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Abstract

Background: With declining wild fish populations, farmed salmon has gained popularity as a source for healthy
long-chain highly unsaturated fatty acids (LC-HUFA). However, the introduction of plant oil in farmed salmon feeds
has reduced the content of these beneficial LC-HUFA. The synthetic capability for LC-HUFAs depends upon the
dietary precursor fatty acids and the genetic potential, thus there is a need for in-depth understanding of LC-HUFA
synthetic genes and their interactions with other genes involved in lipid metabolism. Several key genes of LC-HUFA
synthesis in salmon belong to the fatty acid desaturases 2 (fads2) family. The present study applied whole
transcriptome analysis on two CRISPR-mutated salmon strains (crispants), 1) A6abc/5M with mutations in A5fads?2,
Néfads2-a, A6fads2-b and A6fads2-c genes, and 2) A6bAM with mutations in Aéfads2-b and Néfads2-c genes. Our
purpose is to evaluate the genetic effect fads2 mutations have on other lipid metabolism pathways in fish, as well
as to investigate mosaicism in a commercial species with a very long embryonal period.

Results: Both A6abc/5™" and A6bc™™ crispants demonstrated high percentage of indels within all intended target
genes, though different indel types and percentage were observed between individuals. The Aéabc/5™ fish
displayed several disruptive indels which resulted in over 100 differentially expressed genes (DEGs) enriched in lipid
metabolism pathways in liver. This includes up-regulation of srebp! genes which are known key transcription
regulators of lipid metabolism as well as a number of down-stream genes involved in fatty acid de-novo synthesis,
fatty acid -oxidation and lipogenesis. Both elov/5 and elovI2 genes were not changed, suggesting that the genes
were not targeted by Srebp1. The mutation of A6bc™ surprisingly resulted in over 3000 DEGs which were enriched
in factors encoding genes involved in mRNA regulation and stability.

Conclusions: CRISPR-Cas9 can efficiently mutate multiple fads2 genes simultaneously in salmon. The results of the
present study have provided new information on the transcriptional regulations of lipid metabolism genes after
reduction of LC-HUFA synthesis pathways in salmon.
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Background

Atlantic salmon (Salmo salar L.) is a popular fish species
for human consumption since it contains high amounts
of long-chain highly unsaturated fatty acids (LC-HUFA)
such as docosahexaenoic acid (22:6n-3, DHA), eicosa-
pentaenoic acid (20:5n-3, EPA) and arachidonic acid (20:
4n-6, ARA). The high LC-HUFA content in farmed sal-
mon originates mainly from dietary inclusions of marine
fish oil and fish meal. However, traditional marine fish-
eries have been exploited to their limits, and with in-
creasing volume of salmon production, dietary marine
oil and meal sources have been gradually diluted over
the past decades. Plant oils are used to substitute marine
oils in aquaculture diets, with an increasing levels from
0% of total lipids in 1990 to 19.2% in 2013 [1]. This has
resulted in a reduction of LC-PUFA levels in salmon
flesh since plant oils do not contain LC-PUFA [2].

Salmon are capable of synthesizing LC-HUFA through
elongation and desaturation of a-linolenic (18:3n-3) and
linoleic (18:2n-6) acids, and the synthesis is often in-
creased when the fish are given a plant oil diet with low
LC-HUFA [3]. This explains the fact that salmon can
tolerate partial substitution of fish oil with plant oil
without negative impact on growth rate, feed conversion
or any histopathological lesions [4]. However, the syn-
thesized LC-HUFA in salmon is still not enough to com-
pensate for the reduced LC-HUFA level caused by
inclusion of plant oil in diet [2]. Thus, salmon has lim-
ited capability in bioconverting the precursors, 18:3n-3
and 18:2n-6 to essential LC-HUFAs [5, 6]. In order to
further improve the LC-HUFA synthetic capacity in sal-
mon, a better understanding of the regulation of genes
involved in LC-HUFA synthesis is needed.

The pathways of LC-HUFA synthesis in salmon involves
4 elongases encoded by elovi2, elovi4, elovi5a and elvol5b
and 4 desaturases encoded by AS5fads2, A6fads2-a,
A6fads2-b and Aé6fads2-c. All 8 genes have been cloned
and functionally characterised through heterologous ex-
pression in yeast (Saccharomyces cerevisiae) [7, 8]. Both
elovi5a and elovI5b are mainly involved in elongating Cig
and Cy fatty acids, while elovi2 and elovi4 are involved in
elongating C,y and Cy, [8—10]. All four fads genes in sal-
mon are homologs to the human FADS2 gene. In salmon
they have separate functions where double bonds are in-
troduced at C5 (A5fads2) or C6 (A6fads2-a, A6fads2-b
and Aé6fads2-c) from the carboxyl end [10, 11]. Feeding of
plant oil often leads to up-regulation of both elovl and
fads2 genes in salmon, which is likely due to the low LC-
HUFA content in the diet [5, 12—14].

In addition to the LC-HUFA synthesis genes, many
other genes involved in fatty acid de-novo synthesis, fatty
acid oxidation and cholesterol biosynthesis are also dif-
ferentially expressed after feeding plant oil [5, 12-14]. It
is difficult to conclude the reason for the differential
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expression of lipid metabolism genes since plant oils are
devoid of cholesterol and LC-HUFA, and contain high
amounts of C;g PUFA precursors and phytosterols com-
pared to fish oil [15-17]. In a recent study, we disrupted
the LC-HUFA synthesis pathway in salmon by mutating
elovi2 gene using CRISPR/Cas9 technology [18]. In addition
to a decreased DHA content in mutant fish, we were able
to identified up-regulation of fads2 genes as well as several
genes involved in fatty acid biosynthesis and lipogenesis as
consequence of the knock out [18]. This suggests a sys-
temic change of lipid metabolism regulation in response to
the disruption of LC-HUFA synthesis in salmon.

CRISPR/Cas9 technology has recently been used in
salmon to edit genes and generate mutants for elovi2,
slc45a2 and dnd [18-21]. Both guide RNA (gRNA) and
Cas9 mRNA are injected into one-cell stage salmon em-
bryos to induce a targeted double-strand break, followed
by non-homologous end joining (NHE]) which generates
random insertions and deletions (indels) at the target
sites that can lead to a non-functional protein. However,
because of a three-year generation interval, the gener-
ation of homozygous edited salmon is too tedious for re-
search projects. Genetic manipulation efficacy in the
founder generation largely depend upon target gene and
gRNA design, but there is also a need to address how
mosaics differ in the tissues and affects function of the
encoded gene product. For this species it is therefore ne-
cessary to optimize editing efficiency and reduce the
problem of mosaicism in the FO generation. Compared
to teleost model species, the Atlantic salmon embryo de-
velops slowly and hatches after about 80 days, or 500-
day degrees (days x temperature in °C). This develop-
mental pace may lead to degradation of CRISPR compo-
nents such as CAS9 mRNA or protein and guide RNA’s
which may have an impact upon mosaicism.

We have recently used CRISPR/Cas9 to mutate fads2
genes in salmon which resulted in down-regulation of tar-
geted genes and lower DHA and EPA contents in tissues
[22]. However, the impact of impaired LC-HUFA biosyn-
thesis on the regulation of other genes - both from lipid
metabolism and globally - was still unclear. In the present
study we aimed to further characterize transcriptional
regulation of lipid metabolism in fads2-mutated salmon
by comparing their transcriptomes to wildtype fish. Our
study also seeks to provide detailed insights on the effect
and distribution of genetic mosaicism in salmon individ-
uals after mutation of fads2 genes.

Result and discussion

CRISPR/Cas9 induced mutations

The two strains of Atlantic salmon carrying CRISPR/
Cas9-mediated mutations were generated as described
earlier [22]. In both strains CRISPR/Cas9 mediated mu-
tations were induced using a single CRISPR gRNA
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targeting multiple genes (Fig. 1a). The gRNA of A6abc/ majority of structural variants across all individuals
5Mt salmon targeted A6fads2-a, A6fads2-b, A6fads2-c  were predicted to have “high” impact, meaning to
and A5fads2 genes, while the gRNA of A6bc™* targeted  have a likely disruptive effect on the protein function.
A6fad2s-b and A6fads2-c. Both A6abc/5 and A6bc mu-  Nevertheless, our analysis also showed that many of
tant salmon were co-injected with a CRISPR gRNA tar- the individuals from the two CRISPR strains still car-
geting slc45a2 which induces an albino phenotype and ried a considerable amount of the WT genotype
served as visual control in our experiment. (non-CRISPR mutated). Therefore, we believe it is

CRISPR/Cas9-induced structural mutations at the more correct to consider the two resulting CRISPR
fads2 as well as the slc45a2 genes of fish from both  strains as fads2 knock-downs rather than knockouts.
A6abc/S™M and A6bc™' strains were confirmed by  The A6abc/5™ gRNA targeted sequence right after
using AmpliSeq. All fish injected with CRISPR/Cas9 the cytochrome b5-like domain of fads2 genes, while
carried structural variants at the respective gRNA tar-  A6bc™' gRNA targeted sequences on exon 1 before
get sites (Fig. 1 b). For all individuals from both CRIS all protein domains. Therefore, the out-of-frame mu-
PR strains we observed a high degree of mosaicism at tations in A6abc/5™ and A6bc™' were expected to
each of the respective gRNA target sites (Fig. 1b). disrupt characteristic domains identified in fatty acyl
This suggests that Cas9-induced editing continues desaturases, though our CRISPR-target sites did not
after the one-cell stage of the embryos. In order to specifically fall within protein domains. These out-of-
better understand the consequences of the different frame mutations identified by Ampliseq could explain
structural variants on a phenotypic level, we predicted the nonsense-mediated decay (NMD) of the mutant
variant effects using SnpEff and summarised the re- mRNA and impaired biosynthesis of LC-PUFA in
sults according to the impact category (Fig. 1c). The  A6abc/5™M* fish [22].
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Fig. 1 a Circos plot showing the different target sites of the CRISPR gRNAs. Gene A5fads2, Msfads2-a and Abfads2-c have multiple transcripts while
yellow boxes indicate exons of each transcript. b: Boxplot showing the maximum proportion of insertions/deletions (indels) within the CRISPR
gRNA target site as identified by AmpliSeq. Different color indicates liver (L) or white muscle (WM) tissues from WT, A6abc/5 mutant or Abbc
mutant salmon. Each dot indicates L or WM tissue of an individual fish. c: Bar plots showing the (SnpEff) predicted impact of the indel on the
respective main transcript by individual. Impacts are classified as: HIGH = The variant is assumed to have high (disruptive) impact in the protein;
MODERATE = A non-disruptive variant that might change protein effectiveness; LOW = The variant is assumed to be mostly harmless; WT = Wild
type/no indel. Each bar of the figure represents data of an individual fish
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CRISPR/Cas9-induced indels cause A6fads2-a exon
skipping events

Interestingly, we found that CRISPR/Cas9 induced muta-
tions of A6abc/5™M gRNA in the A6fads2-a gene were af-
fecting splicing of exonic part 6 (harbouring the CRISPR
target site; exonic part 6 corresponds to exon 4 in tran-
script: XM_014170212.1; exon 3 in XM_014170213.1).
Analysis of exonic-part 6 retention in A6abc/5-mutated
salmon using RNA-seq data revealed mis-splicing of the
A6fads2-a transcript resulting in the skipping of exonic
part 6 (Fig. 2). Exon skipping caused by CRISPR/Cas9-
generated mutations was observed previously in both cell
lines [23, 24] and genetically modified organisms including
zebrafish [25] and salmon [18]. CRISPR induced mis-
splicing is mostly caused by one of two mechanisms: i)
indels generated by a CRISPR-mutation affects the exon-
intron boundaries or ii) indels promote exon skipping by
disrupting an exon splicing enhancer or introducing an
exon splicing silencer within the targeted exon [26]. How-
ever, neither mechanism fits to our study. This was be-
cause other A6abc/5™ gRNA target sites on ASfads2,
A6fads2-b and A6fads2-c genes contained identical se-
quences and showed the same distance to exon-intron
boundaries, but did not affect splicing. Nonetheless, the
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skipping of exon 6 in A6fads2-a transcripts will result in
the production of truncated proteins that lack 37 amino
acids, which suggests deleterious effects on protein struc-
ture and functions.

CRISPR-targeted fads2 genes are down-regulated in the
liver of A6abc/5 but not A6bc salmon

Many of the CRISPR induced structural variants intro-
duce premature termination codons likely to trigger
mRNA degradation by nonsense-mediated decay (NMD)
[27]. Indeed, we found that CRISPR-targeted ASfads2,
A6fads2-a and A6fads2-b genes were strongly down-
regulated (g<0.05) in A6abc/5M¢ salmon compared to
WT regardless of the dietary treatment (Fig. 3). In
A6bc™* salmon, the CRISPR-targeted A6fads2-b gene
was down-regulated compared to WT, but the levels of
down-regulation were less clear than in A6abc/5™" sal-
mon. Surprisingly, the expression of A5fads2 and
A6fads2-a genes was also down-regulated in A6bc™" sal-
mon, though both genes were not targeted by A6bc™
gRNAs. The expression of A6fads2-c gene was generally
very low, suggesting that it is unlikely to play a major
role in salmon liver. This low level expression may also
explain that Aéfads2-c was not affected by CRISPR
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Fig. 2 Detection of exon skipping in Aéfads2-a in relation to CRISPR. a: Exon structure for the three transcripts encoded by A6fads2-a. The
targeting site (s1) for the A6abc/5™ gRNA is enlarged and highlighted in red. b: Schematic drawing on how aligned RNA-seq reads were used to
calculate the percentage of exon retention (PER) for a sample. ¢ Exon skipping was confirmed by using the aligned RNA-seq reads to calculate
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mutations (Fig. 3). The expression of other genes in the
LC-HUFA synthesis pathway, elovi2, elovi5-a and elovi5-
b, was stable between A6abc/5™', A6bc™ and WT
salmon.

The NMD-mediated mRNA degradation, absence of
exon 6 in A6fads2-a transcripts, and other CRISPR-in-
duced mutations such as out-of-frame mutations are ex-
pected to produce non-functional enzyme proteins that
would ultimately disrupt LC-HUFA biosynthesis in the
fish. Indeed, analysis of tissue composition of LC-HUFA
coupled with assays of desaturation and elongation activ-
ities in liver showed clear impacts of the CRISPR-muta-
tions. The mutation of A6abc/5 genes in salmon
resulted in significant reduction of DHA and EPA in
phospholipids compared to WT [22]. On the other hand,
we observed effects of background wildtype alleles in the
A6abce/5™ salmon (Fig. 1b and c) accounting for limited
but measurable desaturation activities [22].

Transcriptional changes in liver after mutating fads2
genes

An average of 29 million reads were mapped on to the
salmon genome ICSASG_v2. From a total of 55,304 an-
notated genes, 23,114 genes had at least 1 count per mil-
lion (CPM) in 25% of the samples, and were considered

for subsequent analysis. By applying principal compo-
nent analysis (PCA) on Log2 CPM of the top 1000 most
variant genes, we identified a clear separation of plant
oil and fish oil samples between PC1 (explaining 34.8%
of the observed variation) and PC2 (8.3%) as well as a
separation of WT and A6abc/5™ samples between PC2
and PC3 (6.8%) (Fig. 4). Although not as strong, we also
found a clear tendency for separation of WT and A6bc™
samples between PC2 and PC3. Plant oil diets and CRIS
PR-mutation seemed to have different impacts on gene
transcription in salmon liver, though both the diet and
mutation have generated low levels of LC-HUFA in the
fish body. The 20 most variant genes are listed in Sup-
plementary Table 3.

Differential expression analysis (DEA) was done by
contrasting crispants and WT salmon separately under
plant oil and fish oil diets. This resulted in 121 differen-
tially expressed genes (DEGs, q < 0.05 & |log2FC| > 0.5)
in A6abc/5™* salmon compared to WT when fed a fish
oil diet, while 104 DEGs were found between crispant
and WT salmon under a plant oil diet (Fig. 5 a). Surpris-
ingly, more DEGs were found in A6bc™" salmon com-
pared to WT. This includes 1156 genes identified in
crispant salmon when fed a fish oil diet and 1348 DEGs
identified in salmon fed a plant oil diet. A total number
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of 3987 DEGs was found in WT salmon fed a plant oil
diet compared to fish oil, while the numbers of diet-
associated DEGs were 4179 and 2057 in A6abc/5™" and
A6bc™ fish respectively.

To further understand the functions of DEGs between
crispant and WT salmon, we conducted a KEGG enrich-
ment analysis by comparing the number of DEGs to the
total number of genes in each KEGG pathway (Fig. 5 b).
The DEGs of A6abc/5™ salmon were not only enriched
in the fatty acid metabolism pathway, but also the per-
oxisome proliferator-activated receptors (PPAR) signal-
ling pathway which is involved in many metabolic
pathways including fatty acid synthesis and catabolism
[28]. This supports previous studies, indicating PPAR to
be the key transcriptional regulator of fatty acid metab-
olism in salmon [3]. Differential regulation of these path-
ways was likely caused by decreased EPA and DHA, and
consequential accumulation of 18:3n-3 and 18:2n-6 after
disruption of the LC-HUFA synthesis pathway [22]. Ac-
cumulated 18:3n-3 and 18:2n-6 could not be synthesised
further to DHA and EPA after disruption of fads2 genes.

Instead they were most likely consumed by S-oxidation
which was activated by the PPAR transcription factor
[28]. Similar enrichment of fatty acid metabolism and
PPAR signalling pathways was also found in the DEGs
between WT salmon fed plant oil and fish oil (Fig. 5 b).
Additionally, the sterol biosynthesis pathway was
enriched for DEGs between WT salmon fed plant oil
and fish oil, but was not enriched for the DEGs between
fads2 mutants versus WT fish (Fig. 5 b). Indicating that
the LC-HUFA level and PPAR has little effect on choles-
terol biosynthesis in salmon, which is more likely regu-
lated by other biochemical signals such as low cholesterol
level and other transcription factors including sterol regu-
latory binding protein 2 (SREBP2) [12, 13, 15]. Many other
pathways were also enriched for the DEGs of WT fed
plant oil versus fish oil, such as amino acid biosynthesis
and RNA transport. This suggests that dietary inclusion of
plant oil has more complex impact on salmon than just
reducing LC-HUFA and cholesterol levels in the fish body.
Our study has successfully separated the effect of low LC-
HUFA level from other effects of plant oil inclusion,
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however more research is required to understand the
complete regulatory network in response to the change of
plant oil in the diet. Surprisingly, no lipid metabolism
pathways were enriched in A6bc™ salmon compared to
WT, regardless of dietary LC-HUFA level. This was in ac-
cordance to the fatty acid composition in liver, where no
significant difference was found between A6bc™" salmon
and WT [22]. The DEGs were likely more enriched in
mRNA regulation pathways, including mRNA surveillance
and spliceosome pathways. Nevertheless, the reason for

the high number of DEGs in A6bc™" salmon and their
enriched pathways needs to be further investigated.

Expression of lipid metabolism genes in response to
A6abc/5 mutation

Due to many unexpected and lipid metabolism unrelated
DEGs found in A6bc™" salmon, only A6abc/5S™ fish were
included for further transcriptomic analysis to under-
stand the transcriptional regulation of lipid metabolism
after disrupting LC-HUFA synthesis genes. Here we
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discussed DEGs of lipid metabolism pathways that were
enriched in A6abc/5™" versus WT salmon, aiming to
understand the regulatory network of lipid metabolism
genes in response to A6abc/5™'. The A6abc/5 mutant
showed 14 (13.4%) differentially expressed lipid metabol-
ism genes when fed plant oil diet, while fewer (7 genes,
5.8%) lipid DEGs were identified in salmon fed the fish
oil diet (Supplementary Table 1). The higher numbers of
DEGs in A6abc/5™" salmon fed the plant oil diet suggest
a compensatory response to the combined effects of im-
paired endogenous LC-HUFA biosynthesis and reduced
dietary LC-HUFA levels. On the other hand, the reduced
number of lipid DEGs in A6abc/5™ salmon fed the fish
oil diet suggests an impact of dietary LC-HUFA levels
on gene transcription, most likely an end-product-
mediated inhibition. Nevertheless, 4 lipid DEGs were
identified in A6abc/5™" fish fed both plant oil and fish
oil experimental diets including ASfad, A6fad-a, abcdl
and acc2. Besides the two CRISPR-targeted genes, the
down-regulation of acc2 and up-regulation of abcdl sug-
gests an increase of the fatty acid S-oxidation pathway
for energy expenditure after CRISPR-mutation [29].

Low levels of LC-HUFA often induce hepatic expres-
sion of A5fads2 and A6fads2-a genes as shown in our
previous elovl2-mutated salmon [18]. On the other hand,
reduced DHA level has little effect on the expression of
elovl5 and elovi2 genes as shown in the present A6abc/
5™ salmon (Fig. 3). However, the expression of elovi2
and elovl5 genes are often up-regulated in fish fed plant
oil compared to fish oil diets (Fig. 3) [30, 31]. Although
plant oil diets also contains lower DHA and EPA, our data
has shown that the expression of elov/ genes was more
likely induced by other differences between fish oil and
plant oil diets. Sterol regulatory element binding proteins
(SREBPs) are suggested to be involved in regulating lipid
metabolism in both mammals and fish [32, 33]. Atlantic
salmon has four srebpl paralogous genes, srebpla, srebplb,
srebplc and srebpld which are all orthologs of the zebrafish
srebpl gene (Supplementary Table 1). Both A6abc/5™ and
low LC-HUFA diets resulted in increased transcription of
all four srebpl genes in salmon (Fig. 6 and Supplementary
Table 1). The transcription of the srebpl genes was nega-
tively (p <0.05) correlated to the DHA level in phospho-
lipids. On the other hand, transcription of srebp2 genes
were not up-regulated in mutated versus WT salmon, and
are not correlated to DHA level (Fig. 6 b). The different
regulation of srebpl and srebp2 transcription is consistent
with previous studies in mammals, suggesting that srebpl
transcription is regulated by DHA levels in salmon, while
srebp2 transcription is more likely to be induced by low
cholesterol levels in the plant oil diet [32].

By comparing salmon gene promoter sequences to 6
transcription factor binding sites databases (CISBP,
HUMAN.H10MO.B, HT-SELEX2, HumanTF, JASPAR,
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TRANSFAC), we identified 235 lipid metabolism genes
with potential sterol regulatory elements (SRE), the
Srebp binding sites, between 1000 bp upstream to 200
bp downstream from transcription starting sites (Supple-
mentary Table 2). This includes ASfads2, A6fads2-a,
elovl5-a, elovl5-b and elovi2 which are the major genes
in LC-HUFA synthesis pathway. A recent study showed
that CRISPR/Cas9-mediated editing of elovi2 in salmon
has increased transcription of srebpl, Aé6fads2 and
ASfads2 genes together with decreased LC-HUFA con-
tent, supporting the regulation of fads2 genes by the
Srebp-1 transcription regulator (Fig. 7) [18]. However,
the salmon Srebp-1 transcription factor is unlikely to in-
duce expression of elovl5 and elovi2. This was because
the expression of both elov/ genes were stable in A6abc/
5™ compared to WT salmon, though srebpl expression
was upregulated. The elovl5 genes were also stable in
elovi2-mutated salmon [18]. One possible reason is that
the SRE in promoter regions of elovi5 and elovi2 genes
may be more efficient for binding Srebp-2 rather than
Srebp-1 [34], or that other transcription factors such as
liver X receptor (LXR) are responsible stimulation of
elovl genes in salmon under a plant oil diet. On the
other hand, mammalian SREBP-1 can target both fatty
acid desaturase (FADS2) and elongase (ELVOLS) genes
and regulate LC-HUFA synthesis [35, 36].

To further investigate the relationship between key
transcription factors and lipid metabolism genes, we
compared the expression changes of the 230 lipid me-
tabolism genes except LC-HUFA synthesis genes, either
between mutated and WT salmon fed plant oil, or be-
tween mutated and WT salmon fed fish oil, or between
WT salmon fed plant oil and fish oil (Fig. 6a). Several
agpat3 and acsbg genes were significantly (g <0.05 &
|log2FC| > 0.5) up-regulated in plant oil mutated salmon
together with up-regulated srebpl. The function of the
Srebp-1 transcription factor in salmon is likely similar to
its function in mammals, which works as a key tran-
scription factor for hepatic lipogenesis, and agpat3 and
acsbg genes are likely the key target genes of salmon
Srebp-1. The same acsbg, agpat3 and srebpl genes were
also up-regulated when the elovi2 gene was CRISPR-mu-
tated in salmon, confirming an increase of fatty acid
acylation and lipogenesis in response to decreased tissue
DHA content (Fig. 7) [18]. Other typical mammalian
SREBP-1 targets, fasn, accl and elovl6 genes of fatty acid
synthesis and elongation pathways were also up-
regulated, but not significantly (g > 0.05) in mutated sal-
mon compared to WT under the plant oil diet (Fig. 6).
However, the transcriptional increase of these genes was
much higher and significant (g < 0.05) in WT salmon fed
the plant oil diet compared to fish oil. This means that
the genes of fatty acid synthesis and elongation in sal-
mon were not merely targeted by Srebp-1, but by other
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Fig. 6 Expression change of liver genes involved in lipid metabolism after A6abc/5mutation. a Expression changes of genes in Log? fold change
between A6abc/5™ and WT salmon. Differentially expressed genes (DEGs, g < 0.05 & |log2FC| > 0.5) are labelled, except three genes with asterix

(*) which had high log2 fold change but not significant (g > 0.05) b Correlation between gene expression and DHA content in phospholipid.
Three fish individuals of each diet (plant oil or fish oil) and genetic (WT or Aéabc/5M") group were included in the analysis. Data of DHA

measurement was acquired from Datsomor et.al, 2019

transcription factors, likely Srebp-2 [32] or Ppar-y [37].
Genes of cholesterol metabolism including hmgcrab,
mvd-a and sqlea-a were only highly up-regualted in WT
fed plant oil diet versus fish oil, while no transcription
change was observed in A6abc/5™ versus WT salmon.
Several studies have found up-regulation of cholesterol
biosynthesis and srebp2 genes in salmon fed plant oils
[12, 13, 15]. The present study has supported that the
relationship between srebp2 and cholesterol biosynthesis
genes is quite conserved in salmon as in mammals, and
suggests that the SREBP binding sites of cholesterol bio-
synthesis genes were srebp2-specific (Fig. 7) [32].
CRISPR/Cas9-mediated mutation of fads2 genes in
A6abc/5 also affected the fatty acid S-oxidation pathway
in salmon. This was indicated by a strong down-
regulation of acc2 gene following A6abc/5™ (Fig. 5).
Unlike the accl gene which is mostly involved in de-
novo fatty acid synthesis in the cytosol, the acc2 gene in

mammals produces mitochondria-associated malonyl-
CoA which is a negative regulator of CPT1 and inhibits
mitochondria S-oxidation [38, 39]. Therefore, the down-
regualtion of acc2 in A6abc/5™" salmon could suggest an
increased fatty acid f5-oxidation after disrutpion of LC-
HUFA sythetic pathway. This could be regulated by
PPAR which is key regualtor of fatty acid catabolism
[28]. Similar to srebpl, we also found a negative correl-
ation between DHA level and two ppara-a genes,
though their expression levels were not changed after
A6abc/5 mutation. As PUFA and their derivatives are
known natural ligands of PPAR, the activation of PPAR
and their target genes including fatty acid -oxidation
may not rely on increased transcirption of PPAR genes
[40]. The increased f3-oxidation was probably due to ac-
cumulation of 18:3n-3, 18:2n-6, and other intermediate
fatty acids in the LC-HUFA synthesis pathway which
cannot be synthesised further to DHA and EPA after

de-novo synthesis
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disruption of fads2 genes. These fatty acids were most
likely consumed alternatively in S-oxidation which was
activated by the PPAR transcription factor [22]. Feeding
of plant oil diets also induced cptia and abcdl, which
are key genes involved in import of fatty acids into mito-
chondria and peroxisomes for catabolism (Fig. 7). How-
ever, a paralog gene cptlb was down-regulated both
after fads2-mutation and feeding plant oil diet. The rea-
son for the down-regualtion is unclear and whether it
would affect fatty acid fS-oxidation needs to be further
investigated. One possible explanation is that malonyl-
CoA produced by accl or acc2 is less organelle-specific
in salmon, and that the cpt1b gene could be inhibited by
malonyl-CoA produced by accl in de-novo fatty acid
synthesis.

Conclusions

CRISPR-Cas9 can be employed efficiently to mutate
multiple fads2 genes simultaneously in salmon. How-
ever, mosaic effects are common, embodied by different
indels among tissues and individuals. Exon skipping
found in the Aé6fads2-a gene during transcription was
predicted to result in the production of truncated pro-
teins and strengthen the CRISPR-induced disruption of
LC-HUFA synthesis in A6abc/5™" salmon. Down-
regulation of the targeted AS5fads2, A6fads2-a and
A6fads2-b genes were found in liver, which likely cause a
decrease of LC-HUFA synthesis. On the other hand, the
transcription of elovi5a, elovi5h and elovI2 genes in the
LC-HUFA synthesis pathway was not affected. Since
srebpl genes were up-regulated in A6abc/5-mutated sal-
mon the elovl genes were not likely regulated by this
transcription factor. Increased de-novo fatty acid synthe-
sis and lipogenesis was observed after A6abc/5™ and
could also be regulated by SREBP1. In addition, the level
of transcriptional changes of fasn and accl genes in-
volved in fatty acid synthesis were much higher when
the fish was fed plant oil as compared to fish oil. This
suggests that these genes were regulated by one or more
transcriptional factors in addition to SREBP1. PPAR or
SREBP2 are likely candidates. Increased fatty acid p-
oxidation was also observed after A6abc/S™ and was
likely regulated by PPAR. The CRISPR-mutation of
A6bc™ genes surprisingly revealed over 3000 DEGs in
liver of salmon, and the DEGs were not enriched in any
lipid metabolism pathways. The reason for the high
number of DEGs in A6bc™ salmon was unclear and
needs to be further investigated.

Methods

Generation of CRISPR/Cas9-mediated mutated salmon
and feeding experiment

The generation of CRISPR/Cas9-mediated mutated sal-
mon and the corresponding feeding trial was previously
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published in [22]. In brief, two types of fads2 mutants were
generated with CRISPR/Cas9 injection into embryos, sperm
and eggs were provided by AquaGen (Trondheim,
Norway). Both times a single CRISPR guide RNA (gRNA)
was used to target different combinations of fads2 genes
simultaneously: A A6abc/5-mutated (A6abc/5™) salmon
strain was generated using a gRNA targeting A6fads2-a
(NCBI Gene ID 100136441), A6fads2-b (100329172),
A6fads2-c (106584797) and ASfads2 (100136383). A A6bc-
mutated (A6bc™") salmon strain was generated targeting
A6fads2-b and A6fads2-c. Both strains were co-injected
with a gRNA targeting the slc45a2 (NCBI Gene ID gene
106563596), involved in melanin synthesis [19]. Target se-
quences of gRNAs were published in Datsomor et.al, 2019.
The feeding trial was performed on Atlantic salmon
parr (N =108) of approximately 85 + 25 g for A6abc/5™
salmon (N = 36), 104 + 25 g for A6bc™"* salmon (N = 36),
and 176 + 34 g for wildtype controls (WT; N = 36) at the
Institute of Marine Research (Matre, Norway). Fish were
initially fed a standard commercial diet until start of the
experiment. A total of six experimental tanks were used
with a common-garden approach, each containing 18
fish consisting of 6 Pit-tagged fish of the A6abc/5™,
A6bc™ and WT. Three tanks were then fed a plant oil
diet containing 5% LC-HUFA of total fatty acids, while
the remaining three tanks were fed a fish oil diet with
20% LC-HUFA. The fatty acid composition of the diets
was shown in detail in [22]. After 54 days of feeding, fish
under plant oil diet reached 203 +51g for A6abc/5™
salmon, 281 +52g for A6bc™M* salmon and 250 + 62 for
WT, while the fish under fish oil diet reached 171 +36 g,
191+ 69g and 241 +47 g for the three groups respect-
ively. Liver and muscle tissues from 6 fish per dietary
treatment/strain were then sampled and tissues were
flash frozen on dry ice and subsequently stored at -
80°C. During tissue sampling, unnecessary pain was
avoided by anesthetizing all fish by placing in freshwater
containing 100 mg/L Finquel MS-222 (Tricaine Metha-
nesulfonate) buffered with 100 mg/L sodium bicarbonate
(Scan Vacc AS, Hvam, Norway) which caused rapid loss
of consciousness (no body or opercula movement), this
was followed by euthanasia using a blow to the head.

AmpliSeq

To confirm CRISPR/Cas9-induced mutations, AmpliSeq was
conducted according to the Illumina protocol (16S Metage-
nomic Sequencing Library Preparation # 15044223 Rev. B,
Illumina AS, San Diego, CA, USA). DNA was isolated from
selected individuals from both liver and muscle using
DNeasy blood and tissue kits (Qiagen, Hilden, Germany).
Primers were designed to specifically amplify the regions
around the CRISPR gRNA target sites (Table 1). For each
sample the amplicons were generated in singleplex reactions,
pooled and then purified using AMPure beads (Beckman
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Table 1 CRISPR gRNA target sequences and AmpliSeq primer sequences

CRISPR Target CRISPR targets (5™ > 3')° AmpliSeq primer sequences

gRNA Gene

Deltababc/5  A6fads2-a  GGCACCGACAGAGCC Forward (5" > 3"): TTTGTAGGACGCATTTGTCGC
CAGCCAGG® Reverse (5> 3'): AGATGACACACTACTTTTCTAGGAG

Deltababc/5  A6fads2-b GGCACCGACAGAGCCCAG Forward (5™ > 3"): CCCGGGTCCCTACCTAAACCTA
CCAGG Reverse (5" > 3'): CTCCTCCCCTTCATCAGGTGAC

Delta6abc/5  Aéfads2-c  GGCACCGACAGAGCCCAG Forward (5> 3'): GAGACGCTCTAGGCTTCACA
CCAGG® Reverse (5> 3): TCCCAGCGGTTTGGATCATTC

Delta6bc N6fads2-b *CCAAGGGTGGCGTGG Forward (5> 3'): TGATCCAAACCGCTGGGAAAT
TTGGGCCC Reverse (5> 3'): ACGGTGTGAGTGGAGCAGAG

Deltatbc Néfads2-c °CCAAGGGTGGCGTGG Forward (5> 3'): AGAGTCCATTCCCAGGACGAA
TTGGGCCC Reverse (5> 3'): ACAGACTGGACAGAGCGTAG

Slc45a2 slc45a2 GGGGAACAGGCCGAT Forward (5™ > 3"): TGTATGAGCTACAGACAGGTGG Reverse (5> 3'): AGGGGCTCTACTTC
AAGACTGG® GTAGGAT

Forward overhang: 5TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-[sequence]
Reverse overhang: 5' GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-[sequence].

@ Underlined trinucleotides are the CRISPR protospacer adjacent motif (PAM) sites

® The CRISPR target sites was published in Datsomor et.al, 2019

Coulter Life Sciences, Indianapolis, IN, USA) before running
index-PCR using the Nextera XT Index Kit (Illumina AS,
San Diego, CA, USA). AmpliSeq libraries were subsequently
normalized before sequencing the libraries as 300 bp paired-
end reads on Illumina MiSeq (Ilumina, San Diego, CA,
USA) at Centre of Integrative Genetics (CIGENE, As,
Norway). Raw .fastq reads were quality trimmed using cut-
dapt [41] before aligning them to the salmon genome ICSA
SG_v2 (Accession Number GCF_000233375.1, available for
download at NCBI database https://www.ncbi.nlm.nih.gov/
assembly/GCF_000233375.1/) using bwa mem [42] and sav-
ing files in .bam format. For each sample the proportion of
indels for each base in a 25bp window around the target
sites was determined using the python3 coverage.py (https://
gitlab.com/fabian.grammes/crispr-indel). ~ Additionally ~we
predicted the effect of each indel on the main transcript/pro-
tein using SupEff [43].

RNA extraction and library preparation

Total RNA was extracted from liver of 36 individual fish
by using RNeasy Plus Universal Mini kit (Qiagen AS,
Hilden, Germany), according to manufacturer’s instruc-
tion. The 36 fish comprised 6 fish by group (strain by
dietary treatment; two fish / tank). The RNA concentra-
tion and quality were assessed by Nanodrop 8000
(Thermo Scientific, Wilmington, USA) and Agilent 2100
Bioanalyzer (Agilent Technologies, Santa Clara, CA,
USA). All samples had RIN values > 8.5. RNA-seq librar-
ies were prepared using TruSeq Stranded mRNA Library
Prep Kit (Illumina AS, San Diego, CA, USA). The librar-
ies were subsequently sequenced using 100bp single-
end high-throughput mRNA sequencing (RNA-seq) on
an Illumina Hiseq 2500 (Illumina AS, San Diego, CA,
USA) at Norwegian Sequencing Centre (Oslo, Norway).

Data analysis and statistics

Read sequences were processed using the bcbio-nextgen
pipeline  (https://github.com/bcbio/bcbio-nextgen). In
brief reads were aligned to the salmon genome (ICSASG_
v2) using STAR [44]. The resulting .bam files were subse-
quently used to generate i) raw gene counts using feature-
Counts (v1.4.4) [45] using the NCBI Salmo salar
Annotation Release 100 (available for download at https://
ftp.ncbinlm.nih.gov/genomes/all/annotation_releases/803
0/100/). ii) exon counts using DEXSeq (dexseq_count.py)
[46]. In addition reads were mapped directly to the tran-
scriptome using Salmon (v0.10.2) [47]. Gene IDs from
NCBI GeneBank database (https://www.ncbi.nlm.nih.gov/)
were used to identify genes in this study.

Expression analysis of the genes was performed using
R (v3.4.1). Only genes with a minimum counts level of
at least 1 count per million (CPM) in 75% of the samples
were kept for further differential expression analysis
(DEA). DEA was performed between groups (strain by
dietary treatment, n=6), using the generalized linear
model (GLM) method in R package edgeR [48]. The
present study focuses on three contrasts, A6abc/5-mu-
tated salmon versus WT fed plant oil diet, A6abc/5-mu-
tated salmon versus WT fed fish oil diet, and WT
salmon fed plant oil versus fish oil diet. Genes with a
false discovery rate (FDR), an adjusted p value (g) < 0.05
and absolute log2 fold change (|Log2FC|) >0.5 were
considered to be differentially expressed genes (DEGs)
between the two test conditions. Subsequently, a KEGG
ontology enrichment analysis (KOEA) was conducted
using edgeR. A hypergeometric test was applied based
on number of DEGs compared to total genes annotated
to each KEGG pathway, and differences were considered
significant when p<0.005. All figures were made by
using R package ggplot2 [49].
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