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Abstract

Examination Survey cohort.

Background: Phenomics provides new technologies and platforms as a systematic phenome-genome approach.
However, few studies have reported on the systematic mining of shared genetics among clinical biochemical
indices based on phenomics methods, especially in China. This study aimed to apply phenomics to systematically
explore shared genetics among 29 biochemical indices based on the Fangchenggang Area Male Health and

Result: A total of 1999 subjects with 29 biochemical indices and 709,211 single nucleotide polymorphisms (SNPs)
were subjected to phenomics analysis. Three bioinformatics methods, namely, Pearson’s test, Jaccard'’s index, and
linkage disequilibrium score regression, were used. The results showed that 29 biochemical indices were from a
network. IgA, 1gG, IgE, IgM, HCY, AFP and B12 were in the central community of 29 biochemical indices. Key genes
and loci associated with metabolism traits were further identified, and shared genetics analysis showed that 29
SNPs (P < 10™ %) were associated with three or more traits. After integrating the SNPs related to two or more traits
with the GWAS catalogue, 31 SNPs were found to be associated with several diseases (P < 10~ 8). Using ALDHZ as an
example to preliminarily explore its biological function, we also confirmed that the rs671 (ALDH2) polymorphism
affected multiple traits of osteogenesis and adipogenesis differentiation in 3 T3-L1 preadipocytes.

Conclusion: All these findings indicated a network of shared genetics and 29 biochemical indices, which will help
fully understand the genetics participating in biochemical metabolism.
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Background

Complex traits are the product of various biological sig-
nals and some intermediate traits may be affected either
directly or indirectly by these signals [1]. A phenome is
the sum of many phenotypic characteristics (phenomics
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traits) that signifies the expression of the whole genome,
proteome and metabolome under a specific environmental
influence [2, 3]. The study of phenomes (called phe-
nomics) provides a suite of new technologies and plat-
forms that have enabled a transition from focused
phenotype-genotype studies to a systematic phenome-
genome approach [4]. Many recent studies have found
that, compared to considering only binary patients vs.
healthy controls, mapping intermediate steps in disease
processes, such as various disease-related clinical quantita-
tive traits or gene expression, is more informative [5, 6].
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Pleiotropy, which is a DNA variant or mutation that
can affect multiple traits, is a common phenomenon in
genetics [7]. For example, Joseph Pickrell and colleagues
[8] performed genome-wide association studies (GWAS)
of 42 traits or diseases to compare the genetic variants
associated with multiple phenotypes and identified 341
loci associated with multiple traits. Heid IM et al [9] per-
formed a GWAS of fasting insulin, high-density lipopro-
tein cholesterol (HDL-C) and triglyceride (TG) levels to
identify 53 loci associated with a limited capacity to
store fat in a healthy way, and this multi-trait approach
could increase the power to gain insights into an other-
wise difficult-to-grasp phenotype. Furthermore, many
studies have found that diseases or clinically quantitative
traits can be interconnected. For example, increasing cir-
culating fatty acids (Fas) could lead to the development
of obesity-associated metabolic complications, such as
insulin resistance [10]. Goh et al [11] found that essen-
tial human genes tended to encode hub proteins and
were widely expressed in multiple tissues. Many shared
genetic variants are identified in linkage disequilibrium
with variants associated with other human traits or dis-
eases, and these pleiotropic connections connect the hu-
man traits together [8, 12]. Therefore, understanding the
complex relationships among human traits and diseases
is important for learning about the molecular function
of hub genes.

The Fangchenggang Area Male Health and Examin-
ation (FAMHES) cohort was initiated in 2009 in Fang-
chenggang City, Guangxi, China. It is a comprehensive
demographic and health survey that focuses on investi-
gating the interaction between the environment and
genetic factors on men’s health. In a previous study, we
reported that biochemical indices are closely associated
with disease. For example, higher complement 3 (C3)
and complement 4 (C4) were associated with an increase
in metabolic syndrome (MetS) [13]. Low serum osteocal-
cin levels were a potential marker for MetS [14] and im-
paired glucose tolerance [15]. Uric acid (UA) was
positively correlated with the prevalence of MetS [16].
Additionally, a genome-wide assay indicated that genes
or loci associated with lipid traits are related to bio-
chemical indices. For example, alcohol consumption and
the ALDH2 rs671 polymorphism affected serum TG
levels [17]. Although the role of genetic factors and gene
polymorphisms in biochemical indices has been re-
ported, the network of biochemical indices themselves,
biochemical indices and genetic types are still puzzling.
With the rapid advances in bioinformatics techniques,
clarifying the biochemical indices network with genetic
types becomes feasible.

The aim of this study was to identify the shared gen-
etics responsible for 29 biochemical indices in the
FAMHES cohort using a phenomics approach. Our
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findings shed light on the relationships between these
29 biochemical indices, including their shared genetic
basis and genetic risk loci.

Results

Genetic and trait-based characteristics of 1999 samples

A total of 1999 subjects with 29 biochemical indices that
passed the QC call rate of 95% were analysed, and a total of
709,211 SNPs in these subjects were subjected to the subse-
quent genetic analysis. The average GWAS inflation factor
for all 29 biochemical indices was 1.029 (range: 0.975—
1.060), suggesting that the stratification correlation worked
well (Additional file 5: Table S1). The heatmaps based on
the Pearson correlation coefficient showed that 106 corre-
lated pairs were found among these 29 traits (correlation
coefficient was over 0.3 or less than - 0.3 and the P value
was less than 0.01) (Fig. 1). In addition, cluster analysis with
the hclust package in the R package classified these 29 bio-
chemical indices into 2 groups, with one group including
blood urea nitrogen (BUN), cholesterol, glucose, testoster-
one (TE), follicle-stimulating hormone (FSH), insulin, im-
munoglobulin G (IgG), homocysteine (HCY), folate (FOL),
alpha-fetoprotein (AFP), immunoglobulin A (IgA), low-
density lipoprotein cholesterol (LDL-C), immunoglobulin
M (IgM), C3, how-density lipoprotein cholesterol (HDL),
TGs, and C-reactive protein (CRP). The other group in-
cluded vitamin B12 (B12), ferritin (FRRR), uric acid, im-
munoglobulin E (IgE), anti-streptococcus haemolysin “O”
(ASO), creatinine, osteocalcin (OSTEOC), oestradiol, sex
hormone binding globulin (SHBG), and alanine transamin-
ase (ALT) (Additional file 1: Figure S1). Each group con-
tained common lipid metabolism indices, suggesting that
these traits were correlated with lipid metabolism.

Correlation analysis based on network medicine
For each trait, we used a linear mixed model estimate
fixed value, adjusted with PC1 and PC2 of population
stratification and age, respectively, to perform a GWAS.
A total of 86,556 SNPs (P value 1 x 10~ %) associated with
all 29 biochemical indices were obtained and then anno-
tated using the SNP function database with default pa-
rameters and the south Asian population option [18]. A
total of 12,521 genes were obtained, and protein-protein
interactions were determined using the BioGRID data-
base [19]. A total of 5313 genes with known proteins
were obtained, and the interactional network was built
with Cytoscape 3 [20]. The topological coefficient, clus-
tering coefficient and degree distribution were important
indices to evaluate network nodes. Details of these three
factors for 5313 genes are shown in Additional file 2:
Figure S2 (A, B, C, D).

The Jaccard correlation matrix heatmaps showed that
there were 63 correlated pairs among 435 pairwise com-
binations among these 29 traits indices with an MCI
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Fig. 1 The heatmaps based on the Pearson correlation for 29 biochemical indices in the FAMHES cohort. The coefficient in each cell ranges from
—1to 1. A negative value denotes a negative correlation, a positive value denotes a positive correlation, 1 indicates a complete correlation, and 0
indicates no correlation. The correlations between clinical quantitative traits shown in this matrix are shown in blue and red. Blue represents a
positive correlation, and the darker the colour, the stronger the positive correlation. Red indicates a negative correlation, and the darker the
colour, the stronger the negative correlation. If the correlation coefficients were greater than 0.3 or less than — 0.3 and P value< 0.01, we
considered the pairs to be correlated

over 0.6 (Fig. 2). In these pairs, HCY, IgG, SHBG, B12,
IgA and C4 were closely related with more than six
other traits. However, because the information regarding
gene/protein interactions in public databases is limited,
interaction information for most of the genes/proteins in
this study could not be obtained, and the Jaccard index
was computed based on a small number of genes/
proteins.

Correlation analysis based on linkage disequilibrium

score regression (LDSC)

Genetics can help to elucidate cause and effect. How-
ever, single variants tend to have minor effects, and
reverse causation involves an even smaller list of con-
founding factors. Therefore, interrogating genetic
overlap via GWAS that focuses on genome-wide sig-
nificant SNPs is predicted to be an effective means of
mining the correlation between different phenotypes.
The GWAS effect size estimate for a given SNP will
capture information about SNPs near the linkage

disequilibrium [21]. The correlations based on GWAS
of the 29 quantitative clinical traits were estimated
using cross-trait LDSC. The genetic correlation esti-
mates for all 435 pairwise combinations among these
29 traits. After removing the outlier values, 68 signifi-
cantly correlated pairs (p < 0.05) were found (Fig. 3).
The details for these 68 selected pairs of traits are
shown in Additional file 6: Table S2.

Integration and interpretation of important pairs
identified by these three methods

To identify the correlation pairs among these three
methods, we integrated the correlated traits fitting at
least one of the following: Pearson coefficient was
greater than 0.3 or less than - 0.3 and P value less than
0.01, Jaccard coefficient was greater than 0.6, or P value
of LDSC was less than 0.05. In total, 208 correlated pairs
among biochemical indices were found; among them
106, 63, 68 correlated pairs were found by Pearson coef-
ficient, Jaccard coefficient, and LDSC, respectively. Only
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1 correlated pair was found by all three methods. Ten
correlated pairs, both by Pearson coefficient and LDSC
were found, 15 by Pearson and Jaccard coefficient, and 5
by Jaccard coefficient and LDSC. (Additional file 3: Fig-
ure S3, A). The related traits were integrated if they ful-
filled the following conditions: the Pearson coefficient
was greater than 0.3 and P value less than 0.01, the Jac-
card coefficient was greater than 0.6, or the LDSC p
value was less than 0.05. Six traits (IgA, IgG, HCY, AFP,
IgE and B12) were the first top factors in the network of
these 29 traits and were related to more than 20 traits.
Additionally, IgM, CRP, C4, BUN, TG, creatinine and
FSH were the second top factors and connected with
more than 15-20 traits, and OSTEOC, oestradiol, glu-
cose, FOL, TE, SHBG, FERR, BMI, ALT and HDL were
the third top traits, which correlated with more than 10
traits (Additional file 3: Figure S3, B).

Genes and SNPs that are potentially important across
multiple traits

We selected SNPs with P< 10" for each trait, resulting
in a total of 60,644 SNPs for all 27 traits. The essential
genes have a tendency to be expressed in multiple tis-
sues and are topologically and functionally central [12].
After integrating all 5313 genes and removing the free
notes in the total network among 29 biochemical

indices, 427 genes (with P <10~ 3 at least one SNP) were
correlated with more than 5 traits. After filtering the
genes with SNPs (P <10~ %), there were 71 genes corre-
lated with more than or equal to 3 traits, especially alde-
hyde dehydrogenase 2 family member (ALDH2), BRCA1
associated protein (BRAP), cadherin 13 (CDHI13) and
CUB and Sushi multiple domains 1 (CSMD1), which
was related to more than 5 traits. In these 71 genes, 38
genes were found to connect more than 5 other genes in
the interactional network annotated from the BioGRID
database [19] (Additional file 7: Table S3), which showed
that essential genes related to multiple traits were lo-
cated in the central gene interactional network.

Among all the genome-wide variation SNPs, 481
(P <1X10™3) were associated with three or more clin-
ical biochemical quantitative traits, and 13 of these
481 SNPs were related to more than 5 traits. In these
SNPs, rs12229654 (near cut like homeobox 2 (CUX2)),
rs2188380 (located in CUX2), rs3809297 (located in
CUX2) and rs3782886 (located in BRAP) were related
to more than 10 traits. Six SNPs in CUX2 were corre-
lated with more than 5 traits, which indicates that
CUX2 should play an important role on this net. In
addition, for all the SNPs with P<1x 10" % 29 SNPs
were related to three or more biochemical indices
(Fig. 4). After annotating 29 SNPs with P<1 x 107
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Fig. 3 Correlation analysis based on linkage disequilibrium score regression (LDSC) for 29 biochemical indices in the FAMHES cohort. The genetic
correlation estimate (Rg) ranges between — 1 and 1. A negative value denotes a negative correlation, a positive value denotes a positive
correlation, 1 indicates a complete correlation, and 0 indicates no correlation. The correlations between clinical biochemical indicators shown in
this matrix are represented by blue and red. Blue represents a positive correlation, and the darker the colour, the stronger the positive correlation.
Red indicates a negative correlation, and the darker the colour, the stronger the negative correlation
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using the HaploReg database [22], we found that al-
most all these SNPs were related to enhancer histone
binding, promoter DNase binding and transcript bind-
ing, which affected protein binding or the presence of
eQTLs (Additional file 8: Table S4).

After integrating the SNPs associated with more than 2
traits(P< 1 x 10™%) with the GWAS catalogue [23], we
found that 31 SNPs in 18 genes were in the GWAS cata-
logue (Additional file 9: Table S5). Among those SNPs, five
SNPs (rs579459, rs649129, rs507666, rs495828, and
rs651007) in ABO were associated with more than 10
quantitative traits and diseases. One SNP (rs671) in ALDH2
was related to 21 traits, six SNPs (rs10519302, rs16964211,
1rs2305707, rs2414095, rs6493487 and rs727479) in or near
CYP19A1 were mainly associated with hormone measure-
ments. This finding supports the idea that shared genetics
for traits can produce correlations among these traits.

The rs671 polymorphism in ALDH2 affects osteogenic and
adipogenic differentiation of 3 T3-L1 preadipocytes

An interaction between a SNP (rs671) in ALDH2 was re-
lated to 13 traits found in this study. The relationship

between rs671 and lipid metabolism or osteocalcin has been
found in some studies [24, 25]; however, their function
needs to be investigated. Rs671 is a nonsynonymous (ns)
SNP (G504 L) in the ALDH2 gene, which is located on
chromosome 12. To evaluate the effects of the rs671 poly-
morphism on osteogenic and adipogenic differentiation of 3
T3-L1 preadipocytes, a lentivirus vector was used to overex-
press ALDH2-WT or ALDH2-G504 L-mut in 3 T3-L1 prea-
dipocytes (Additional file 4: Figure S4). The cell growth
curve of ALDH2-G504 L-mut showed no obvious change
compared with that of the control, but expression of
ALDH2-WT induced a significant increase in cell prolifera-
tion (Fig. 5a). The cell apoptosis results were consistent with
this finding; overexpression of ALDH2-WT resulted in a
3.935-fold decrease in late apoptotic cells in comparison to
that of ALDH2-G504 L-mut or control cells (Fig. 5b, c). We
next investigated the impact of the ALDH2 G504 L. muta-
tion on the osteogenic and adipogenic differentiation of 3
T3-L1 preadipocytes. At 7 days after osteoblast induction,
cells were subjected to Alizarin red S staining. ALDH2-W'T
cells showed more mineralized nodules than the control
cells or those expressing ALDH2-G504 L-mut (Fig. 5d, e). In
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addition, the mRNA expression of osteoblast-related genes,
such as alkaline phosphatase (AKP), osteocalcin, RUNX
family transcription factor 2 (Runx2), and collagen type I
(Col1), was significantly higher in ALDH2-WT cells than in
ALDH2-G504 L-mut or control cells (Fig. 5f). After 7 days of
adipogenic induction, the ALDH2-WT cells displayed accu-
mulation of lipid vacuoles, as detected by oil red O staining,
when compared with ALDH2-G504 L-mut or control cells
(Fig. 5g, h). The expression levels of adipogenesis-related
proteins, such as adiponectin, C/EBPa (CCAAT/enhancer
binding protein o), C/EBPP, adipocyte fatty acid-binding
protein (Fabp4), and Ppary (peroxisome proliferator-
activated receptor), were much higher in ALDH2-WT cells
than in ALDH2-G504 L-mut or control cells (Fig. 5i). Taken

together, these results suggest that ALDH2-G504 L-mut af-
fected the osteogenic and adipogenic differentiation of 3 T3-
L1 preadipocytes.

Discussion

A network of shared genetics and 29 biochemical indi-
ces were found in this research study. Not only did
one intermediate phenotype have multiple associated
SNPs, interestingly, one SNP associating with multiple
intermediate phenotypes was also common. The
phenomenon of some genes or loci having the ability
to affect multiple distinct phenotypic traits is called
pleiotropy. Increasing attention has been paid to plei-
otropy. In 2011, according to the data of the NIH
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GWAS website, Sivakumaran found that nearly 5% of
SNPS and 17% of genes or gene regions were related
to two or more diseases or traits [26]. In 2018, Ches-
more used the same method and database and found
that 44% of genes or gene regions were associated with
two or more diseases or traits, a nearly two-fold in-
crease to that of Sivakumaran S [27]. It has been sug-
gested that pleiotropy facilitates the accurate diagnosis
and treatment of human diseases [28]. Moreover, plei-
otropy research is also helpful for understanding the
association between sequence variation and phenotype
in plants or animals. Gene co-expression networks
and novel mutations associated with many phenotypic
traits were identified in maize [29, 30]. It has been
proven that the wing shape of Drosophila is affected
by multiple genetic sites [31].

Immunoglobulin is produced by plasma cells and lym-
phocytes and is characteristic of these types of cells and
plays an essential role in the body’s immune system. In
this study, we found that IgG, IgA, IgE and IgM were
the central traits in the biochemical indices network,
and these traits could be linked to 19 or more traits.
HCY, a naturally occurring amino acid found in blood
plasma, plays a central role in biochemical indices by

connecting with 23 traits. High levels of HCY have been
associated with several body dysfunctions, such as vascu-
lature [32] and endothelial injury [33]. Interestingly, vita-
min B12 was identified as having a central role in the
biochemical indices network by correlating to 21 other
traits. Similar to previous studies, vitamin B12 correlates
with several quantitative traits, such as bone mineral
density, FOL and FERR [34-36].

Pleiotropy refers that some genes or loci that have
the ability to affect multiple distinct phenotypic traits.
After integrating all the related genes among 29 bio-
chemical indices, surprisingly, ALDH2 and BRAP can
be related to 9 traits and are connected with 19 and 13
genes, respectively. ALDH2 belongs to the aldehyde
dehydrogenase family of proteins, which is the second
enzyme of the major oxidative pathway of alcohol me-
tabolism. ALDH?2 dysfunction will lead to several dis-
eases, such as cancer [33, 37], alcoholic fatty liver [38],
and cardiovascular diseases [39]. BRAP is a cytoplas-
mic protein, which can bind to the nuclear localization
signal of BRCA1 and other proteins [40]. The
polymorphisms in this gene are associated with myo-
cardial infarction [41] and metabolic syndrome [42].
Additionally, the common CSMDI was related to 8
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traits. CSMDI is a large (~ 390 kDa) membrane-bound
complement inhibitor [43]. Mutations of this gene
participate in complement activation and inflamma-
tion in the central nervous system, which leads to Par-
kinson’s disease [44]. These three genes may be hub
genes in biochemical indices networks.

If the SNPs located in sites related to promoter DNase
binding, enhancer histone binding and transcript binding,
the marginally significant SNPs play regulatory roles af-
fecting protein binding or the presence of eQTL [45, 46].
In this research, 29 SNPs (P < 10—4) were associated with
three or more traits and correlated with each other. These
results revealed that the shared regulatory genetics are
most likely to drive association signals and play important
roles in clinical biological function. This phenomenon
may provide important “scaffolding” to support a frame-
work to explore the basic mechanism of biochemical
indices.

Shared genetics are commonly used to build disease-
diseased relationship and mine the common disorder of
diseases [47, 48]. An important general insight from this
study was that associated genes across traits tend to
gather in trait-specific network modules. We found that
31 SNPs in 18 genes were associated with several traits
and diseases; five SNPs (rs579459, rs649129, rs507666,
rs495828 and rs651007) of ABO were associated with
cholesterol and LDL levels. Six SNPs (rs10519302,
rs16964211, rs2305707, rs2414095, rs6493487, rs727479)
of CYP19A1 were associated with oestradiol levels.
Rs671 in ALDH2 was associated with glucose, OSTEOC,
and SHBG levels. These findings suggest that shared
genetics on traits can produce correlations between dif-
ferent traits of disease. For example, the ABO gene lo-
cated near 9q34.2 encodes glycosyltransferases related to
the first discovered ABO blood group system [49]. The
abnormal expression or polymorphism of this gene is
correlated with several body dysfunctions, such as is-
chaemic stroke [50], large artery atherosclerotic stroke
[51] and pancreatic cancer [52]. The CYP19A1 gene, lo-
cated on 15q21.2, encodes a key enzyme for oestrogen
biosynthesis. SNPs in CYP19A1 might affect aromatase
activity and influence oestradiol levels, thereby impact-
ing human health. Previous research has reported corre-
lations with SNPs of CYP19 and disease, such as
polycystic ovarian syndrome [53], coronary heart disease
[54], and coronary artery disease (CAD). The ALDH2
gene, located on 12q24.12, encodes aldehyde dehydro-
genase, the second enzyme of the major oxidative path-
way of alcohol metabolism. Rs671 is nonsynonymous
mutation site on exon 12. The rs671 mutation was found
to be associated with several traits (BMI, osteocalcin,
renal function-related traits [55], response to alcohol
consumption [56, 57], triglyceride [17], haematological
and biochemical traits [58], intracranial aneurysm [59],
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mean corpuscular haemoglobin [17]). Using ALDH2 as
an example to preliminarily explore its biological func-
tion, the in vitro function testing of rs671 played a role
in the proliferation and osteogenic and adipogenic differ-
entiation of 3 T3-L1 preadipocytes.

With the emergence of GWAS, a large number of loci
and disease-related information were elucidated. How-
ever, due to its strict restriction on the P value of correl-
ation analysis, a great deal of potential information was
lost while significant loci were obtained. Some loci did
not achieve a P cut-off value but itself, but if these loci
were located in a short range or were involved in similar
functions, these lower p value loci may also affect bio-
logical function [60]. Furthermore, it was challenging to
identify common pathways and biological functionality
core regulatory networks across loci. During more effi-
cient analysis of these lower p value loci functions, more
complex models emerged. Raychaudhuri designed
GRAIL to set a lower threshold in considering related-
ness for those genes in narrow regions. They systematic-
ally examined 370 SNPs from 179 independent loci with
P<1x1072 and three gene regions in CD28, PRDM1
and CD2/CD58 were identified that were closely related
to rheumatoid arthritis [61]. To assess new asthma risk
loci, Demenais interrogated the GWAS catalogue using
set P value thresholds from 5x 10™% to 1072, and per-
formed a meta-analysis on genetic variation and blood
indexes and environmental exposure histories [62]. Kos-
tem performed a follow-up analysis of SNPs associated
with disease by setting a lower cut-off value and then
analysed the particular values of the tag SNP statistic,
pairwise correlation, and the effect size of the candidate
SNP [63].

Because there are no mature methods of research on
the genetic relationship between traits at the level of
genome-wide summary statistics, we set a lower thresh-
old value for obtaining more SNPs for analysis, and then
analysed the association of these candidate SNPs by
three different methods: Pearson correlation coefficient,
LDSC or Jaccard correlation. As we show, even with
three different calculation methods, most of the top im-
portant traits are similar. Of these, IgA, IgG, HCY, AFP,
IgE and B12 were the first top factors in the network.
Our research is an experimental attempt to assess the
network of shared genetics and 29 biochemical indices.

Conclusion

We investigated the correlations among 29 biochemical
indices through three biological information methods.
First, we found that IgA, IgG, IgE, IgM, HCY, AFP and
B12 were in the central community of 29 biochemical
indices. Second, the shared genetics analysis showed that
29 SNPs (P<10™*) were associated with more than 3
traits. Thirty-one SNPs were associated with several
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diseases (P <10™®) by integrating the SNPs related with
2 or more traits with the GWAS catalogue. Third, using
ALDH?2 as an example to preliminarily explore its bio-
logical function, we found that the rs671 (ALDH2) poly-
morphism could affect the osteogenic and adipogenic
differentiation of 3 T3-L1 preadipocytes. We clarified
that 29 biochemical indices were from a network and
that hub variations/genes played a vital role in biological
processes. These findings highlight a network of shared
genetics and 29 biochemical indices.

Methods

Study samples

Our study included 2012 unrelated healthy Chinese men
aged 20-69 years from the FAMHES [14, 15], which was
conducted among non-institutionalized Chinese men in
Guangxi and was designed to investigate the effects of
environmental and genetic factors and their interaction
with the development of age-related chronic diseases.
Men aged >18 years were requested to participate in the
study upon large-scale physical examination at the Med-
ical Center of Fangchenggang First People’s Hospital
from September 2009 to December 2009. The included
participants all self-reported that they were free of
hyperthyroidism, diabetes mellitus, stroke, coronary
heart disease, rheumatoid arthritis, impaired hepatic or
renal function, and tumours. Our study research proto-
col was approved by the Guangxi Medical University
Ethics Committee. All participants provided written in-
formed consent prior to participation in this study.

Measurements of 29 biochemical indices

Overnight (>8 h) fasting venous blood specimens were ob-
tained between 7:00 am and 10:00 am, and serum samples
were extracted and stored at — 80 °C. Triglyceride, choles-
terol, HDL-C, LDL-C, glucose, ALT, BUN, uric acid and
creatinine were measured enzymatically on a Dimension-
RxL Chemistry Analyzer (Dade Behring, Newark, DE) in
the Department of Clinical Laboratory Science at the
Fangchenggang First People’s Hospital. CRP, C3, C4, IgA,
IgE, IgG, IgM, and ASO were measured with immunotur-
bidimetric methods on a HITACHI 7600 Biochemistry
Analyzer (Hitachi Corp, Tokyo, Japan). Ferritin, folate and
vitamin B12, TE, oestradiol, FSH, SHBG, insulin, AFP and
OSTEOC were measured with the same batch of reagents
by electrochemiluminescence immunoassay and HCY
assayed by enzyme cycle method using a COBAS 6000
system E601 (Elecsys module) Immunoassay Analyzer
(Roche Diagnostics, GmbH, Mannheim, Germany).

SNP genotyping and quality control (QC) analysis

Genome-wide SNP genotyping was performed with an
lumina Omni 1M chip (Illumina, San Diego, USA).
Among 2012 genotyped subjects, 1999 passed the QC
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call rate of 95% and were included in the final data ana-
lysis. A total of 709,211 SNPs in these subjects passed
the QC criteria as follows: the P value for the Hardy-
Weinberg equilibrium (HWE) test was greater than 1 x
102, the minor allele frequency (MAF) was greater than
0.01, and the genotype call rate was greater than 95%.
The inferred genotypes of SNPs in the genome that were
not directly genotyped were computed by the IMPUTE
program [64] (e.g., SNPs catalogued in HapMap Phase II
CHB population release #24). All genotypes with a pos-
terior probability of >90% based on IMPUTE software
imputation were retained.

Jaccard coefficient

Phenotypes are linked if they share alterations in genet-
ics. The pathobiology of human diseases might be
understood by creating molecular and phenotypic net-
works [65, 66]. We used the SNP function [18] (https://
snpinfo.niehs.nih.gov/) tool to identify the genes con-
taining all of the SNPs for which the P value for the
GWAS was less than 1 x 1073, The human interactome
was obtained by combining protein-protein interaction
(PPI) information from the BioGRID database [19].

We built correlations among 29 clinical phenomes
based on the common genes/proteins between two
traits. To minimize the bias in estimating the correlation
between two given traits, we calculated the molecular
comorbidity index (MCI) by adapting the formula from
Grosdidier S [67] to further consider the different coeffi-
cients of distance between the two diseases. The MCI
was defined as follows:

MCIlml'tl,tmiﬂ = ((prOtelnstmitl NProteins,. ;s ) UPTOLeiNnS qit1 —praira

UPTOteins i yiyair1 )| (DYOLCINS i1 UPTOLEINS iy )

Where proteins, .,y and proteins, ;;» are the proteins re-
lated to clinical traits 1 and 2, respectively. proteins; i —
wairz are those proteins related to trait 1 that interact with
the proteins associated with trait 2 (and vice versa protein-
Strait2 — wair1)- The two operators n and u denote the inter-
section and union between the two sets of elements
(proteins ;1 and proteins,,,;», respectively).

Correlation analysis by LDSC

The genetic correlations derived from the summary
statistics were evaluated by the GWAS effect size for
a given SNP and integrated the effects of all SNPs
that were in linkage disequilibrium (LD) with that
SNP. The LDSC (which targets genetic correlation)
uses variants across the whole genome and is a sym-
metrical (i.e., nondirectional) analysis for the risk fac-
tor and the outcomes [21]. In short, LDSC assumes
that, for polygenic traits, SNPs will also capture infor-
mation about SNPs near the LD. This relationship
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between the LD and the associated signal can also be
used to test the relationship between the two traits
for all SNPs in the genome. To further elucidate the
correlations of these 29 biochemical indices in
FAMHES from the genetic architecture, we applied
LDSC to estimate the correlation of these 29 traits.

Osteogenic and adipogenic differentiation of 3 T3-L1
preadipocytes

Full-length ALDH2-WT and ALDH2-G504 L-mut cDNA
were cloned into the pTSBOE-CMV-MSC-3flag-EF1-
tRFP-F2A-Puro lentivirus vector (Quanyang, Shanghai).
The 3T3-L1 preadipocytes were cultured in Dulbecco’s
modified Eagle’s medium (DMEM) with 10% foetal bovine
serum (FBS) at 37 °C in a humidified atmosphere with 5%
CO,. The osteoblast-inducing medium used was a-MEM
(a-minimum Eagle’s medium) containing 10% FBS (foetal

bovine serum), 100nM dexamethasone, 5mM (-
phosphoglyceride and 5pg/mL vitamin C. The
adipogenesis-inducing medium included A and B

medium. The A medium was DMEM containing 10%
FBS, 100 nM dexamethasone, 0.5 mM 3-isobutyl-1-meth-
ylxanthine and 5pg/mL insulin. The B medium was
DMEM containing 10% FBS and 5 pg/mL insulin. For adi-
pocyte induction, cells were cultured for two cycles of A
medium for 2 days and then B medium for 1 day. Cell pro-
liferation was measured by a CCK-8 assay according to
the manufacturer’s instructions (DOJINDO, Japan). Cell
apoptosis was examined by Annexin V-APC/7-AAD
staining followed by flow cytometry detection. For Oil Red
O or Alizarin Red S staining, cells were fixed with 4%
paraformaldehyde for 30 min and stained with 4% Oil Red
O solution or 0.4% Alizarin Red S. Lipid droplets and cal-
cium nodules were quantified using Image] software. Cel-
lular RNA was extracted using an RNA extraction kit
(Promega, China). Reverse transcription was performed
with the Transcriptor Reverse Transcriptase Kit (Kangwei,
China). Quantitative reverse transcriptase-PCR was per-
formed using a Roche Light Cycler 480 and KANGWEI
qPCR Kit (KANGWEI, China). Per-primer sequences are
listed in Additional file 10: Table S6.

Statistical analysis

The correlations among the 29 biochemical indices
were computed by the CORR procedure using SAS
9.0 and defined as the Pearson correlation coefficient
between the rank variables. With the exception of
BUN, HCY, B12, FERR, OSTEOC, creatinine, uric
acid, cholesterol, HDL, LDL, TE and C3, 17 traits
without normal distribution were logarithmically
transformed to normalize the distribution. The asso-
ciation of the SNPs with 29 clinical quantitative
traits was evaluated using a linear regression ad-
justed for population stratification factors (PC1 and
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PC2) and age. Population stratification was evaluated
by a principal component approach with EIGEN-
STRAT software [68].

Availability of data and materials

The datasets generated and analysed during the current
study are available in the Genome variation Map (GVM)
of National Genomics Data Center (NGDC) (Accession
Number: GVMO000052).
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biochemical indices from the FAMHES cohort created with the hclust win
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these 29 traits. FERR (ferritin), CRP (C-reactive protein), C3 (complement
3), C4 (complement 4), AFP (serum alpha-fetoprotein), TG (triglycerides),
LDL (low density lipoprotein), ALT (alanine transaminase), BMI (body mass
index), ASO (anti streptolysin) (anti-streptolysin “0”), IgG (immunoglobulin
G), IgA (immunoglobulin A), IgM (immunoglobulin M), BUN (blood urea
nitrogen), FSH (follicle-stimulating hormone), HDL (high-density lipopro-
tein), TE (testosterone), SHBG (sex hormone binding globulin), IgE (im-
munoglobulin E), B12 (vitamin B12), HCY (homocysteine).

Additional file 2: Fig. S2. Network characteristics of 5313 associated
genes for 29 biochemical indices in individuals from the FAMHES cohort
were analysed by Cytoscape. (A) Topological coefficient, (B) degree, (C)
clustering coefficient, and (D) closeness centrality.

Additional file 3: Fig. S3. The integration of correlated traits from three
methods. (A) Venn diagram of the integration of correlated traits from
three methods. (B) The related traits were integrated if they fulfilled the
following conditions: the Pearson coefficient was greater than 0.3, the P
value was less than 0.01, the Jaccard coefficient was greater than 0.6, or
the LDSC p value was less than 0.05. Each testing method was denoted
by a specific colour: green for Jaccard, and blue for LDSC.

Additional file 4: Fig. S4. A lentiviral vector was used to overexpress
ALDH2-WT or ALDH2-G504 L-mut in 3 T3-L1 preadipocytes. (A)
Localization of the Glu504Lys substitution mutation in ALDHZ. Ex: exon.
(B) The plasmid used to express the ALDH2-Gluc504Lys mutant protein in
3T3-L1, ALDH2-WT was expressed using the same plasmid backbone. (C)
Sequencing analysis of the ALDH? gene exogenously expressed in 3 T3-
L1 cells infected with ALDH2-WT (top) or ALDH2-G504 L-mut (bottom).
(D) Expression of the transfected ALDH2 protein in 3T3-L1 cells was indir-
ectly assessed by the detection of RFP expression from the lentiviral vec-
tor. An RFP signal was detected by fluorescence microscopy at 48 h after
infection in both 3T3-L1 cells infected with ALDH2-WT and ALDH2-G504
L-mut. RFP control means 3 T3-L1 cells infected with plasmid backbone.
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errors and P values for selected pairs of traits.

Additional file 7: Table S3. The information on essential genes
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Additional file 8: Table S4. Twenty-nine SNPs (P < 1x 10~ ") related to
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was associated with more than 1 trait.
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adipogenic differentiation in 3 T3-L1 cells.
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