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Abstract

Background: Tumor purity is the percent of cancer cells present in a sample of tumor tissue. The non-cancerous
cells (immune cells, fibroblasts, etc)) have an important role in tumor biology. The ability to determine tumor purity
is important to understand the roles of cancerous and non-cancerous cells in a tumor.

Methods: We applied a supervised machine learning method, XGBoost, to data from 33 TCGA tumor types to
predict tumor purity using RNA-seq gene expression data.

Results: Across the 33 tumor types, the median correlation between observed and predicted tumor-purity ranged
from 0.75 to 0.87 with small root mean square errors, suggesting that tumor purity can be accurately predicted
uolvy expression data. We further confirmed that expression levels of a ten-gene set (CSF2RB, RHOH, C1S, CCDC69,
CCL22, CYTIP, POU2AF1, FGR, CCL21, and IL7R) were predictive of tumor purity regardless of tumor type. We tested
whether our set of ten genes could accurately predict tumor purity of a TCGA-independent data set. We showed
that expression levels from our set of ten genes were highly correlated (p = 0.88) with the actual observed tumor
purity.

Conclusions: Our analyses suggested that the ten-gene set may serve as a biomarker for tumor purity prediction

using gene expression data.
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Background
The tumor microenvironment consists of non-cancerous
stromal cells present in and around a tumor; these in-
clude immune cells, fibroblasts, and cells that comprise
supporting blood vessels and others. Tumor microenvir-
onment plays an important role in tumor initiation, pro-
gression, and metastasis (for recent reviews, see [1, 2]).
Most genomic and genetic studies of cancer are car-
ried out on tumor tissue samples that are heterogenous
in nature. The Cancer Genome Atlas (TCGA) provided
comprehensive datasets for more than 10,000 samples in
more than 30 tumor types [3]. Those studies provide
valuable information about genomic changes in tumor
samples compared to normal samples. However, teasing
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out cell-type-specific information from those heteroge-
neous samples remains a challenge.

Knowing the cell-type composition of a tumor and how
those cell types interact with each other in the tumor
microenvironment is pivotal for understanding tumor ini-
tiation, progression, and metastasis. While understanding
the microenvironment is challenging, methods for ad-
dressing cell composition in tumor samples, such as single
cell technologies, are starting to emerge. For instance,
Zheng et al. profiled the infiltrating T cells in liver cancer
[4], Puram et al. [5] surveyed the tumor ecosystems in
head and neck cancer, and Kararaayvaz et al. analyzed
leukocyte composition in triple negative breast cancer [6].
All of these studies used single cell RNA-seq sequencing
(scRNA-seq) techniques. It is conceivable that single cell
sequencing technologies will be widely applied to dissect
the tumor microenvironment.
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Computational methods directed at deconvolving cell-
type-specific signals in heterogeneous tissue samples
have also been developed (for a recent review, see [7]).
Currently, several computational methods can estimate
the proportion of tumor cells in a tumor sample (often
referred to as “tumor purity”). Perhaps, the most well-
known algorithm is ABSOLUTE [8], which uses copy
number variation in tumor samples compared to normal
samples to infer tumor purity and ploidy. ABSOLUTE,
which is often considered as the “gold standard” for per-
formance comparison, provided tumor purity values for
many samples from the 33 TCGA tumor types [9]. Be-
sides copy number variation, methods that use DNA
methylation data [10-13] or expression data for a set of
pre-selected stromal genes [14] have also been developed
to infer tumor purity. Purity estimates by those methods
appear to have a reasonable concordance [15].

Similarly, tumor purity estimates have been used to as-
sess the abundance of tumor-infiltrating immune cells in
tumor samples. For example, Li et al. [16] developed a
computational method to estimate the abundance of six
tumor-infiltrating immune cell types (B cells, CD4 T cells,
CD8 T cells, neutrophils, macrophages, and dendritic
cells) in tumor samples. Iglesia et al. [17] assessed immune
cell infiltration in 11 TCGA tumor types using a set of im-
mune signature genes from [18]. Senbabaoglu et al. [19]
employed 24 immune cell-type-specific gene signatures
from [18] to computationally infer the immune cell infil-
tration levels in tumor samples and defined a T-cell-
infiltration score, an overall immune-infiltration score,
and an antigen-presenting-machinery score to highlight
the immune response differences between kidney cancer
and 18 other tumor types from TCGA.

For high-dimensional data where the number of fea-
tures is much greater than the number of samples (p
>>n), there may not exist a single set of features that
can deliver the optimal/suboptimal performance. For
those data, repeated cross-validations may be needed
and aggregated prediction from an ensemble of ensem-
bles (boosting) is usually preferred [20]. Ensemble learn-
ing generates multiple prediction models from the
training data, each with a different feature subset. By
using multiple learners, the generalization ability of an
ensemble can be much better than any of the individual
constituent learning algorithms [21-23]. Popular ensem-
ble learning algorithms include bagging [24], boosting
[25, 26], and stacking [27]. Bagging trains a number of
learners each from a different bootstrap sample and
combines the predictions using a majority vote. Random
Forest [28] is a popular technique in this category.
Boosting iteratively adds new weak learners to correct
the mistakes made by previous learners and collectively,
the weak learners become a strong learner. The most
common implementation of boosting is Adaboost [29]
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and Gradient Boosting Machines (GBM) [30]. In stack-
ing, one generates multiple different types of models to
build intermediate predictions, which are subsequently
combined by a second-level meta-learner. Generally
speaking, ensemble learning consistently outperforms
non-ensemble-based methods.

XGBoost (eXtreme Gradient Boosting) is an ensemble
learning algorithm [31]. XGBoost extends simple CARTs
(Classification And Regression Trees) by incorporating a
statistical technique called boosting. Instead of building
one tree, boosting improves prediction accuracy by
building many trees and then aggregating them to form
a single consensus prediction model [32]. XGBoost
creates trees by sequentially using the residuals from the
previous tree as the input for the subsequent tree. In this
manner, subsequent trees improve overall prediction by
modeling the errors of the previous tree. When the loss
function is least squares, this sequential model building
process can be expressed as a form of gradient descent
that optimizes prediction by adding a new tree at each
stage to best reduce the loss [33]. The addition of new
trees is stopped either when a pre-specified maximum
number of trees is reached or when the training errors
do not improve for a pre-specified number of sequential
trees. Both the approximation accuracy and execution
speed of gradient boosting can be substantially improved
by incorporating random sampling; this extended
procedure is called “stochastic gradient boosting” [30].
Specifically, for each tree in sequence, a random sub-
sample of the training data is drawn without replace-
ment from the full training data set. This randomly
selected subsample is then used in place of the full sam-
ple to fit the tree and compute the model update.
XGBoost is an optimized distributed gradient boosting
that achieves state-of-the-art prediction performances
[31]. XGBoost uses second order approximation of the
loss functions for faster convergence compare to trad-
itional GBMs. XGBoost has been successfully used in
mining gene expression data [34].

Previously, we used XGBoost for pan-cancer classifica-
tion based on gene expression data [35]. In this work,
we used XGBoost to select a subset of genes whose gene
expression levels can predict tumor purity. Our work
was prompted by the observation that expression of
many immune genes was negatively correlated with
tumor purity where tumors with high immune gene ex-
pression tended to have fewer cancer cells and vice
versa. We applied XGBoost to 33 TCGA tumor types for
which both RNA-seq gene expression and ABSOLUTE
tumor purity estimates [8] were available. We carried
out several analyses for all tumor types combined (pan-
cancer) using all genes. We showed that XGBoost can
accurately predict tumor purity values using gene
expression data alone. By considering how useful or
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important each gene was to the model’s prediction, we
selected the top 10 most important genes as putative
markers for tumor purity prediction. For TCGA data
and an independent set of non-TCGA samples, we
showed that predictions based on the expression levels
of only these top ten genes is almost as accurate as pre-
dictions based on using all genes. We propose that these
ten genes may serve as biomarkers for tumor purity
prediction.

Data

We downloaded the processed TCGA RNA-seq gene ex-
pression data (RNA final) from the Pan-Cancer Atlas
Publication website (https://gdc.cancer.gov/about-data/
publications/pancanatlas) for 11,069 samples from 33
tumor types. The data were pre-processed and normal-
ized by TCGA to remove all batch effects [9]. We log,-
transformed the normalized read counts (per million
reads mapped) for RNA-seq data (all values less than 1
were assigned value 1 before transformation). We fil-
tered out genes with missing values or zero variances.
The number of remaining genes was 17,170. We also re-
moved 8 duplicate samples that were from the same
patients.

The tumor purity estimates by ABSOLUTE ([8] for
tumor tissue samples from 33 TCGA tumor types were
obtained from [9]; these purity estimates are summa-
rized for each tumor type in Additional file 1: Figure S1.
The observed purity estimates are bound between 0 and
1. However, the predicted value can be greater than 1 or
smaller than 0. To prevent the predicted value from be-
ing outside of these boundaries, we applied the logit
transformation to map the original purity values in the
range of [0, 1] to the real line, thereby enhancing con-
cordance with the regression for continuous outcomes
implemented in XGBoost. We re-assigned the purity
values of 1.00 to 0.9975, which is the value midway be-
tween the two biggest purity values. To express logit-
transformed predicted purity values derived from
XGBoost back in the original scale, we applied the in-
verse logit transformation.

We obtained 9318 unique biological samples (Add-
itional file 2: Table S1) after matching expression data
with tumor purity estimates. We randomly divided the
9318 samples into 2/3 for training (6214 samples) and 1/
3 for testing (3104 samples) (Fig. 1).

For an independent test dataset, we aggregated single-
cell RNA-seq (scRNA-seq) expression data (GSE118390)
from patients with triple-negative breast cancer (TNBC)
[6] to obtain the “bulk” RNA-seq gene expression data.
The original authors carried out the control analysis and
included 1189 cells and 13,280 genes after filtering. The
data for cancer cell proportions in those samples
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(Additional file 3: Table S2) were kindly provided to us
by the authors and shown in Fig. 1 of [6].

Results

Tuning parameters

After testing a total of 1486 parameter combinations on
the training data using a 10-fold cross-validation proced-
ure, we chose the parameter set with the best cross-
validation performance to use for all subsequent analyses
unless stated otherwise. The cross-validation perform-
ance of each parameter combination for pan-cancer pur-
ity prediction is shown in Additional file 4: Figure S2.
There was a tradeoff between number of trees and learn-
ing rate, ie., smaller learning rate required more trees.
Therefore, we fixed the maximum number of trees to be
a large number (up to 5000) with reasonable computa-
tional time and adopted an early stopping rule: stopping
when training performance for the dataset did not im-
prove in five additional trees. The best parameter set for
all tumor types combined was: learning rate of 0.05,
maximum tree depth of 4, minimum leaf weight of 1,
65% of genes used to grow each tree, and 85% of sam-
ples used to grow each tree.

Performance on pan-cancer tumor purity prediction
considering all genes

For each tumor type, we built 1000 models through 100
repetitions of 10-fold cross-validation. We ran each model
with the same selected tuning parameter set. Each individ-
ual model consists of a sequence of trees. Although the
average training performance of these individual models
was nearly perfect [near perfect correlation between ob-
served and predicted values and low root mean squared
error (RMSE)], overtraining was not a major concern as
both cross-validation and test performances were also
high (Additional file 5: Table S3A).

To construct our final predictor for the test samples,
we averaged the predicted tumor purity values from the
1000 predictions for each of those samples. The Pearson
correlation coefficient and RMSE between the final pre-
dicted and observed tumor purity values for the test
samples were 0.795 (Fig. 2a) and 0.129, respectively.

To see if this observed prediction performance could
have been achieved by chance, we applied our procedure
to putatively null data sets generated by permutation
(Additional file 6: Text - Permutation test). We showed
that the models by XGBoost are meaningful and the
good performance is unlikely to be attributable to
chance (empirical P < 0.004).

Top-ranked genes for pan-cancer tumor purity prediction
Each of the 1000 models provided an importance score
for each gene from up to 5000 boosts (see Methods).
We averaged the 1000 scores for each gene to obtain the
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Fig. 1 Graphic illustration of the numbers of training and testing samples for each tumor type used in the analyses for the 33 TCGA tumor
samples. For names associated with tumor-type codes, see Additional file 2: Table S1
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average score for the gene. When ordered, the overall
importance score decayed quickly (Fig. 3a). Among the
17,170 genes, 731 had non-zero importance scores in all
1000 models. We re-ranked these genes based on the
median value instead of the mean of the 1000 import-
ance scores for each gene. The ten top-ranked genes
remained the same for both mean- and median-based
ranking. The top ten genes (Fig. 3b) were CSF2RB,
RHOH, CIS, CCDC69, CCL22, CYTIP, POU2AFI, FGR,
CCL21, and IL7R (Additional file 7: Table S4).

Performance on pan-cancer tumor purity prediction using
only the ten marker genes

To see if the ten marker genes could serve as “univer-
sal” markers for tumor purity prediction using RNA-
seq gene expression data, we repeated the above ana-
lysis using only the ten marker genes. First, we selected
tuning parameters tailored to these ten marker genes
using the procedure described (see Methods: Tuning
parameters). With this new set of tuning parameters,
we again carried out 100 repetitions of 10-fold cross-
validation with the same training samples as before.
Lastly, we applied the 1000 resulting models to predict

tumor purity values in the same test samples. To our
surprise, the ten genes did reasonably well. The average
performance of these individual models with only ten
marker genes as predictors was comparable, though
slightly degraded, compared to using all genes as pre-
dictors (Additional file 5: Table S3b).

For the performance of our overall predictor based on
averaging predictions from 1000 models, the Pearson
correlation and RMSE between the final predicted tumor
purity values and observed tumor purity values for the
test samples were 0.719 (Fig. 2b) and 0.146, respectively.
Thus, performance using only these ten marker genes
suffers only slightly compared to performance using all
genes.

Performance on individual tumor type purity prediction
using only the ten marker genes

Above, we showed that the ten genes performed well on
pan-cancer (combined) tumor purity prediction. To see
if the ten marker genes could also perform well for indi-
vidual tumor types, we carried out training and cross-
validation for each of the 33 tumor types, separately.
Specifically, for each tumor type, we carried out the
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Fig. 2 Scatterplots of pan-cancer tumor purity values for the test samples: predicted values by XGBoost versus the observed values from
ABSOLUTE. a, using all genes as the predictors; and b, using only the ten marker genes as predictors. Each label represents a test sample and
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same 100 repetitions of 10-fold cross-validation using
only the ten marker genes. However, we did not create a
separate testing set as we did for pan-cancer purity pre-
diction because several tumor types have small sample
sizes (< 100). We identified an optimal set of tuning pa-
rameters for each tumor type using the same approach
(see Methods: Tuning parameters) as with all tumor
types combined. Across the 33 tumor types, the predict-
ive performance of the ten marker genes varied widely:
the median Pearson correlation ranged from 0.17 to 0.92
whereas the RMSE ranged from 0.08 to 0.26 (Fig. 4).
Although the ten marker genes performed reasonably

three tumor types (LAML, PAAD, and THYM) with
high median RMSE. The poor performance for LAML is
likely due to the fact that we limited the genes to the 10
markers, which may not be the optimal for those tumor
types. LAML (acute myeloid leukemia) is a blood-borne
cancer. We speculate that the models obtained from the
largely solid tumors may not be appropriate for blood
cancer. For PAAD and THYM, interestingly, two other
methods (ESTIMATE [14] and CONSENSUS [15]) did
not provide tumor purity estimates. For the 53 PAAD
test samples, we computed both RMSE and correlations
between XGBoost predicted tumor purity values and

well for most tumor types, performance was poor for ~ABSOLUTE estimated tumor purity values and
p
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compared those from InfiniumPurify [12], a DNA
methylation-based tumor purity prediction method. The
predicted tumor purity values from XGBoost and Infi-
niumPurify both deviate from those from ABSOLUTE
for some of the same samples (Additional file 8: Table
S5A). For THYM, like XGBoost, there was little correl-
ation between ABSOLUTE estimated tumor purity
values and InfiniumPurify estimated tumor purity values
(Additional file 8: Table S5B).

Comparison with ESTIMATE

In this comparison, we only considered the 2359 test set
samples that were common between our 3104 test sam-
ples and all samples with purity data from ESTIMATE
[14]. XGBoost outperformed ESTIMATE with a smaller
RMSE (0.12 using all genes and 0.14 using the ten
marker genes compared to 0.25 from ESTIMATE) and
higher correlations (0.82 using all genes and 0.73 using
the ten marker genes compared to 0.61 from ESTI-
MATE). The results are summarized in Additional file 9:
Table S6. Moreover, ESTIMATE used 141 stromal and
141 immune marker genes whereas XGBoost used as
few as 10 with better performance.

Comparison with random Forest

For XGBoost, we did not specifically search the hyper-
parameter space for the optimal hyper-parameter set
for RF. Instead, we used the best hyper-parameter set
we obtained from our XGBoost analysis as the candi-
dates for the best parameter for RF and further carried
out fine-grid search around the candidate set
(Additional file 10: Table S7). We chose the hyperpara-
meters (1000 trees, 100% samples per tree and 60%
features per split), which gave rise to the lowest out-of-

bag error (an indicator for generalization error) as the
best hyper-parameter set for RF.

RF performed comparably for the test samples for all
parameter combinations tested. The RMSE, Pearson cor-
relation, and Spearman correlation between the pre-
dicted and observed tumor purity values for the test
samples were in the ranges of [0.150-0.151], [0.91-0.98],
and [0.777-0.783], respectively. The best result is pro-
vided in Table 1.

XGBoost performed better than RF in terms of RMSE
and Spearman correlation (Table 1) but worse in terms
of Pearson correlation, which is subject to more influ-
ence by outliers than Spearman correlation. We believe
that recursively fitting on the regression residues in
XGBoost [30] contributed to the better performance.
Moreover, it is worth noting that the XGBoost achieved
similar RMSE using only five genes/features compared
to all genes by RF (Table 1). We did not carry out
feature selection using RF as it is computationally pro-
hibitive for this dataset.

Table 1 Performance comparisons between XGBoost and
Random Forrest on the pan-cancer dataset

Method Number RMSE Correlation coefficient
of genes Pearson Spearman
used

Random Forrest all 0.151 0.940 0.780

XGBoost all 0.124 0.806 0.813
5 0.150 0.701 0.708
10 0.146 0.719 0.726
20 0.139 0.751 0.756
100 0.130 0.787 0.794
200 0.128 0.792 0.799
300 0.126 0.800 0.807
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Performance on the independent TNBC dataset using all
genes

Using the 134 TNBC RNA-seq samples from TCGA as
the training samples, we also carried out the same 100
repetitions of 10-fold cross-validation. Predictions from
the resulting 1000 models were subsequently averaged
to predict tumor purity values for the six independent
TNBC samples (not used in training) for which the
“bulk” RNA-seq data were aggregated from scRNA-seq
data [6]. Average cross-validation performance of the in-
dividual models was reasonably good, but we were pre-
dicting only six test samples (Additional file 11: Table
S8A). For the overall predictor, the correlation coeffi-
cient between the experimentally obtained tumor purity
values and our XGBoost predicted tumor purity values
was high (p = 0.98, Pearson correlation) (Fig. 5a) and the
RMSE was low (0.133). This good performance by
XGBoost happened even though the model was trained
on ABSOLUTE purity estimates but purity estimates in
the test samples were based on cell types of the individ-
ual cells from scRNA-seq data sets.

Performance on the independent TNBC dataset using
only the ten marker genes

To see if the ten putative marker genes could also accur-
ately predict tumor purity of the six independent sam-
ples, we repeated our entire analysis procedure (tuning
parameter optimization; 100 repetitions of 10-fold cross-
validation; averaging the 1000 predictions for each test
sample) using the expression data of only the ten genes
in the 134 training samples from TCGA. Average cross-
validation performance of the individual models was
comparable but using 10 genes as predictors was worse
compared to using all genes (Additional file 11: Table
S8b). The correlation between the final predicted and
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high (p =0.88) (Fig. 5b), though the RMSE (0.239) was
nearly twice as large as it was when using all genes.

Discussion

We applied XGBoost, a machine learning algorithm, to
genome-wide RNA-seq data to unbiasedly select a subset
of genes whose expression values could predict tumor
purity obtained from ABSOLUTE analysis using copy
number variation [8]. We combined 9318 TCGA tumor
samples from 33 tumor types, carried out pan-cancer
tumor purity prediction, and evaluated the quality of
predictions through 100 repetitions of 10-fold cross-
validation (Additional file 6: Text - Testing for conver-
gence). Our final predictor was the average of 1000
predictions for independent test samples. We used all
genes as well as a selected subset of ten marker genes in
our predictions. XGBoost performed well and the correl-
ation between the predicted and observed tumor purity
values was generally high with low RMSE.

XGBoost provides an importance score for each gene
from each model reflecting how useful or important the
gene was to the model’s prediction. We wondered if the
top-ranked ten genes could be used as a “universal” bio-
marker set for tumor purity prediction. To test this idea,
we carried out three separate analyses using only the
expression data of the ten marker genes. First, we car-
ried out pan-cancer (all 33 tumor types combined)
tumor purity prediction through model training, cross-
validation, and testing. Second, we carried out tumor
purity prediction for individual tumor types through
model training and cross-validation. Lastly, we trained
XGBoost models on 134 TCGA triple-negative breast
cancer RNA-seq tumor samples and used the resulting
models to predict tumor purity of six independent sam-
ples that were not from TCGA and not used in model

experimentally obtained tumor purity values remained training. In these analyses, we showed that the
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Fig. 5 Scatterplots of the XGBoost predicted tumor purity values versus the observed tumor purity values constructed from single-cell RNA-seq
experiments for six independent TNBC samples. a. using all genes as the predictors; and b, using only the 10 marker genes as the predictors
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correlation between the predicted and observed tumor
purity values was relatively high and the RMSE was gen-
erally small except for three tumor types (LAML, PAAD,
and THYM). Therefore, we suggest that the ten-gene set
could serve as a biomarker for tumor purity prediction
using gene expression data.

We speculate that most of the ten marker genes are
largely expressed by the tumor stroma, not the cancer
cells. It is not clear if the expression of these genes in tu-
mors merely reflects the amount of infiltrating immune
cells or is indicative of some (unknown) fundamental
biological processes. All genes, except for two (CIS and
CCDC69), had high expression in either transformed
lymphocytes, whole blood, or spleen (https://gtexportal.
org), suggesting that these genes may be predominantly
expressed by the infiltrating immune cells in the tumors.
C1S was ubiquitously expressed in most organs except
for the brain. C1S was also ubiquitously expressed in
most cell lines with highest expression in transformed fi-
broblasts, an important component of the tumor micro-
environment. However, immunostaining of tumor tissue
samples showed that all malignant cells were negative
(https://www.proteinatlas.org/), suggesting that the ob-
served C1S expression in tumor samples may also largely
come from the tumor stroma. Like C1S, CCDC69 was
also ubiquitously expressed except in the brain. How-
ever, unlike CIS, malignant cells also showed moderate
to strong cytoplasmic staining in tumor samples for
nearly all TCGA tumor types. Interestingly, the expres-
sion levels of CCDC69 in TCGA tumor samples were
negatively correlated with the tumor purity for the same
samples for nearly all TCGA tumor types (data not
shown), suggesting that the observed CCDC69 expres-
sion in those tumor samples may also largely come from
the tumor stroma. Taken together, these results appear
to suggest that these genes are largely expressed in the
tumor stroma and that may explain why they were se-
lected as the most important genes for tumor purity
prediction.

Many methods have been proposed for tumor purity
prediction, such as CONSENSUS [15] and ESTIMATE
[14]. Other methods for tumor purity predictions
consider methylation data [11-13] and copy number
variation [8, 36, 37]. Most non-genomic (e.g., transcrip-
tome- or methylome-based) purity prediction methods
consider a subset of preselected stromal-cell-expressed
genes or stromal-cell-specific methylation loci as predic-
tors. ESTIMATE involves a set of 141 “universal” stro-
mal genes selected using a sophisticated computational
scheme [14]. In our approach, XGBoost considered all
genes. Furthermore, our marker genes were not prese-
lected, but identified by XGBoost.

Tumor purity is inversely correlated with the expres-
sion of genes active in stromal gene expression. We
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found that the expression levels of most predictive genes
were negatively correlated with tumor purity. Boost also
identified some genes as predictive whose expression
levels were positively correlated with tumor purity (data
not shown), suggesting that those genes were expressed
primarily by cancer cells in the tumor samples. We plan
to use XGBoost to systematically analyze each tumor
type separately. We envision that there exist common
and unique gene sets that are predictive of tumor purity
among different tumor types. We believe that those
common and unique genes might be reflective of the
commonality and uniqueness of their respective tumor
microenvironments and that identifying them might
shed light on barriers to the efficacy of immunotherapy
with different tumor types [38].

Our analysis required training data with both tumor
purity estimates and gene expression data. To our
knowledge, only TCGA has produced large datasets
with both attributes. This makes independent validation
of our models challenging. Single-cell experiments can
estimate cell populations in a tissue sample. However,
most of the single-cell experiments do not care about
RNA-seq expression in bulk samples and the number
of tissue samples considered in a single-cell experiment
is typically small (e.g., under 10) due to high sequen-
cing cost. Nonetheless, we could infer the “bulk” RNA-
seq expression of a tissue sample from the expression
data of individual cells in the tissue. Using scRNA-seq
data from tissue samples from six TNBC patients, we
showed that XGBoost trained on TCGA RNA-seq sam-
ples can predict cancer cell proportions in these inde-
pendent test samples with high correlation using only
the 10 marker genes.

The approach that we outlined uses XGBoost to derive
predictive biomarkers will be applicable to expression data
from any platform like microarrays (see Additional file 6:
Text - Test on microarray data and Additional file 12:
Figure S3), but the quality of the predictions would cer-
tainly depend on how well the data from a given platform
reflected the underlying biological reality. The XGBoost
algorithm should work well regardless of preprocessing or
normalization steps [33]. If the data from different plat-
forms provided comparably accurate reflections of the
underlying reality, we would expect the identified bio-
markers to serve well, regardless of platform. On the other
hand, the exact predictive rule that we derived using
RNA-seq data from TCGA will not necessarily transfer to
other platforms or other scaling or normalization on the
same platform. Our predictive rule relies on regression
trees where the predictors in each regression are expres-
sion levels. To the extent that expression levels from
different platforms are inherently on different scales or
have been normalized differently, the estimated coeffi-
cients in the component regression models derived from
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one platform will differ from the corresponding estimated
coefficients derived from another platform. Consequently,
the exact predictive rule, which involves specific estimated
coefficients, derived from data of one platform may not
perform well on data from a different platform.

The robustness of gradient boosting machines against
small perturbations has been documented [39]. We be-
lieve that the TCGA data that we used was appropriately
normalized. Nonetheless, outliers can be problematic.
Robust methods for dealing with data with outliers have
been developed and are thoroughly reviewed [40].

Like many other methods that minimize the L2 loss
function, XGBoost would not be robust to outliers/con-
tamination in the response variable. This means that the
fidelity of our predictive models depends on the quality
of the tumor purity data. For three TCGA tumor types
(LAML, PAAD, and THYM), XGBoost performed
poorly. This poor performance was also confirmed by an
independent method, InfiniumPurify [12], which uses
DNA methylation data from largely the same patients
for tumor purity prediction. For these three tumor types,
the models may be mis-specified or the tumor purity
values may be “outliers”. Given this finding, we would
not recommend using our models to predict tumor pur-
ity predictions for those three tumor types.

There are other ensemble learning algorithms applic-
able to our problem. XGBoost has some advantages, es-
pecially, its low computational time complexity and high
performance [31]. The XGBoost software is optimized
for large-scale machine learning problems on high per-
formance computers. This efficiency is especially needed
for our dataset which consisted of ~ 20,000 genes/vari-
ables and ~ 10,000 samples.

Finally, we acknowledge that our ten marker genes
may not be optimal for all tumor types. It is likely that
tumor-type specific predictive models may perform bet-
ter than models derived from pan-tumors. We were sur-
prised that such a “universal” (although imperfect) gene
set could be found, suggesting that expression levels of
some immune genes in solid tumors might be indicative
of the amount of immune cell infiltration in tumors.
Also, our external validation of the ten marker genes as
predictive biomarkers was limited by small sample size
with only six samples. This is typical of current single
cell studies due to high cost. As the single cell sequen-
cing technologies improve further, analysis of a larger
number of tissue samples may likely be routine. Until
then, we believe purity prediction using marker genes or
methylation sites remains useful.

In summary, we have demonstrated that XGBoost can
identify a subset of genes whose expression levels could
predict tumor purity. We propose that the expression
levels of the ten genes may serve as biomarkers for
tumor purity estimation.
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Methods

Framework

We built an ensemble of stochastic gradient boosted tree
models using the training data to predict tumor purity
in the test set samples (Fig. 6 and Additional file 13:
Figure S4). Specifically, we carried out 100 repetitions of
10-fold cross-validation within the original training data.
Each repetition was created by randomly shuffling the
order of the training set. Then, for each 10-fold cross-
validation, 10% of the samples were sequentially set aside
as validation samples and the remaining 90% of the sam-
ples used as training samples. This procedure created
100 x 10 = 1000 training-validation partitions of the ori-
ginal training samples. Based on RMSE, 1000 models ap-
pear to be adequate (Additional file 14: Figure S5). We
fit the XGBoost (R package: version 0.82.1; https://cran.
r-project.org/web/packages/xgboost/) models to each
training subsample and used the resulting fitted models
to predict the tumor purity values of the corresponding
validation subsamples and again for the original test data
(3104 samples). We used the average of 1000 predictions
for each test sample as its final tumor purity prediction.
Our reasons of using ensemble of tree ensembles are
twofold. First, we could boost the prediction perform-
ance by leveraging a model averaging approach.
Secondly, since we sought to avoid overfitting by using
only a random subset of genes to grow each tree, we
could by chance rank an important predictor/gene low.
To ensure that we ranked genes appropriately, we re-
peated the procedure with slightly different training
samples many times.

Tuning parameters

XGBoost employs eight tuning parameters (Add-
itional file 15: Table S9) to control “bias-variance” trade-
offs. Complicated models (e.g., many boosted trees in a
sequence) may fit the training data well but not the test-
ing data, a situation called “overfitting.” XGBoost pro-
vides two general ways to avoid overfitting. First, one
could adjust model complexity by the changing values of
tuning parameters: maximum tree depth, minimum leaf
weight, and minimum split gain. The number of trees
and the tree depth determine the final tree’s structure
and complexity. Because each new tree in sequence tries
to correct mistakes made by previous trees, shallow trees
with a depth of 4—6 are often preferred [30]. The second
way is to add randomness to make training more robust
to noise. Randomness can be adjusted by setting the
sub-sampling rate at each sequential tree and/or by
using a subset of randomly selected features for splitting.
The model’s learning rate, another important tuning
parameter, determines how much each tree contributes
to the overall model. A low learning rate will increase
the number of trees in a sequence and should result in
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Fig. 6 A schematic of the XGBoost workflow. The shaded area indicates the data and its partitioning. The boxes inside the dashed lines depict
training and testing procedures where T stands for tree and GBM stands for gradient boosting machine. The two oval boxes on the right denote
the outputs from XGBoost. A tree-representation of the training and testing procedures is provided in Additional file 13: Figure S4

better performance. The tradeoff is that it will increase
computational cost. The final predictive model is a linear
combination of all trees in the sequence with their con-
tributions weighted by the learning rate.

To identify the best combination of tuning parameters,
we carried out a 10-fold cross-validation on the training
data (6214 samples) for each of 1486 possible tuning
parameter combinations. This step took about one week
to complete on a single server (Intel processors, 64
cores, 2.30 GHz CPU). We used the parameter combin-
ation with the best cross-validation performance to train
the final model using the training data.

Feature importance score

XGBoost automatically provides estimates of feature im-
portance from a trained predictive model. “Feature im-
portance score” refers to a score indicating how useful
or important the feature (in this case, a gene) was to the
model’s prediction. Here, the importance score is calcu-
lated for a given gene for a single tree by summing the
amount that each split point involving that gene im-
proved the performance measure, weighted by the num-
ber of observations contributing at each split [31].
Denote the importance score for gene g in an individual
tree t by S, Within a single model composed of a se-
quence of trees, the importance score for a particular
gene ¢" in a model is the sum of all tree-specific import-
ance scores for that gene over all trees in the model di-
vided by the sum of all importance scores over all genes

and all trees in the model, namely, Sy = (3] Sg¢) /(X2

ZgGSgt). We picked the genes with non-zero importance

scores for all 1000 models (each fitted to a distinct
training-testing partition of the original data; see below).
For each model, we got a ranked list of genes based on
their variable importance scores. We aggregated 1000
ranked lists of genes by ranking genes based on their
median rank across the 1000 models.

Comparisons with ESTIMATE and Random Forests

The tumor purity values from ESTIMATE [14] were
downloaded from ref. [14]. For the Random Forest
analysis, we used the MATLAB built-in function (Tree-
Bagger). We followed the same training-testing proced-
ure as we did for XGBoost.

Performance evaluation

To evaluate performance, we compared the predicted
tumor purity values with the observed tumor purity
values. For each model, we computed both the RMSE
and Pearson correlation (p) between the predicted tumor
purity values and the ABSOLUTE estimated purity
values as performance measures. To summarize the per-
formance of individual XGBoost models, we computed
both mean and standard error and median for each
measure (both correlation and RMSE) across the 1000
training-validation partitions and testing data. To create
the final predicted value for each test sample, we also av-
eraged the 1000 predicted tumor purity values for the
sample. The averaged predicted purity value can be
viewed as the predicted value by bagging ensembles
(1000 in our case). Prediction using bagging ensembles
performs well [41] as shown in Random Forests [42].
Throughout the remaining manuscript, we referred to
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this predicted value by bagging ensembles as the (final)
single predicted value and we report its RMSE and cor-
relation with ABSOLUTE tumor purity as measures of
overall performance.

Let y denote the predicted tumor purity value, y be the
tumor purity value estimated by ABSOLUTE (observed)
and N be the sample size.

Obtaining “bulk” RNA-seq data from scRNA-seq data

For each of the six TNBC scRNA-seq datasets, we
summed the raw expression counts for each gene across
all cells in the sample to obtain the raw gene-specific ex-
pression count for the “bulk” sample. This procedure re-
sulted in six “bulk” expression profiles, one for each of the
six samples. Next, we extracted the 134 TNBC RNA-seq
samples from TCGA breast cancer RNA-seq samples. The
two datasets were then merged using the common genes
(15,076). Next, we normalized all 140 samples in the com-
bined dataset using the median of the medians of expres-
sion values of the 134 TCGA samples. Specifically, we
calculated median expression for each sample and then
centered all the data on the median of those medians.
Finally, we log,-transformed the normalized counts (logy(-
count+ 1)). The 134 TCGA samples were used to train
our model, and the resultant model was then applied to
predict tumor purity values for the six independent “bulk”
samples.

R code and test data

We have included the R source code, a demo dataset
(TCGA triple negative breast cancer and an independent
bulk RNA-seq data from single cell sequencing), and a
brief documentation on Github (https://github.com/yua-
nyuanli66/gbm.ensemble). The code allows users to build
their own models using the TCGA RNA-seq data (not
provided) for tumor purity prediction on their own ex-
pression data. Because of the size of the TGCA data, we
did not include the RNA-seq data for all tumor types in
the package. Such data can be downloaded from the Pan-
Cancer Atlas Publication website (https://gdc.cancer.gov/
about-data/publications/pancanatlas).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512864-019-6412-8.
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