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Hypothesis: protein and RNA attributes are
continuously optimized over time
Sidney B. Cambridge

Abstract

Background: Little is known why proteins and RNAs exhibit half-lives varying over several magnitudes. Despite
many efforts, a conclusive link between half-lives and gene function could not be established suggesting that other
determinants may influence these molecular attributes.

Results: Here, I find that with increasing gene age there is a gradual and significant increase of protein and RNA
half-lives, protein structure, and other molecular attributes that tend to affect protein abundance. These
observations are accommodated in a hypothesis which posits that new genes at ‘birth’ are not optimized and thus
their products exhibit low half-lives and less structure but continuous mutagenesis eventually improves these
attributes. Thus, the protein and RNA products of the oldest genes obtained their high degrees of stability and
structure only after billions of years while the products of younger genes had less time to be optimized and are
therefore less stable and structured. Because more stable proteins with lower turnover require less transcription to
maintain the same level of abundance, reduced transcription-associated mutagenesis (TAM) would fixate the
changes by increasing gene conservation.

Conclusions: Consequently, the currently observed diversity of molecular attributes is a snapshot of gene products
being at different stages along their temporal path of optimization.

Keywords: Protein / mRNA stability, Protein structure, Gene conservation

Background
Typical protein attributes such as abundance, stability,
number of protein-protein interactions, or folded vs. un-
folded regions are increasingly characterized on a global
level. Large-scale analyses offer the opportunity for an un-
biased characterization of such innate molecular attri-
butes. For example, protein half-life and turnover is an
attribute which has been thoroughly investigated [1–9].
However, analyses of protein turnover in a variety of or-
ganisms including bacteria [3], yeast [2, 7], mammalian
cells [1, 4, 9], whole animals [5, 8], and even humans [6]
have not yielded any significant insight as to why turnover
values among proteins of the same cell can vary by orders
of magnitudes. Similarly, also RNA half-lives in human B-
cells ranged from minutes to days [10]. Some biological
correlations have been identified, for example membrane
proteins exhibit a significantly higher protein turnover
than cytosolic proteins and phosphorylated proteins have

a higher turnover than non-phosporylated proteins [11].
Yet, a compelling protein function vs. protein turnover
correlation could not be established though.
During evolution, mutations to genes lead to functional di-

vergence of their protein products but they also affect innate
molecular attributes such as turnover or stability. However, if
and how continuous mutagenesis changed innate molecular
attributes over time is rarely discussed [12, 13]. There have
been few reports of correlations between protein age and
percentage of protein disorder (negative correlation) [13] or
protein age and protein packing density [12]. Here, I present
over a dozen additional correlations between gene age and
various molecular attributes. For example, ‘old’ proteins that
already existed in unicellular organisms on average have a
lower turnover than ‘young’ proteins which appeared more
recently. Together with other already published correlations,
some also reaffirmed here, these observations suggest that
there is a continuous and gradual change of different mo-
lecular attributes over time through nonsynonymous muta-
tions. Obviously, there are countless and diverse molecular
attributes such as the propensity for protein-protein-
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interaction [14] or the length of poly(A) tails [15]. Conse-
quently, there is vast literature on molecular attributes and
thus it is important to note that the claim here is neither to
have uncovered all possible attribute-gene age correlations
nor to be the first to present them specifically. Rather, the
scope of this research was to show an overarching trend of
attribute optimization over time by analyzing many different
molecular attributes by the same, simple correlation with
gene age. I find that older genes tend to produce more stable
and structured proteins and mRNAs. I present a hypothesis
that suggests that such optimized molecular attributes
arise from cumulative mutational drifts of old genes. Con-
sequently, young genes produce less optimized molecules.
Just how mutations that favor attribute optimization tend
to accumulate and become fixated is also discussed. Ra-
ther than invoking increased cellular fitness as a driving
force for selection, I postulate that optimized, stable pro-
teins and mRNA reduce the need for transcription. In
turn, less transcription reduces transcription-associated
mutagenesis (TAM) at this specific gene locus so that
these optimizing mutations become fixated.

Results
Molecular stability and gene conservation correlate with
gene age
Triplicate, high-throughput mass spectrometry (MS) was
previously used to analyze and compare protein turnover
in non-dividing arrested human cervical HeLa and dif-
ferentiated mouse muscle C2C12 cells [11]. MS based
on SILAC (stable isotope labeling of amino acids in cell
culture) labeled amino acids can be used for quantitative
protein abundance comparison between samples [16].
Similar to incorporation experiments with radioisotope-
labeled amino acids decades ago [17, 18], SILAC allows
the analysis of turnover of thousands of proteins. Sub-
saturating metabolic incorporation of ‘heavy’ isotopes
produced a turnover value (heavy / unlabeled ratio after
24 h) for 4106 human and 3574 mouse proteins [11].
Here, the half-lives of proteins and their corresponding
gene age were compared to reveal if there is a general
correlation between the time of existence of a gene and
the stability of its protein product. Gene ages were ob-
tained from the ProteinHistorian Database [19] and
genes were taxonomically grouped as unicellular organ-
isms (u org), unicellular eukaryotes (u euk), Ophisto-
konta/Bilateria/Deuterostomia (OBD), chordates (chor),
or mammals (mamm). This grouping was chosen to re-
flect major steps in evolution. So all genes for which the
protein turnover and the gene age was available were
assigned to one of these five groups according to the
gene age and the median protein turnover for all genes
in the group was determined. It is important to note that
in the figures, u org, u euk, OBD, chor, and mamm, indi-
cate the age of the genes, not the origin. Thus, ‘chor’

genes originally appeared during the time when chor-
dates first existed. The grouping according to gene age
thus allowed comparison of human genes that already
existed in prokaryotes billions of years ago with those
human genes that appeared more recently and existed
only since the age of mammals.
For human proteins, the correlation of decreasing pro-

tein turnover with increasing protein age was significant
(Spearman’s correlation, r = − 0.20, P < 0.0001) as were
most differences between taxonomically grouped pro-
teins (Fig. 1a) (ANOVA, Bonferroni post-hoc analysis;
also Fig. 1c-h). A box plot of the same data is shown in
Additional file 1: Figure S1a. Notably, the variance of
turnover values among all proteins in each of the five
groups substantially decreased with increasing protein
age (Fig. 1b) indicating that turnover was more uniform
for old proteins. Similarly, the protein turnover values de-
rived from the mouse C2C12 MS experiments correlated
with gene age as well (Spearman’s correlation, r = − 0.31,
P < 0.0001) (Additional file 1: Figure S1b). Protein turnover
of rat proteins showed the same trend (Additional file 1:
Figure S1c). Analysis in Schizosaccharomyces pombe indi-
cated that older genes produce proteins with longer half-
lives (Additional file 1: Figure S1d). Moreover, yeast Sac-
charomyces cerevisiae proteins with prokaryotic orthologues
[20] exhibited longer half-lives [2] compared to those with-
out (52 vs. 40min, P < 0.0001, Mann-Whitney test). These
correlations are supported by a previous publication show-
ing that human protein stability in terms of free energy
folding ΔG was higher for old genes vs. young ones [21]. In
summary, these data suggested that proteins from older
genes on average exhibit a lower turnover than proteins
from younger genes. To test if additional molecular attri-
butes also follow such a trend, various other attributes were
further examined.
Protein aggregation, once thought to be a characteristic

of diverse diseases such as Alzheimer’s or Parkinson’s dis-
ease, is now considered to be more of a generic property
of polypeptide chains [22]. I found that the overall
strength of aggregation nucleating regions per protein sig-
nificantly decreased with gene age, albeit weakly (Spear-
man’s correlation, r = − 0.11, P < 0.0001) (Fig. 1c).
Additionally, it was also reported that proteins with high
turnover were found to have an increased propensity to
aggregate [23]. Together, this suggests that older proteins
have a lower tendency to aggregate than younger ones.
Since it was demonstrated that the predicted extent of

intrinsically unstructured protein (IUP) levels negatively
correlated with protein half-lives [24], protein structure
may itself be influenced by protein age. Indeed, the levels
of unstructured regions in human proteins significantly
decreased with increasing protein age (Spearman’s cor-
relation, r = − 0.18, P < 0.0001) although there is a minor
decrease rather than increase from chordates to
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mammals (Fig. 1d). When analyzing yeast Saccharomyces
cerevisiae genes the same way, there was an even more
pronounced correlation between protein structure and
gene age (Spearman’s correlation, r = − 0.35, P < 0.0001)
(Additional file 2: Figure S2a). In addition, when com-
paring different species, prokaryotes have been found to
exhibit significantly less disordered proteins compared
to eukaryotes [25, 26]. Thus, longer existing proteins are

on average more structured as was independently dem-
onstrated in a recent study [27].
Protein abundance in a data set can be approximated

by summed MS peptides intensities [28, 29] as the mea-
sured peptide signal is greater for abundant proteins. In
the HeLa data set, protein abundance was another mo-
lecular attribute that changed over time, as older human
proteins were significantly more abundant (Spearman’s

Fig. 1 Age-dependent changes of macromolecules. a Median human protein turnover for taxonomic groups. Number of proteins: u org = 904, u
euk = 1745, OBD = 749, chor = 378, mamm= 77. b Variance of median protein turnover for taxonomic groups in (a). c Median human protein
aggregation propensity for taxonomic groups. Number of proteins: u org = 1842, u euk = 4005, OBD = 3745, chor = 4191, mamm= 2127. d Median
level of protein disorder for taxonomic groups. Number of proteins: u org = 1943, u euk = 4377, OBD = 4129, chor = 4680, mamm= 2787. e
Median protein abundance for taxonomic groups. Number of proteins: u org = 904, u euk = 1745, OBD = 749, chor = 378, mamm= 61. f Median
mRNA half-lives for taxonomic groups. Number of mRNA species: u org = 903, u euk = 2055, OBD = 1117, chor = 538, mamm= 63 (g) Median
human translation efficiency. Number of proteins: u org = 1219, u euk = 2948, OBD = 2039, chor = 1428, mamm= 21. h Median gene conservation
score for taxonomic groups. Number of genes: u org = 1904, u euk = 4280, OBD = 3984, chor = 4539, mamm= 1768. (ANOVA, Bonferroni post-hoc
analysis for all histograms except Fig. 1b)
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correlation r = 0.12, P < 0.0001) (Fig. 1e). Similar trends
have been observed before [30] albeit often without sta-
tistics to support it. In the present study, the MS HeLa
protein abundance analyses were not skewed towards
high abundant proteins since abundance varied over five
orders of magnitude and exhibited a bell-shaped distri-
bution (Additional file 2: Figure S2b). Moreover, almost
one hundred human transcription factors, i.e. proteins
considered to be of low abundance, were detected in the
HeLa lysates [11]. Similar to protein abundance, mRNA
abundance was also significantly higher for old genes
compared to young ones (Spearman’s correlation r =
0.34, P < 0.0001) (Additional file 2: Figure S2c).
RNA half-lives were larger for old genes compared

young genes (Spearman’s correlation for human, r = 0.23,
P < 0.0001; Spearman’s correlation for mouse, r = 0.26, P <
0.0001) (human in Fig. 1f, mouse in Additional file 2: Fig-
ure S2d). Analysis of RNA secondary structure in Saccha-
romyces cerevisiae genes revealed a higher level of
structure, i.e. a higher average Parallel Analysis of RNA
Structure (PARS) score [31], for older genes with prokary-
otic orthologs (0.28 vs. 0.23, P < 0.0001, Mann-Whitney
test) compared to younger genes without orthologs.
The translation initiation efficiency describes how well a

particular mRNA assembles with 80S ribosomes which is an
indication of the fraction of mRNA molecules that can be
translated. Genes with higher values are thus able to produce
more proteins within a certain time window. Using pub-
lished data on the translation initiation efficiency in human
HeLa cells [32] older genes on average were found to have
higher translation efficiencies than younger ones (Fig. 1g)
(Spearman’s correlation r= 0.08, P < 0.0001).
Taken together, the data demonstrate in different organ-

isms that newly evolved genes tend to exhibit molecular
attributes that are not well optimized, such as less stability
and less structure of RNAs and proteins. In addition, the
human gene conservation score [33] was as expected sig-
nificantly lower in young compared to old genes (Spear-
man’s correlation, r = 0.67, P < 0.0001) (Fig. 1h). When
analyzing more defined gene age classes (Additional file 2:
Figure S2e), this correlation with conservation becomes
even more obvious with an almost steady decrease with
decreasing gene age, an observation that was not reported
in previous publications [34].

Continued mutagenesis decreases individual protein
turnover variance
Figure 1b demonstrated that the spread, i.e. variance of
human turnover values of all proteins in a respective
taxonomic group was highest for young proteins. The
question then arose if the spread of measured turnover
values for each specific protein also changed with age. In
SILAC-MS experiments [35], the various peptides that
identify a specific protein are often quantified multiple

times and so one can determine the variance of the mea-
sured turnover values for each protein separately. In-
deed, the protein-specific variance was highest for high
turnover proteins and thus the variance indirectly re-
lated to gene age. Plotting the variance of measured pep-
tide values versus protein turnover shows (Fig. 2a,b) that
the peptide value variance was much greater for high
turnover compared to low turnover proteins. These data
therefore suggest that for a few low turnover proteins,
the variance can decrease to a level of near uniformity.
For display purposes, all proteins whose overall turnover
value happened to be based on 15 peptide measurements
are shown in Fig. 2c and the spread of variances recapit-
ulates that pattern seen in Fig. 2a. The variance of three
exemplary proteins (Fig. 2d) and normalization of the re-
spective peptide values confirmed the trend (Fig. 2e) of
low turnover proteins exhibiting much less variance.
Therefore, each individual molecule of an old protein
exists more or less the same length of time before it gets
degraded. Conversely, for a protein of a younger gene,
the time it takes to be degraded following its synthesis
can vary substantially.

Molecular attributes change independently of function
and essentiality
It has long been assumed that core cellular proteins
(‘housekeeping genes’) are ubiquitously expressed and in-
tuitively should be more conserved [36]. However, from
young to old human housekeeping genes [37], not only
did I observe a continuous increase in gene conservation,
but also in protein structure as well as mRNA and protein
turnover (Additional file 3: Figure S3a,b,c,d). The family of
human transcription factors [38] exhibited the same trend
(Additional file 4: Figure S4a,b,c,d). Both sets of data thus
suggest that the optimization of molecular attributes over
time occurs independently of essentiality and function.
Also, the mean conservation score of human genes (0.71)
considered to be essential [39] was significantly lower than
the mean of those genes that first appeared in prokaryotes
(0.82; P < 0.0001, Mann-Whitney test) or unicellular eu-
karyotes (0.78; P = 0.0002, Mann-Whitney test). Thus, old
genes are more conserved than essential genes and conse-
quently protein function appears to have lesser role in de-
termining gene conservation than generally assumed. In
addition, essential mouse genes [40] also showed an in-
crease towards higher mRNA and protein stability from
young genes to old ones (Additional file 4: Figure S4e,f).

GO categories
GO (gene ontology) biological process analyses of hu-
man and mouse turnover data allowed ranking of GO
categories according to their median turnover values
(Additional file 6: Tables S1,S2). In the present HeLa
and C2C12 data sets, core cellular and metabolic
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categories that must have appeared early in evolution
such as ‘protein synthesis’ displayed low median turn-
over values while categories central to the appearance of
multi-cellular organisms and vertebrates exhibited high
and even higher values, respectively. Analogous trends
were previously also seen in other analyses such as GO
categorization of protein conservation scores [41] or
RNA half-lives [10]. Comparing the order of almost 600
GO categories between mouse and human indicated a high
similarity (Spearman’s correlation, r = 0.67, P < 0.0001).
However, because of extensive cross-annotations and func-
tional overlap between categories, it was not possible to es-
tablish a common temporal ranking based on both species.

Instead, a manually curated selection of human categories
is shown in Table 1. The data (Additional file 6: Tables S1,
S2) suggest that one of the first biological processes to exist
was ATP production. Other basic biological processes such
as translation or biosynthesis of carbohydrates also exhib-
ited low average turnover values while biological processes
related to complex multicellular organisms such as embry-
onic morphogenesis or axon guidance had significantly
higher values. Undoubtedly, this ranking provides an ap-
pealing ‘time stamp’ for the time of emergence of biological
processes although this ranking must be considered prelim-
inary. Such an approach can clearly not be extended to in-
dividual proteins as the turnover based GO ranking only

Fig. 2 Turnover-dependent decrease in peptide variance. a Variance of all HeLa peptides used to compute individual protein-specific turnover
values. b Median of normalized peptide variance (Variance/(median turnover ratio)2) plotted in bins of proteins sorted according to their median
turnover derived from all measured peptides. c Peptide variance of all proteins that were measured with exactly 15 peptides. d Measured peptide
values for three proteins indicated with arrows in (c). Scavenger mRNA-decapping enzyme DcpS ( ), Tight junction protein ZO-1 ( ), Ferritin

heavy chain ( ) (e) Normalization of (d) by division through the median protein turnover value of the respective protein
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became meaningful if several proteins were included.
Nevertheless, one can approximate the coarse order of
many of these processes based on known cellular physi-
ology. For example, nuclear transport as GO category must
have appeared in eukaryotes not prokaryotes, while the GO

categories translation and carbohydrate metabolism must
have appeared in prokaryotes. Similarly, GO categories such
as cell motion or response to chemical stimulus are relevant
to unicellular organisms and thus appeared early in evolu-
tion while GO categories such as organ or nervous system

Table 1 Ranking GO categories of biological processes according to their mean protein turnover. Shown is a manually curated list
of GO categories following a GO category analysis of HeLa proteins of the MS data set. Categories whose median turnover was
significantly different from the overall HeLa turnover data set value (2.2) are indicated in the right column

GO Category Biological Process Mean Turnover # of Proteins Difference to total
Protein Turnover

GO:0006412 translation 1.82 229 ***

GO:0006520 cellular amino acid metabolic process 1.89 110 ***

GO:0006807 nitrogen compound metabolic process 1.89 142 ***

GO:0044262 cellular carbohydrate metabolic process 1.91 108 ***

GO:0006631 fatty acid metabolic process 1.92 63 *

GO:0009117 nucleotide metabolic process 1.93 84 ***

GO:0005975 carbohydrate metabolic process 1.94 141 ***

GO:0006066 alcohol metabolic process 1.95 107 *

GO:0051186 cofactor metabolic process 1.99 89 **

GO:0006091 generation of precursor metabolites and energy 2.03 131 *

GO:0042221 response to chemical stimulus 2.06 152

GO:0006457 protein folding 2.07 109

GO:0000398 nuclear mRNA splicing, via spliceosome 2.08 105

GO:0006928 cell motion 2.09 85

GO:0051169 nuclear transport 2.11 62

GO:0006811 ion transport 2.12 100

GO:0042981 regulation of apoptosis 2.12 185

GO:0006396 RNA processing 2.17 278

GO:0007600 sensory perception 2.19 50

GO:0050793 regulation of developmental process 2.21 247

GO:0007399 nervous system development 2.25 54

GO:0044419 interspecies interaction between organisms 2.26 119

GO:0051704 multi-organism process 2.29 140

GO:0006955 immune response 2.31 73

GO:0007165 signal transduction 2.31 556 ***

GO:0006281 DNA repair 2.32 106 *

GO:0009653 anatomical structure morphogenesis 2.38 131 **

GO:0010324 membrane invagination 2.39 65 ***

GO:0010468 regulation of gene expression 2.40 503 ***

GO:0008202 steroid metabolic process 2.48 57 ***

GO:0007155 cell adhesion 2.50 116 ***

GO:0007166 cell surface receptor linked signal transduction 2.51 151 **

GO:0032774 RNA biosynthetic process 2.51 72 ***

GO:0048513 organ development 2.52 126 ***

GO:0007275 multicellular organismal development 2.64 111 ***

GO:0051301 cell division 2.65 108 ***

***P < 0.001; **P < 0.01; *P < 0.05
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development are key features of multi-cellular organisms
and therefore must have appeared later. In conclusion, the
GO data independently support the gene age – protein
turnover correlation.

A hypothesis for dynamic molecular attribute
optimization
The data discussed above showed that in different or-
ganisms, attributes such as half-life of proteins and
RNAs significantly change over time. This temporal cor-
relation can be interpreted in two ways. First, the mo-
lecular attributes of molecules that appeared billions of
years ago are very different from those that arose only
millions of years ago. This implies creation of stable,
structured proteins with long mRNA half-lives in pro-
karyotes, but less stable and less structured proteins with
shorter mRNA half-lives in mammals, and proteins with
intermediate qualities in between. This broadly relates to
the ‘constant restraint’ model [34, 42]. A second, alterna-
tive explanation would be that newly evolved genes,
from the time of prokaryotic life to the age of mammals,
always have the tendency to produce more unstructured
and unstable molecules when they first appear. Contin-
ued mutagenesis then gradually optimizes the respective
molecular attributes over time so that the oldest, pro-
karyotic genes were subjected to the most extensive
optimization and thus produce the most structured pro-
teins as well as the most stable mRNAs and proteins
today. Genes that appeared later when multicellular or-
ganisms and invertebrates first inhabited Earth had less
time available and therefore were less optimized com-
pared to prokaryotic genes, but are more optimized
compared to those that arose in mammals. Genes that
appeared the latest at the age of mammals had the least
time available for optimization and thus produce the
least structured and least stable proteins and mRNAs.
This hypothesis is graphically visualized in Fig. 3. Genes
A, B, and C represent genes that first appeared in pro-
karyotes, multicellular organisms/invertebrates, or mam-
mals, respectively, and so gene A is older than B, and B
is older than C. The vertical axis indicates the degree of
molecular stability, structure, and gene conservation -
unstructured, unstable molecules from less conserved
genes are at the top while structured, stable molecules
from conserved genes are at the bottom of the axis. The
stippled lines reflect the path to greater optimization of
each gene over time. ‘Newborn’, imperfect genes gener-
ally start their path near the top of the axis and then
gradually, but not steadily, their molecular attributes
change to reach the bottom of the graph. The hypothesis
thus proposes that proteins and mRNAs which were
present in the first forms of unicellular life were opti-
mized subsequently during the billions of years until
today to now have a low uniform turnover and high

conservation. Molecules that appeared later in evolution
also change but are more ‘work in progress’ and will, like
all other proteins and mRNAs, continue to be optimized.
Consequently, the wide spectra of half-lives, protein dis-
order, and degrees of conservation we currently observe
actually represent a snapshot of molecules being at dif-
ferent stages along their evolutionary paths.

Inter-species differences
So far, all the presented data were based on analyses of
proteins or RNAs within one species with the observa-
tion that longer existing genes and their products were
different to younger ones. Because of their longer exist-
ence, older genes have been subject to more mutagenesis
over time and the extent of mutagenesis a gene experi-
enced determines the extent of optimization of molecu-
lar attributes. Consequently, within one species, the
products of older genes are more stable and more struc-
tured. Overall, when attribute data from two separate
species could be obtained, consistently I found a larger
age-attribute correlation value for those species that
have a higher cumulative mutational load. For example,
when comparing yeast with human proteins, yeast pro-
teins displayed a higher correlation between gene age
and unstructured protein regions. Also, there was a
higher correlation for gene age and RNA turnover in
mice than men. Thus, the prediction would be that pro-
teins from species with higher mutational rates are more
optimized. Comparing protein turnover in mammalian
cells vs. lower organisms would be difficult as metabolic
rates, cell cycles, or body temperatures can be very dif-
ferent. Therefore, protein turnover was compared in hu-
man vs. mouse using the two aforementioned data sets
from non-dividing HeLa and C2C12 cells [11]. Mice
have higher mutational rates [43] and therefore the ex-
pectation would be that the average protein turnover is

Fig. 3 Hypothesis: Dynamic evolution of molecular attributes. Time
increases from left to right and molecular optimization increases
from top to bottom. As time progresses, macromolecular
optimization continuously increases, so that longer existing
macromolecules are generally more optimized. Consequently, longer
existing macromolecules exhibit more structure and more stability
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decreased compared to human. The mean turnover
value in human was 2.2 and in mice 2.0 (P < 0.0001,
Mann-Whitney test) (Fig. 4a). Most (73%) of the 2107
protein homologs identified in both species exhibited a
larger value in humans. The same trend was seen in in-
dividual subunits of several previously characterized pro-
tein complexes such as the COP9 complex (Fig. 4b,
Additional file 5: Table S3, Figure S5a,b). Also, the frac-
tion of human proteins with lower turnover values in
mice was increasing with decreasing turnover values

(Additional file 5: Figure S5c). Thus, the lower the hu-
man turnover value, the higher the probability that the
corresponding mouse homolog displayed an even
smaller value. The data therefore support the idea that in-
creased mutagenesis leads to more optimized proteins as
mouse orthologs exhibited on average lower turnover
compared to human. If this were the case, one would ex-
pect that less optimized human proteins required more
‘cellular support’ to maintain proper functioning. Relative
quantitative proteome comparison of mouse and human

Fig. 4 Age-dependent inter-species differences and post-translational modifications. a Median protein turnover of 2107 mouse and human
homologs. b Median peptide turnover values of COP9 signaling complex proteins in mouse and human. c Relative human vs. mouse abundance
of heat-shock proteins as determined by mass spectrometry summed peptide peaks. d Incidence of human diseases vs. ratio of human/mouse
protein turnover. Blue dots: distribution of ratios of 269 orthologs. Brown dots: distribution of diseases. Brown bars: sum of diseases for bins of 30
proteins. e Median distribution of post-translational modifications in the HeLa data set. Only proteins were included that exclusively have one of
the PTMs but not the others: meth. = 27, acet. = 413, phos. = 1497. f Relative fractions of acetylation (933 proteins) and phosphorylation (2699
proteins) in human HeLa data sets
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data showed that heat shock proteins were much more
abundant in human compared to mouse cells (Fig. 4c).
This is in line with the heat shock capacitor hypothesis
that views molecular chaperones as key mediators of
adaptive evolution by buffering genetic variation [44]. Of
course, although the data showed highly significant trends
that were as predicted, further analyses are certainly ne-
cessary to confirm the results of such inter-species com-
parisons. Nevertheless, data from both, intra-species and
inter-species comparisons suggest that the cumulative
levels of mutagenesis affect molecular attributes.

Protein turnover and cellular fitness
To assess if high turnover proteins affect cellular fitness,
the protein turnover values of all genes in the ENSEMBL
database known to produce lethal phenotypes were cor-
related. Such an unbiased approach did not reveal any
obvious association between known lethal diseases and
human proteins of high turnover. However, there was a
clear association between lethal phenotypes and the ratio
of human/mouse turnover values from orthologs de-
tected in both species. As expected from the high correl-
ation of turnover values between both species [11], most
orthologs displayed a human/mouse turnover ratio close
to 1 (blue dots, Fig. 4d). Bins of proteins (30 each) with
a ratio close to 1 (bins 31–60, 61–90, and 91–120) had a
total of zero, one, two, or three lethal diseases associated
(brown bars and dots). But for orthologs with very high
or low ratios however, there were up to eight counts of
diseases. These extreme ratios and thus extreme differ-
ences between human and mouse turnover values of the
same protein may be an indication that these proteins
are particularly prone to mutagenesis and thus one
could speculate that they have a higher chance to ac-
quire lethal phenotypes.

Continued mutagenesis and post-translational
modifications
We previously showed that phosphorylated proteins have
a significantly higher turnover than non-phosphorylated
proteins [11]. I now find that acetylated [45] and methyl-
ated [46] proteins have a significantly lower turnover than
phosphorylated proteins (Fig. 4e). Since the data presented
here suggest that continued mutagenesis decreases protein
turnover, this mutagenesis may also influence the type of
post-translational modifications (PTMs). The abundance
of post-translational modifications in humans is phos-
phorylation > > acetylation > methylation [45, 47, 48]. This
is opposite to prokaryotes such as Escherichia coli where
the abundance of phosphorylation < acetylation [49, 50]
or the spirochete Leptospira interrogans where phosphor-
ylation < acetylation < methylation [51]. Thus, prokaryotes
tend to have proteins that are methylated and acetylated
while phosphorylation is predominant in humans. Similar

to other molecular attributes, PTMs could potentially cor-
relate with gene age as well. Analysis of PTMs in human
proteins showed that acetylation was significantly more
associated with older proteins than phosphorylation
(Mann-Whitney test, P < 0.0001). For example, for very
old proteins that originated during the stage of ‘unicellular
organisms’, the percentage of acetylated proteins was
twice as high compared to the percentage of phosphory-
lated proteins (Fig. 4f). Given that young proteins tend to
be phosphorylated and older proteins are more likely to
be acetylated, I would like to speculate that post-
translational modifications are also molecular attributes
that are undergoing ‘optimization’ because of continued
mutagenesis. Notably, phosphorylation was found to
occur mostly in unstructured regions of proteins [52] fur-
thering the notion that younger genes produce proteins
with less structure and more phosphorylation. The ana-
lyses presented here thus suggest that the existence of
PTMs on proteins is ultimately transient as proteins be-
come older. As the hydrophobicity of the actual PTM in-
creases from phosphorylation to acetylation and then
methylation, water solubility and protein-protein interac-
tions should be affected. According to the hypothesis, pro-
teins are therefore more likely to be phosphorylated at
‘birth’, yet they eventually lose this modification and may
acquire an acetylation or methylation subsequently as mu-
tations optimize the proteins towards higher stability.
However, it is not clear at this point whether changes in
PTMs relate at all to changes protein turnover. Turnover
and PTMs may simply be independent manifestations of
continued mutagenesis. Also, whether the changing PTMs
locate to the same or different positions within the protein
will have to be determined.

Discussion
Here, I presented data which show that molecules have
distinct properties according to their time of birth inde-
pendent of function, essentiality, or expression. Unless
one were to postulate that nature ‘by design’ progressively
produces increasingly unstructured and unstable proteins
and RNAs, the data are best accommodated by the pro-
posed hypothesis assuming that new genes are imperfect
at the beginning and are then subjected to optimization
over time. At least in respect to protein turnover, this
optimization also reduces variance. The surprisingly
smooth, almost steady decrease of conservation for genes
that appeared later in evolution (Additional file 2: Figure
S2e) is an appealing representation of such optimization.
Importantly, the hypothesis does not require that the dif-
ferent attributes of a specific molecule must correlate. In
other words, a gene that produces a stable mRNA may in
turn give rise to a protein with high turnover because a
mutation that changes mRNA stability may have little ef-
fect on protein turnover or vice versa. Indeed, published
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data showed that protein and mRNA half-lives did not
correlate [53]. Moreover, the hypothesis allows for genetic
selection to maintain high turnover or less structure
where functionally required. For example, proteins that
functionally require short half-lives such as cyclines pos-
sibly optimize only mRNA half-lives and protein structure,
independent of a selective pressure that supports high
protein turnover.
Protein abundance also correlated with gene age and mo-

lecular optimization may indeed increase abundance over
time, similar to structure und half-lives (Fig. 1a,d). How-
ever, a different interpretation of the data would be that the
increased protein abundance is a direct consequence of in-
creased protein structure, increased protein half-lives, and
increased mRNA half-lives. Especially changes in mRNA
and protein stability should lead to accumulation of protein
and both are expected to act independently of each other
[53]. Not surprisingly, the abundance of mRNAs was also
higher for old genes compared to young ones.
The observed gradual change of attributes could be the

consequence of two opposing scenarios. These scenarios
are highlighted below using the degree of structure of
transcription factors for illustration. In one scenario, na-
ture produced highly structured transcription factors bil-
lions of years ago but created transcription factors with
much more disorder millions of years ago, and transcrip-
tion factors with intermediate structure in between. Thus,
the molecular attributes of transcription factors were very
different depending on the time when they were ‘born’.
This appears to be prevailing view of molecular attribute
genesis, but an understanding of the molecular basis and
the driving force behind this scenario is vague at best [27].
It is difficult to imagine that protein function is the under-
lying driving force responsible for producing less and less
structured transcription factors over time when the princi-
ples of transcription are the same for all transcription fac-
tors, young and old. If having less structure were
beneficial, why did nature only produce such transcription
factors millions, but not billions of years ago?
Conversely, a second, more compelling scenario to

explain the correlation of molecular attributes with
gene age is the following: Rather than assuming that
newly existing molecules of recent times have different
attributes than those that appeared long time ago, I
propose a hypothesis that posits that new genes always,
from billions of years ago to millions years ago, had im-
perfect attributes at the beginning of their existence
which were then optimized through mutagenesis over
time. This implies that a transcription factor that was
present billions of years ago also exhibited less protein
structure billions of years ago, but nature optimized its
various attributes so that the same transcription factor
today is highly structured. I also described the correl-
ation of several other molecular attributes with gene

age, including half-lives of proteins and RNAs. To-
gether, all these observations suggest that mutations
not only change the function and activity of a molecule
but also dynamically and continuously change its innate
attributes.
How are the different optimized attributes fixated and

selected for during evolution? For example, reduced
turnover requires less energy for cellular homeostasis,
but these changes are incremental as the energy needs
for the production of one protein compared to all pro-
teins in a cell is negligible. With more than 10,000 dif-
ferent protein species detected in eukaryotic cells [54],
changing the turnover of a single specific protein will
correspondingly affect about 1/10000 of the energy used
for protein production. The degree to which this confers
a competitive growth advantage is not clear. The cellular
consequences of stepwise optimizing any of the other at-
tributes also appear negligible. I therefore wish to
propose an alternative explanation. Hypothetically, if an
mRNA species becomes ten times more stable, ten times
less transcription should be necessary to maintain equal
levels of steady-state mRNA abundance. I showed here
that old genes produce more stable mRNAs and pro-
teins, and so their individual transcription rates should
be reduced. Use-dependent transcription-associated mu-
tagenesis (TAM) of genomic DNA [55] is a possible link
between optimization, transcription rates, and fixation of
mutations. TAM is locally altering and destabilizing the
genomic DNA template through a variety of different
mechanisms [56]. Thus, instead of invoking selective
pressure for such mutations that optimize molecular at-
tributes such as protein turnover, perhaps these muta-
tions become fixated because they directly reduce
mutagenesis at their own gene locus. If a random muta-
tion produces more stable mRNA or protein, less tran-
scription should be necessary to reach normal levels of
abundance and consequently, fixation of this gene in-
creases as it is more protected from mutations because
of reduced TAM. Indeed, I found a significant negative
correlation between gene conservation scores and corre-
sponding transcriptional rates [10] (Spearman’s correl-
ation, r = − 0.18, P < 0.0001) which suggests that reduced
transcription accounts to some extent for the increased
fixation of old genes. From a molecular perspective, any
random mutation that reduces the necessity for tran-
scription, i.e. by ultimately increasing mRNA and pro-
tein abundance, should principally be fixated because of
TAM. Such fixation would occur ‘passively’ and not by
selection based on function. To this end, it is known that
old, conserved housekeeping genes generally exhibit
lower evolutionary rates [57]. Since I showed here that
old genes have on average more stable mRNAs and pro-
teins, the reduced TAM should be in line with their
lower evolutionary rates.
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Conclusions
Molecular attributes such as protein or RNA stability often
vary over several magnitudes but a conclusive explanation
for this variability has been missing. A new hypothesis was
introduced that views individual attributes of every molecule
as being at different stages along a path of optimization
based on continued mutagenesis over time. The hypothesis
does not attempt to link the various attributes of the same
molecule with function but rather allows attributes to be af-
fected independently by a mutation. Thus, the biological
challenge would be to maintain molecular function in the
face of ever changing molecular attributes. Based on these
assumptions, this hypothesis can be tested by in vitro
evolution.

Methods
All analyses were based on previously published data.
Statistical data analyses were performed using Prism 5.0
(GraphPad Software, San Diego, CA USA). Each gene
obtained from the different molecular attributes data
sets was given its published age as described in the data-
base for human gene/protein age (‘ProteinHistorian’/
http://lighthouse.ucsf.edu/ProteinHistorian/) [19]. Ac-
cording to this age, genes in each data set were grouped.
Each taxonomic grouping of the ProteinHistorian output
is indicated in Additional file 2: Figure S2e, together
with the corresponding gene ages.
Protein and peptide turnover values as well as protein

abundance were from a previous publication [11]. RNA fold-
ing energies (PARS) [31] (http://genie.weizmann.ac.il/pubs/
PARS10/pars10_catalogs.html), gene conservation scores
(https://dsgweb.wustl.edu/hutz/index.html), and bacterial
orthologues in yeast (http://makana.berkeley.edu/phylofacts/)
[20] were obtained from publicly available databases. RNA
half-lives were previously published [10] from which also the
relative transcription rates were derived assuming that tran-
scription rates are proportional to degradation rates at steady
state. Yeast protein half-lives [2], human transcription factors
[38], human housekeeping genes [57], human [39] and
mouse [40] essential genes, acetylated [45] and phosphory-
lated [47] proteins, human protein aggregation propensity
[58], human translation initiation values [32], human mRNA
abundance [59] were each obtained from the indicated refer-
ences. The mean normalized peptide variance was defined as
(mean variance) / (mean turnover value)2 for all proteins in
the respective bin (93 proteins/bin). Peptides were required
to be quantified with at least three peptides during the MS
experiments.
Ranking of biological process GO categories was based

on the median protein turnover of each particular cat-
egory. In parallel, 1000 sets of random protein turnover
values were iteratively created (“bootstrapping”) where
each set contained as many values as the number in the
respective category and the mean of all 1000 random

sets produced the bootstrap distribution. The difference
between the bootstrap distribution and the mean of the
category was computed in standard deviations and
yielded a probability value for a null correlation [11]. An
unbiased description of diseases associated with human
proteins was obtained from the biomart database ‘MIM
Morbid’ (www.ensemble.org). The MaxQuant software
[60] was used for label-free quantitative analysis [61] of
mouse and human proteomes [11].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-019-6371-0.

Additional file 1: Figure S1. Age-dependent changes of protein turn-
over. (a) Box plot of human protein turnover (Fig. 1a). (b) Median mouse
protein turnover for taxonomic groups. Number of proteins: u org=751, u
euk=1331, OBD=667, chor=273, mamm=46. (c) Median rat protein deg-
radation rates for taxonomic groups. Number of proteins: u org=188, u
euk=461, OBD=558, chor=439, mamm=139. (d) Mean Schizosaccharo-
myces pombe protein half-lives for taxonomic groups. Number of pro-
teins: u org=409, u euk=915, Ophistokonta (Oph)=407, Ascomycota
(Asc)=484, Sch.Po.=737.

Additional file 2: Figure S2. Age-dependent changes of macromole-
cules. (a) Median level of protein disorder for taxonomic groups in yeast.
Number of proteins: u org=1336, u euk=1693, OBD=562, chor=1192,
mamm=1070. (b) Distribution of protein abundance of HeLa MS data set.
(c) Median human mRNA abundance for taxonomic groups. u org=190, u
euk=337, OBD=208, chor=163, mamm=51. (d) Median mouse mRNA half-
lives for taxonomic groups. Number of different mRNA species: u org=
1072, u euk=2553, OBD=1636, chor=1122, mamm=313. (e) Mean gene
conservation score for taxonomic groups. This graph is based on the
same data as Fig. 1h but without the grouping to more general taxon-
omies. The number of genes is given in parentheses (ANOVA, Bonferroni
post-hoc analysis for Suppl. Fig. 1 a,c,d,e).

Additional file 3: Figure S3. Age-dependent changes of human house-
keeping genes. (a) Mean gene conservation score for taxonomic groups.
Number of genes: u org=394, u euk=852, OBD=369, chor=237, mamm=
39. (b) Median level of protein disorder for taxonomic groups. Number of
proteins: u org=385, u euk=823, OBD=366, chor=225, mamm=38. (c) Me-
dian protein turnover for taxonomic groups. Number of proteins: u org=
303, u euk=588, OBD=167, chor=85, mamm=10. (d) Median mRNA half-
lives for taxonomic groups. Number of different mRNA species: u org=
360, u euk=793, OBD=341, chor=220, mamm=40. (ANOVA, Bonferroni
post-hoc analysis for all figures).

Additional file 4: Figure S4. Age-dependent changes of human tran-
scription factors and mouse essential genes. (a) Median protein turnover
for taxonomic groups of transcription factors. Number of proteins: u org+
u euk=34, OBD=34, chor+ mamm=23. Groups with less than 10 genes
were added to the neighboring group (also in b,c,d) (b) Median mRNA
half-lives for taxonomic groups of transcription factors. Number of differ-
ent mRNA species: u org+ u euk=51, OBD=172, chor=175, mamm=89.(c)
Mean gene conservation score for taxonomic groups of transcription fac-
tors. Number of genes: u org+u euk=79, OBD=471, chor=509, mamm=
241. (d) Median level of protein disorder for taxonomic groups of tran-
scription factors. Number of proteins: prok+ u euk=82, OBD=531, chor=
512, mamm=322. (e) Median protein turnover for taxonomic groups of
mouse essential genes. Number of proteins: u org=92, u euk=168, OBD=
129, chor+ mamm=73. (f) Median mRNA half-lives for taxonomic groups
of mouse essential genes. Number of different mRNA species: u org=133,
u euk=296, OBD=327, chor=222, mamm=13. (ANOVA, Bonferroni post-
hoc analysis for all figures).

Additional file 5: Table S3 and Figure S5. Table S3: Median protein
turnover values for GO categories based on mass spectrometry
proteomics data from arrested human HeLa and differentiated mouse
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muscle C2C12 cells. Probability indicates difference to average turnover
of all proteins. Figure S5: Evolutionary changes of protein turnover
between human and mouse. (a) Graphical representation of
Supplementary Table 3. (b) Median peptide turnover values of the
‘histone deacetylase and nucleosome remodeling activities complex’
proteins. (c) Grouping of proteins into equal size bins of 210 and
quantification of homologous proteins with a turnover increase from
human to mouse.

Additional file 6: Tables S1 and S2. Median protein turnover values for
GO categories based on mass spectrometry proteomics data from
arrested human HeLa and differentiated mouse muscle C2C12 cells.
Probability indicates difference to average turnover of all proteins.
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