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Abstract

Background: Interactions between protein and nucleic acid molecules are essential to a variety of cellular
processes. A large amount of interaction data generated by high-throughput technologies have triggered the
development of several computational methods either to predict binding sites in a sequence or to determine
whether a pair of sequences interacts or not. Most of these methods treat the problem of the interaction of nucleic
acids with proteins as a classification problem rather than a generation problem.

Results: We developed a generative model for constructing single-stranded nucleic acids binding to a target protein
using a long short-term memory (LSTM) neural network. Experimental results of the generative model are promising
in the sense that DNA and RNA sequences generated by the model for several target proteins show high specificity
and that motifs present in the generated sequences are similar to known protein-binding motifs.

Conclusions: Although these are preliminary results of our ongoing research, our approach can be used to generate
nucleic acid sequences binding to a target protein. In particular, it will help design efficient in vitro experiments by
constructing an initial pool of potential aptamers that bind to a target protein with high affinity and specificity.
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Introduction
Due to recent advances in high-throughput experimen-
tal technologies, a large amount of data on interactions
between proteins and nucleic acids have been generated.
Motivated by the increased amount of data on protein-
nucleic acid interactions, several machine learning meth-
ods have been used either to predict binding sites in a
sequence [1–4] or to determine if an interaction exists
between a pair of sequences [5–9].

Among the machine learning methods, variants of neu-
ral networks were applied to predict the interactions
between proteins and nucleic acids. For example, Deep-
Bind [5] is a convolutional neural network trained on a
huge amount of data from high-throughput experimental
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technologies. For the problem of predicting protein-
binding sites of nucleic acid sequences, DeepBind con-
tains hundreds of distinct prediction models, each for a
different target protein. As output, it provides a predictive
binding score without suggesting protein-binding sites in
the input nucleic acid sequence. Nonetheless, it provides
informative predictions for many target proteins, so we
used DeepBind to estimate the affinity and specificity of
nucleic acid sequences generated by our model for a target
protein.

A more recent model called DeeperBind [10] predicts
the protein-binding specificity of DNA sequences using
a long short-term recurrent convolutional network. By
employing more complex and deeper layers, DeeperBind
showed a better performance than DeepBind for some
proteins, but its use is limited to the datasets from protein-
binding microarrays. Both DeepBind and DeeperBind are
classification models rather generative models, so cannot
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be used to construct nucleic acid sequences that poten-
tially bind to a target protein.

There are a few computational methods that gener-
ate protein-binding nucleic acid sequences. Most of them
include two steps: generating candidate sequences and
testing the sequences. For instance, Kim et al. [11] gener-
ated a large number of RNA sequences using nucleotide
transition probability matrices and selected candidate
sequences with specified secondary structures and motifs.
Their approach is quite exhaustive and requires a large
amount of computational power. Zhou et al. [12] gen-
erated RNA sequences that can form a desired RNA
motif, and selected potent aptamers by molecular dynam-
ics simulation-based virtual screening. Hoinka et al. [13]
developed a program called AptaSim for simulating the
selection dynamics of HT-SELEX experiments based on a
Markov model.

The main difference of our approach from the oth-
ers is that our approach is a deep learning model that
can be trained directly on data from high-throughput
experiments such as HT-SELEX or CLIP-seq. After
being trained on experimental data, our model generates
sequences similar to those in a training dataset, and eval-
uates the sequences with respect to binding affinity and
specificity to a target protein. A limitation of our model
is that it requires experimental data for training and a
classifier of protein-binding nucleic acids. However, this
limitation is expected to be overcome in the near future
as a large amount of experimental data is being generated
through high-throughput experiments.

This paper presents a generative model that constructs
potential aptamers for a target protein. Aptamers are syn-
thetic but biologically active, short single-stranded nucleic
molecules which bind to a target molecule with high affin-
ity and specificity [14]. The preliminary results show that
our approach can generate nucleic acid sequences that
bind to a target protein with high affinity and specificity,
which will definitely help design in vitro or in vivo experi-
ments to finalize aptamers for target proteins. To the best
of our knowledge, this is the first attempt to generate
potential aptamers using a recurrent neural network.

Materials and methods
Data set
The data set used for training the generator model was
obtained from the DeepBind site at http://tools.genes.
toronto.edu/deepbind/nbtcode. The data set includes a
large number DNA sequences binding to one of 396 tran-
scription factors (TFs). In the data set, 20-mer DNA
sequences bind to most TFs (320 out of 396 TFs), 14-mer
DNA sequences bind to 14 TFs, and 40-mer DNA
sequences bind to 25 TFs. Thus, we selected the most typi-
cal length of 20 as the length of DNA sequences generated
by our model.

In the data set, setA contains positive data (i.e., protein-
binding DNA sequences) and setB contains negative data
(i.e., non-binding DNA sequences). We used setA to train
our generator model. For comparison of our method with
others, the HT-SELEX data was obtained from https://
www.ncbi.nlm.nih.gov/bioproject/371436. Both data sets
are also available in Additional file 1.

Sequence generator
A recurrent neural network (RNN) is capable of learning
the property of sequential data such as time series data
or text data. However, RNN suffers from the vanishing
gradient problem, in which the gradients vanish and con-
sequentially the parameters are not updated during back
propagation. Long short-term memory (LSTM) solves
the vanishing gradient problem of RNN by introducing
a gating mechanism [15]. LSTM allows the network to
determine when and what to remember or forget. LSTM
has shown a great performance in speech recognition [16]
and language translation [17].

We implemented a generator model of nucleic acid
sequences using char-rnn (https://github.com/karpathy/
char-rnn). Our model is composed of two layers of LSTM
with 128 hidden neurons (Fig. 1). Given a sequence of
characters, it reads one character of the sequence at a time
and predicts the next in the sequence.

In the LSTM model, the batch size (B) specifies how
many streams of data are processed in parallel at one
time. The sequence length (S) specifies the length of each
stream (S=20 in our dataset). Suppose that an input file to
a model has k DNA sequences of 20 nucleotides and that
N = k × 20. Then, the input file of N characters is split
into data chunks of size B × 20. By default, 95% of the data
chunks are used for training and 5% of the chunks are used
to estimate the validation loss. The input file is split into
data chunks and fed to the LSTM layers with default set-
tings. In our study, we used the default value of 50 for the
batch size (B).

The LSTM model was trained in the following way
(Eq. 1). Let xt be a vector representing the t-th nucleotide
in the input sequence. Only one element of xt is 1 and
the others are 0. yt is a class indicator of nt defined
by Eq. 1. The LSTM calculates zt for xt (Eq. 2). Soft-
max changes zt to a vector of values between 0 and
1 that sum to 1, and softmaxj is the j-th element of
the output of the softmax (Eq. 3). The loss is the
mean of the negative log-likelihood of the prediction
(Eq. 4). The loss is used to update the hidden neurons
in the hidden layer using the RMSProp algorithm [18].
When generating a sequence, the model takes a vector
(0.25, 0.25, 0.25, 0.25) as x1 and computes softmax(zt), a
multinomial distribution of nucleotides. One character
is sampled from the distribution and the vector of the
character fed back to the model as x2. This process is
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repeated until it reaches the pre-determined length of
the sequence.

xt = 4-bit number representing a nucleotide
nt ∈ {A, C, G, T(U)}

yt =

⎧
⎪⎪⎨

⎪⎪⎩

1 if nt = A
2 if nt = C
3 if nt = G
4 if nt = T(U)

(1)

zt = LSTM(xt) (2)

softmaxj(zt) = eztj/
∑4

k=1 eztk , j ∈ {1, 2, 3, 4} (3)

loss = −
|x|∑

t=1
ln(softmaxyt (zt))/|x| (4)

For protein-binding DNA sequences, the model was
trained on a set of DNA sequences, which were identi-
fied by HT-SELEX experiments as binding sequences to
human transcription factors [19]. Among the transcrip-
tion factors, we selected those with a known aptamer.
Since the DNA sequences used in training the model were
20 nucleotide long, the length of nucleic acid sequences

generated by the model was also set to 20 nucleotides.
When training the model, the results were evaluated with
respect to two measures: loss and intersection to union
(IU) ratio, which are defined by Eqs. 4 and 5, respectively.

IU ratio = {training sequences} ∩ {generated sequences}
{training sequences} ∪ {generated sequences}

(5)

Figure 2 shows the IU ratios and loss values of the model
during the first 50 epochs of training for NFATC1 and
NFKB1. For both NFATC1 and NFKB1, the IU ratio was
increased as the model was trained longer (Fig. 2a). In
contrast to the IU ratio, the loss tended to be decreased
after a certain point as the model was trained longer,
but the decreasing trend was not monotonic. The loss of
the model for NFKB1 converged to ∼1.05, whereas that
for NFATC1 was increased slightly after reaching to the
minimum loss of 0.95 at epoch 19.

The model with the maximum IU ratio generated
many redundant sequences. About 25% and 33% of
the sequences generated by the model for NFKB1 and
NFATC1 were duplicated sequences, respectively. Thus,
we selected a generator model with the minimum loss

Fig. 1 The architecture of the sequence generator. The loss is used to update the hidden neurons in the hidden layer using the RMSProp algorithm
[18]
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Fig. 2 a The IU ratio of the model during the first 50 epochs of training for NFATC1 and NFKB1. b The loss of the model during the first 50 epochs of
training. The red symbol ’x’ represents the minimum loss point

value rather than one with the maximum IU ratio to con-
struct various sequences which are similar, but not exactly
the same, to those in the training set.

Binding affinity and specificity
To evaluate the binding affinity and specificity of nucleic
acid sequences to a target protein, we used the predic-
tive binding score of DeepBind (hereafter called DeepBind
score) [5]. Figure 3 shows DeepBind scores of random
sequences in 10 DeepBind models. As shown in Fig. 3,
the scale of DeepBind scores is arbitrary, thus DeepBind
scores from different DeepBind models are not directly
comparable.

To make DeepBind scores comparable, we defined the
binding affinity (AF) of a nucleic acid sequence s to a tar-
get protein p as the probability that the DeepBind score
of s would be higher than that of a random sequence.
To obtain an approximate value of the probability, we

ran DeepBind on 200,000 random DNA sequences of 20
nucleotides and computed their binding affinity by Eq. 6.
Since the binding affinity is a probability, it is always in the
range of [0, 1]. In the equation, Scorem(s) and Scorem(ri)
represent the score of a sequence s and the score of the
i-th random sequence, respectively, computed by Deep-
Bind model m. The procedure for computing the binding
affinity is illustrated in Fig. 4.

AFp(s) = 1
n

∑n
i=1 δ(Scorem(s) ≥ Scorem(ri)),

where δ(A) = 1 if an event A occurs; δ(A) = 0 otherwise.
(6)

Table 1 shows some positive data used for training and
testing DeepBind models for several target proteins along

Fig. 3 DeepBind scores of random sequences, calculated by 9 DeepBind models for 9 proteins (BHLHE23, DRGX, FOXP3, GCM1, MTF1, OLIG1, RXRB,
SOX2, and TEAD4)
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Fig. 4 The procedure for computing the binding affinity of a sequence s to a target protein p. After computing DeepBind scores of 200,000 random
sequences by a DeepBind model m for p, an empirical cumulative distribution function was derived from the DeepBind scores. The function is
discrete, but seems continuous due to a large number of data points. The binding affinity of s to p is the probability that the DeepBind score of s
would be higher than that of a random sequence

with AUC values in testing. Different DeepBind models
show very different AUC values, ranging from 0.499 for
FOXP3 to 0.990 for TEAD4. The AUC value of 0.499 in
testing is close to random guessing.

We defined the binding specificity (SP) of a nucleic acid
sequence s to a target protein p by Eq. 7. The binding
specificity of s to p is the difference between the AUC-
weighted binding affinity AF of s to p and the AUC-
weighted mean AF of s to all other proteins except p. In
the equation, M is a set of all generator models trained on
data from the same type of experiment as m. The binding
affinity AF is weighted by AUC to reflect the reliability of

each model. When the AUC value is not available, AF is
not weighted by AUC (i.e., AUCm = 1 for every model m).

Mc = M − {m}

SPp(s) = AFp(s) · AUCm − 1
|Mc|

∑
k∈Mc AFk(s) · AUCk

(7)

Algorithm
To construct potential aptamers for a protein target, our
model requires three inputs: a target protein, a training

Table 1 Part of positive data from [19] used for training and testing DeepBind

Protein Type Species Family Experiment AUC in test data

TEAD4 TF H. sapiens TEA ChIP-seq 0.990

NFATC1 TF H. sapiens Rel SELEX 0.909

DRGX TF H. sapiens Homeodomain SELEX 0.897

GCM1 TF H. sapiens GCM SELEX 0.841

NFKB1 TF H. sapiens Rel SELEX 0.771

OLIG1 TF H. sapiens bHLH SELEX 0.733

RXRB TF H. sapiens Nuclear receptor SELEX 0.720

SOX2 TF H. sapiens Sox SELEX 0.605

BHLHE23 TF H. sapiens bHLH SELEX 0.557

MTF1 TF H. sapiens C2H2 ZF SELEX 0.538

FOXP3 TF H. sapiens Forkhead SELEX 0.499

MBNL1 RBP H. sapiens Znf RNAcompete –

Negative data was prepared by shuffling dinucleotides. TF: transcription factor. RBP: RNA binding protein. AUC of DeepBind for MBNL1 is not available
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set of nucleic acid sequences binding to the target pro-
tein, and a set of DeepBind models. A DeepBind model for
the target protein should be included in the input. After
training the model on the training dataset for 50 epochs,
we select a model with the lowest loss value. The selected
model is used to generate nucleic acid sequences, and the
binding affinity and specificity of the generated sequences
to the target protein are computed using Eq. 3 and 4, and
the top 100 sequences with the highest binding specificity
are chosen as potential aptamers of the target protein.
A high-level description of our approach is outlined in
Algorithm 1.

Algorithm 1 Finding Potential Aptamers for a Target
Protein

1: Input: target protein p, training dataset of nucleic acid
sequences, DeepBind models

2: Output: 100 potential aptamers of the target protein
3:
4: Initialize a generative model g.
5: G ← ∅ {G: a set of generative models}
6:
7: for all epoch e from 1 to 50 do
8: Train g on the sequences in the training dataset

{Compute by Eq. 1}
9: Add g to G

10: end for
11:
12: GenM ← model with the lowest loss in G
13: Seqs ← a set of sequences generated by GenM
14: Randoms ← a set of random sequences
15:
16: for all model m ∈ DeepBind models do
17: for all s ∈ Seqs do
18: s.affinity(m.p) ← AFm.p(s, Randoms) {Compute

by Eq. 3}
19: end for
20: end for
21:
22: for all sequence s ∈ Seqs do
23: s.specificity(p) ← SPp(s) {Compute by Eq. 4}
24: end for

Results and discussion
Binding affinity of generated sequences
To examine the protein-binding affinity of DNA
sequences, we generated DNA sequences binding to
several proteins shown in Table 1. For each target protein,
Table 2 shows AUC of the protein’s DeepBind model
and median protein-binding affinity AF of the generated
sequences and random sequences. For comparison we

used the median AF value instead of the mean AF because
outliers can distort the mean. As shown in Table 2, the
median AF values were proportional to the AUC values
of DeepBind models. The sequences generated by our
model showed a much higher median AF than random
sequences, except for SOX2.

For comparison of our model with AptaSim, we down-
loaded the HT-SELEX data [19] and ran AptaSim in
the AptaSuite collection [20]. The sequences in the first
SELEX round of target proteins were used as input
to AptaSim. Figure 5 shows the distribution of AFs
of the sequences generated by our model, AptaSim
and random generator for four target proteins (DRGX,
GCM1, OLIG1 and RXRB). The sequences generated
by AptaSim showed similar binding affinity as random
sequences, but both showed much lower binding affinity
than the sequences generated by our model. The nucleic
acid sequences used for comparison are available in
Additional file 2.

Protein-binding dNA sequence motif
We generated about 200,000 DNA sequences for NFATC1
using our model, and found a motif (shown in Fig. 6a)
conserved in the DNA sequences using DREME [21]. The
motif found in the generated DNA sequences was also
corroborated by a protein-DNA complex in PDB (Fig. 6d)
and known motifs (Figs. 6b and c) from the Homer [22]
and JASPAR [23] databases.

In a similar way, we obtained a sequence motif con-
served in the DNA sequences for NFKB1 (Fig. 7). DNA
sequences and their binding specificity for NFATC1 and
NFKB1 are available in Additional file 3.

Comparison with known aptamers
For comparative purposes of the sequences generated
by our model to known aptamers, we selected top 100
DNA sequences with a high binding specificity. We
aligned the sequences to each of the known aptamers for
NFATC1 [24] and NFKB1 [25] (Additional file 4) using the
EMBOSS needleman [26].

As shown in Fig. 8, two alignments of DNA sequences to
the NFATC1 aptamer revealed a similar pattern of bind-
ing specificity. In the first alignment of DNA sequences
to the NFATC1 aptamer, the highest accumulated score of
the binding specificity was observed right after the 40-mer
region in 5′-GGGAGAGCGGAAGCGUGCUGGGCC-
N40-CAUAACCCAGAGGUCGAUG GAUCCCCCC-3′.
But, in the second alignment the highest score was
found in the 40-mer region. These results imply that our
approach is useful in finding potential aptamers bind-
ing to a target protein. In the alignment, the highest
score was observed in the 5′ end of the aptamer, which
is a primer site of a random library used when selecting
the aptamer.
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Table 2 The median binding affinity AF of the generated sequences and random sequences to target protein p with AUC of DeepBind
model of p

Protein DRGX GCM1 OLIG1 RXRB SOX2 BHLHE23 MTF1 FOXP3

AUC 0.897 0.841 0.733 0.720 0.605 0.557 0.538 0.499

Median AF (Generated) 0.999 0.995 0.763 0.644 0.473 0.513 0.557 0.502

Median AF (Random) 0.497 0.500 0.504 0.494 0.504 0.501 0.502 0.501

We used the model to generate protein-binding RNA
sequences as well. As we did for DNA sequences,
we trained the model on MBNL1-binding RNA
sequences from CLIPdb [27], which were iden-
tified by CLIP-seq experiments. We selected top
100 RNA sequences with a high binding speci-
ficity (Additional file 3), and aligned them to known
MBNL1-binding aptamers [28] (Additional file 4).
The known aptamers contain 32-mer MBNL1-binding
regions, which are flanked by two constant regions
(5′-GGGAAUGGAUCCACAUCUACGAAUUC-
N32-AAGACUCGAUACGUGACGA
ACCU-3′).

In both alignments shown in Fig. 9, the highest cumu-
lative score of the binding specificity was observed within
the 32-mer MBNL1-binding regions. MBNL1-binding
RNAs are known to contain YGCY motifs in their bind-
ing regions, where Y denotes pyrimidine (C or U) [28]. It
is interesting to note that the motif is observed 3 times
(positions 30–33, 41–44 and 47–50) in the 32-mer region
of the first alignment, and twice (positions 32–35 and 50–
53) in the second alignment of Fig. 9. Our model for RNA
sequences was trained on data from in vivo experiments
(i.e., CLIP-seq), yet generated RNA sequences with similar
binding properties as those found by in vitro experiments
(i.e., SELEX).

Fig. 5 The binding affinity AF of the nucleic acid sequences generated by our model, AptaSim, and random generator for four target proteins
(DRGX, GCM1, OLIG1 and RXRB)
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Fig. 6 a Sequence motif conserved in the DNA sequences generated by our model as binding sequences of NFATC1. b Known NFATC1-binding
DNA motifs in Homer [22]. c Known NFATC1-binding DNA motifs in JASPAR [23]. d Structure of a complex of NFATC1 and DNA (PDB ID: 1A66)
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Fig. 7 a Sequence motif conserved in the DNA sequences generated by our model as binding sequences of NFKB1. b Known NFKB1-binding DNA
motifs in Homer [22]. c Known NFKB1-binding DNA motifs in JASPAR [23]. d Structure of a complex of NF-kappa B and DNA (PDB ID: 1SVC)
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Fig. 8 The alignment of the generated DNA sequences to the known NFATC1-binding aptamer [24] (top) and NFKB1-binding aptamer [25]
(bottom). Top 100 sequences with high binding specificity scores were selected for the alignment. The cumulative binding specificity score of the
aligned sequences is shown in the line chart and heatmap. In the heatmap, a position with a high accumulated binding specificity is shown in
yellow and that with a low binding specificity is shown in navy
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Fig. 9 a The alignment of the generated RNA sequences to the known MBNL1-binding aptamer [28]. b Secondary structures of the known
MBNL1-binding aptamers, visualized by PseudoViewer [29]. YGCY motifs are shown in red, where Y denotes pyrimidine (C or U)

Comparison with other methods
In “Binding affinity of generated sequences” section and
Fig. 5, we compared the binding affinity of the DNA
sequences generated by our model with the binding
affinity of the DNA sequences generated by AptaSim
and random generators. For more extensive compari-
son, we downloaded HT-SELEX fastq files of NFATC1
and NFKB1 from SRA (https://www.ncbi.nlm.nih.gov/
bioproject/371436), and ran AptaSim. We selected the
sequences after 10 rounds and generated motifs conserved
in the sequences in the same way that we did for the motifs
shown in Figs. 6 and 7. As shown in Additional file 5, the
binding motifs conserved in the sequences generated by
AptaSim are very different from the well-known binding
motifs for NFATC1 (Fig. 6) and NFKB1 (Fig. 7).

For further comparison, we tried a different set of
programs in the AptaSuite collection. We first gener-
ated a pool of DNA sequences with AptaSim, clustered
the sequences with AptaCluster, and found 6- to 10-mer
motifs with AptaTRACE. Several motifs were found in

the sequences, but the well-known motifs (the NFATC1-
binding motif TTTCCA and the NFKB1-binding motif
GGGGGAATCCCC) were not included in the motifs.
Details of the results are available in Additional file 5.

Conclusion
Many studies have investigated the interactions between
nucleic acids and proteins by computational approaches.
However, most of the computational approaches treat the
problem of nucleic acid-protein interactions as a classifi-
cation problem. In this paper we proposed a generative
model using a recurrent neural network (RNN) to gen-
erate nucleic acid sequences binding to a target protein.
The model was trained on a huge set of sequences from
high-throughput experimental technologies, and tested to
construct nucleic acid sequences binding to a target pro-
tein. Both DNA and RNA sequences generated by the
model for several target proteins showed a high binding
specificity, and motifs observed in the sequences were
similar to known motifs.

https://www.ncbi.nlm.nih.gov/bioproject/371436
https://www.ncbi.nlm.nih.gov/bioproject/371436
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These are preliminary results of ongoing research, but
demonstrated the potential of our approach as a generator
of nucleic acid sequences binding to a target protein. In
particular, our model will be useful in substantially reduc-
ing time and money for in vitro selection of aptamers such
as SELEX experiments by constructing an efficient initial
pool of nucleic acid sequences.
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https://doi.org/10.1186/s12864-019-6299-4.

All additional files are available at http://bclab.inha.ac.kr/aptamer.

Additional file 1: HT-SELEX data of DeepBind. The data used for training
our generator model and the HT-SELEX data used for comparing with
other methods. The size of the compressed file is about 1.8GB.

Additional file 2: Nucleic acid sequences of three types. Nucleic acid
sequences generated by our model, AptaSim, and random generator for
four proteins (DRGX, GCM1, OLIG1 and RXRB).

Additional file 3: Nucleic acid sequences generated by our model for
three proteins. Nucleic acid sequences and their binding specificity to
target proteins (NFATC1, NFKB1 and MBNL1), constructed by our model.

Additional file 4: Known aptamers binding to three proteins. An aptamer
binding to NFATC1, two aptamers binding to NFKB1, and two aptamers
binding to MBNL1.

Additional file 5: FATC1-binding motifs and NFKB1-binding motifs found
in the DNA sequences generated by other methods. NFATC1-binding
motifs and NFKB1-binding motifs found in the DNA sequences generated
by AptaSim and by a set of programs in AptaSuite.

Abbreviations
AF: Binding affinity; IU: Intersection to union; LSTM: Long short-term memory;
RNN: Recurrent neural network; SP: Binding specificity

Acknowledgements
Not applicable.

About this supplement
This article has been published as part of BMC Genomics Volume 20 Supplement
13, 2019: Proceedings of the 2018 International Conference on Intelligent
Computing (ICIC 2018) and Intelligent Computing and Biomedical Informatics
(ICBI) 2018 conference: genomics. The full contents of the supplement are
available online at https://bmcgenomics.biomedcentral.com/articles/
supplements/volume-20-supplement-13.

Authors’ contributions
JI designed and implemented Sequence generator and prepared the initial
manuscript. BP implemented a program for analyzing the results, and helped
the initial manuscript. KH supervised the work and wrote the manuscript. All
authors read and approved the final manuscript.

Funding
This work was supported by the National Research Foundation of Korea (NRF)
grant funded by the Ministry of Science and ICT (NRF-2017R1E1A1A03069921,
NRF-2018K2A9A2A11080914) and the Ministry of Education
(NRF-2016R1A6A3A11931497). Publication of this article was funded by the
NRF grant (NRF-2017R1E1A1A03069921).

Availability of data and materials
Additional files are available at http://bclab.inha.ac.kr/aptamer.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Published: 27 December 2019

References
1. Walia R, Xue L, Wilkins K, El-Manzalawy Y, Dobbs D, Honavar V.

RNABindRPlus: A Predictor that Combines Machine Learning and
Sequence Homology-Based Methods to Improve the Reliability of
Predicted RNA-Binding Residues in Proteins. Plos ONE. 2014;9(5):. https://
doi.org/10.1371/journal.pone.0097725.

2. Tuvshinjargal N, Lee W, Park B, Han K. PRIdictor: Protein-RNA Interaction
predictor. Biosystems. 2016;139:17–22.

3. Choi D, Park B, Chae H, Lee W, Han K. Predicting protein-binding
regions in RNA using nucleotide profiles and compositions. Bmc Syst Biol.
2017;11:.

4. Shen Z, Bao WZ, Huang DS. Recurrent Neural Network for Predicting
Transcription Factor Binding Sites. Sci Rep. 2018;8:10.

5. Alipanahi B, Delong A, Weirauch M, Frey B. Predicting the sequence
specificities of DNA- and RNA-binding proteins by deep learning. Nat
Biotechnol. 2015;33(8):831–8.

6. Akbaripour-Elahabad M, Zahiri J, Rafeh R, Eslami M, Azari M. rpiCOOL: A
tool for In Silico RNA-protein interaction detection using random forest. J
Theor Biol. 2016;402:1–8.

7. Zhang X, Liu S. RBPPred: predicting RNA-binding proteins from sequence
using SVM. Bioinformatics. 2017;33(6):854–62.

8. Liu B, Li K, Huang DS, Chou KC. iEnhancer-EL: identifying enhancers and
their strength with ensemble learning approach. Bioinformatics. 2018;34:
3835–42.

9. Liu B, Yang F, Huang DS, Chou KC. iPromoter-2L: a two-layer predictor
for identifying promoters and their types by multi-window-based
PseKNC. Bioinformatics. 2018;34:33–40.

10. Hassanzadeh HR, Wang MD. DeeperBind: Enhancing Prediction of
Sequence Specificities of DNA Binding Proteins. In: 2016 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM);
2016. p. 178–83. https://doi.org/10.1101/099754.

11. Kim N, Izzo JA, Elmetwaly S, Gan HH, Schlick T. Computational
generation and screening of RNA motifs in large nucleotide sequence
pools. Nucleic Acids Res. 2010;38(13):e139.

12. Zhou Q, Xia X, Luo Z, Liang H, Shakhnovich E. Searching the Sequence
Space for Potent Aptamers Using SELEX in Silico. J Chem Theory Comput.
2015;11(12):5939–46.

13. Hoinka J, Berezhnoy A, Dao P, Sauna ZE, Gilboa E, Przytycka TM. Large
scale analysis of the mutational landscape in HT-SELEX improves aptamer
discovery. Nucleic Acids Res. 2015;43(12):5699–707.

14. James W. Aptamers. In: Meyers RA, editor. Encyclopedia of Analytical
Chemistry. Chichester: Wiley; 2000. p. 4848–71.

15. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput.
1997;9(8):1735–80.

16. Graves A, Mohamed A-r, Hinton G. Speech recognition with deep
recurrent neural networks. In: IEEE International Conference on Acoustics,
Speech and Signal Processing; 2013. p. 6645–9. https://doi.org/10.1109/
icassp.2013.6638947.

17. Sutskever I, Vinyals O, Le QV. Sequence to sequence learning with neural
networks. In: Advances in Neural Information Processing Systems 27. Red
Hook: Curran Associates, Inc.; 2014. p. 3014–112.

18. Tieleman T, Hinton G. Lecture 6.5-rmsprop: divide the gradient by a
running average of its recent magnitude. COURSERA: Neural Networks for
Machine Learning, 4; 2012, pp. 26–30.

19. Jolma A, Yan J, Whitington T, Toivonen J, Nitta K, Rastas P, Morgunova
E, Enge M, Taipale M, Wei G, et al. DNA-Binding Specificities of Human
Transcription Factors. Cell. 2013;152(1-2):327–39.

20. Hoinka J, Backofen R, Przytycka TM. AptaSUITE: A Full-Featured
Bioinformatics Framework for the Comprehensive Analysis of Aptamers
from HT-SELEX Experiments. Mol Ther Nucleic Acids. 2018;11:515–7.

21. Bailey TL. DREME: motif discovery in transcription factor ChIP-seq data.
Bioinformatics. 2011;27:1653–9.

22. Heinz S, Benner C, Spann N, Bertolino E, Lin Y, Laslo P, Cheng J, Murre
C, Singh H, Glass C. Simple Combinations of Lineage-Determining
Transcription Factors Prime cis-Regulatory Elements Required for
Macrophage and B Cell Identities. Mol Cell. 2010;38(4):576–89.

https://doi.org/10.1186/s12864-019-6299-4
http://bclab.inha.ac.kr/aptamer
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-20-supplement-13
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-20-supplement-13
http://bclab.inha.ac.kr/aptamer
https://doi.org/10.1371/journal.pone.0097725
https://doi.org/10.1371/journal.pone.0097725
https://doi.org/10.1101/099754
https://doi.org/10.1109/icassp.2013.6638947
https://doi.org/10.1109/icassp.2013.6638947


Im et al. BMC Genomics 2019, 20(Suppl 13):967 Page 13 of 13

23. Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon J, van
der Lee R, Bessy A, Cheneby J, Kulkarni S, Tan G, et al. JASPAR 2018:
update of the open-access database of transcription factor binding
profiles and its web framework. Nucleic Acids Res. 2018;46(D1):D260–6.

24. Cho J, Lee Y, Shin K, Jeong S, Park J, Lee S. In vitro selection of specific
RNA aptamers for the NFAT DNA binding domain. Mol Cells. 2004;18(1):
17–23.

25. Lebruska L, Maher L. Selection and characterization of an RNA decoy for
transcription factor NF-kappa B. Biochemistry. 1999;38(10):3168–74.

26. Li W, Cowley A, Uludag M, Gur T, McWilliam H, Squizzato S, Park Y,
Buso N, Lopez R. The EMBL-EBI bioinformatics web and programmatic
tools framework. Nucleic Acids Res. 2015;43(W1):W580–4.

27. Yang Y, Di C, Hu B, Zhou M, Liu Y, Song N, Li Y, Umetsu J, Lu Z. CLIPdb:
a CLIP-seq database for protein-RNA interactions. Bmc Genomics.
2015;16:. https://doi.org/10.1186/s12864-015-1273-2.

28. Goers E, Purcell J, Voelker R, Gates D, Berglund J. MBNL1 binds GC
motifs embedded in pyrimidines to regulate alternative splicing. Nucleic
Acids Res. 2010;38(7):2467–84.

29. Byun Y, Han K. PseudoViewer3: generating planar drawings of large-scale
RNA structures with pseudoknots. Bioinformatics. 2009;25(11):1435–7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1186/s12864-015-1273-2

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Introduction
	Materials and methods
	Data set
	Sequence generator
	Binding affinity and specificity
	Algorithm

	Results and discussion
	Binding affinity of generated sequences
	Protein-binding dNA sequence motif
	Comparison with known aptamers
	Comparison with other methods

	Conclusion
	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s12864-019-6299-4.
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4
	Additional file 5

	Abbreviations
	Acknowledgements
	About this supplement
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher's Note

