricultural research, Hecaton may
help to answer more fundamental questions regarding the
role of CNV, as many characteristics regarding the role of
CNV in plant adaptation are still relatively unknown [44].
Such characteristics include how stress affects the rate
at which CNVs accumulate, the main molecular mecha-
nisms that govern the creation of CNVs, and the evolu-
tionary dynamics that determine whether CNVs become
fixed within a population. Populations of wild and domes-
ticated plant species (such as the 100 Tomato Genome
project [45]) may provide excellent datasets to explore
these topics, given that domestication is a fairly recent
phenomenon involving artificial selection for a set of
well-defined and well-characterized traits.

Availability and requirements
Project name: Hecaton
Project home page: https://git.wur.nl/
bioinformatics/hecaton
Operating system(s): Unix
Programming language: Python
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Other requirements: Hecaton can be either
installed locally or through a Docker image. All of its
dependencies are listed on the project home page.
License: GNU AGPLv3

Any restrictions to use by non-academics: No
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