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Abstract

Background: Genome-wide change of polyadenylation (polyA) sites (also known as alternative polyadenylation,
APA) is emerging as an important strategy of gene regulation in response to stress in plants. But little is known in
woody perennials that are persistently dealing with multiple abiotic stresses.

Results: Here, we performed a genome-wide profiling of polyadenylation sites under heat and cold treatments in
Populus trichocarpa. Through a comprehensive analysis of polyA tail sequences, we identified 25919 polyA-site
clusters (PACs), and revealed 3429 and 3139 genes shifted polyA sites under heat and cold stresses respectively. We
found that a small proportion of genes possessed APA that affected the open reading frames; and some shifts were
commonly identified. Functional analysis of genes displaying shifted polyA tails suggested that pathways related to
RNA metabolism were linked to regulate the APA events under both heat and cold stresses. Interestingly, we found
that the heat stress induced a significantly more antisense PACs comparing to cold and control conditions.
Furthermore, we showed that a unique cis-element (AAAAAA) was predominately enriched downstream of PACs in
P. trichocarpa genes; and this sequence signal was only absent in shifted PACs under the heat condition, indicating
a distinct APA mechanism responsive to heat tolerance.

Conclusions: This work provides a comprehensive picture of global polyadenylation patterns in response to
temperatures stresses in trees. We show that the frequent change of polyA tail is a potential mechanism of gene
regulation responsive to stress, which are associated with distinctive sequence signatures.
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Background

Alternative polyadenylation (APA) is a common post-
transcriptional process of eukaryotic mRNA maturation,
which generates altered 3" ends of transcripts. The use
of different polyadenylation site (polyA) has been found
to play essential roles of increasing transcriptome diver-
sity and regulating gene expression profiles [1, 2]. With
the support of high throughput sequencing technologies,
designated RNA sequencing approaches, such as 3’
READS+ [3], PolyAdenylation Site Sequencing (PAS-
Seq) [4] and Poly(A)-ClickSeq [5], that target the polyA
tails of mRNA, have been developed for accurate profil-
ing of APA.

In plants, APA is widespread and has been extensively
investigated. Genome-wide identification of APA has
been reported in a number of plant species, including
Arabidopsis [6, 7], rice [8], bamboo [9], and more. A re-
cent constructed database (PlantAPAdb) has recorded
the APA information from six plant species for evolu-
tionary and mechanistic analyses [10]. These studies
have revealed an abundant occurrence of APA and sug-
gested important regulatory functions at the molecular
level in plants. It is clear that APA is an essential layer
of post-transcriptional gene regulation involved in plant
growth, development and response to endogenous and
environmental signals. Generally, APA sites locate in the
3’ region of transcripts. APA sites from the 3’ untrans-
lated regions (3'UTR) can affect the mRNA stability,
translation, cellular localizations to regulate gene func-
tions [1, 11]; APA also can be inside an open reading
frame (ORF) and thereby regulate the protein function
[11]; in addition, studies of the Flowering inhibitor Locus
C (FLC) have shown that usage of polyA site in the anti-
sense transcript is required for determining flowering
transition in Arabidopsis and other plant species [12,
13]. Although a great number of plant APA sites is iden-
tified, the regulatory mechanism of APA associated gene
expression still is poorly understood.

In recent years, the APA mediated gene regulation is
found to play an important role in stress responses.
Notably, abiotic stresses can induce APA events to gen-
erate distinct transcript isoforms in diverse plant species
[14-16]. For example, in Arabidopsis, hypoxia has been
found to induce the usage of non-canonical (e.g. 5UTR
and protein-coding) polyA sites, which suggested a nega-
tive role of gene regulation [15]. In addition, genome-
wide profiling of APA in sorghum has shown that some
stress-induced isoforms were associated with a unique
intronic polyA signal [17]. These results indicate that
global shift of polyA site in response of stress is a strat-
egy of survival which affect a wide-range of gene
functions.

Populus trichocarpa is a model tree species with com-
prehensive genome information as well as significant

Page 2 of 10

ecological and commercial importance [18]; and as a
perennial plant, the growth and development of P. tri-
chocarpa face multiple levels of abiotic stresses. Small-
scale characterization of APA sites targeting 14 NAC
(NAM, ATAF1/2, CUC2) genes has been reported in P.
trichocarpa, and three APA transcripts have been found
differentially expressed during hormone treatments [19].
Furthermore, functional characterization of APA iso-
forms of Secondary Wall-Associated NAC Domain 1
(SND1I) has shown that truncated SND1 can negatively
regulate the function of full SND1 [20]. It is conceivable
that APA-mediated gene regulation is a key aspect for
development and stress response in P. trichocarpa. How-
ever, genome-wide profiling and analysis of APA in P.
trichocarpa are lacking. Here, we report the genome-
wide identification of APA profiles in responsive to heat
and cold stresses using the PAS-seq platform in P. tri-
chocarpa. We show that the change of polyA tails is
widespread under the temperature stresses, and genes
related to RNA metabolism are linked to APA-mediated
post-transcriptional regulation. We also provide molecu-
lar evidence of unique sequence signatures associated
with stress-related shifts of polyA sites in P. trichocarpa.

Result

The processing and mapping of PAS-Seq reads for
identification of polyA-tail associated sequences

To study the alternative polyadenylation pattern in P.
trichocarpa, we performed a high-throughput transcrip-
tome sequencing targeting the polyadenylation sites by
the PAS-Seq approach. The polyA enriched libraries
were constructed under different temperature stresses
(4°C and 40°C), and the normal growth condition
(24°C) was set as the control. We sequenced the librar-
ies using the Illumina HiSeq X Ten platform to generate
150 nt pair-end sequencing reads, and obtained 36-43
million (Supple. Table S1) raw reads for each library.
The clean reads of all samples were combined and
mapped to the P. populus genome sequences. We found
that, based on the annotated genomic regions, 2.98% of
total reads were located in the 3’ gene untranslated re-
gion (3UTR) (Fig. 1a), and the majority of reads were
mapped to the intergenic region (70.67%, Fig. 1a).

To retrieve the sequences upstream of the polyA tail,
we first anchored the region containing at least 8 con-
secutive As, and then went through upstream for regions
with at least 2 non-A and clipped the sequences of
polyA tail; and the remaining reads with more than 11
nt in length were used for polyA signal analysis (Supple.
Table S2). The PAS-seq reads were further filtered with
the polyA sequences which resulted in the “final PAS-
reads” of enriched with polyA tails for each sample
(Supple. Table S2). Then, the “final PAS-reads” were re-
mapped to the reference genome and the both strands
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of transcripts sequences. We found that the majority of
“final PAS-reads” were from the 3'UTR region (Fig. 1b-
d); and about 10% of reads were located in the intergenic
areas in all samples (Fig. 1b-d); and small proportions of
the reads were found in CDS, 5’'UTR, antisense, and in-
tronic regions (Fig. 1b-d). These results were agreeable
with our experimental designs, suggesting that the pipe-
line of reads processing was credible to downstream ana-
lyses of polyA tails.

Global characterizations of polyA tails based on the PAS-
Seq sequences

To reveal the abundance of expressed genes, we used
the “final PAS-reads” to evaluate the gene expression
levels and found that 25,068 genes out of 41,335 had a
higher RPKM (Reads per kilo base of a gene per million
reads) value than 1. The cumulative expression levels
were plotted for each library, and the average RPKM
value of 50% was between 2 and 4 in different samples
(Fig. 2a). To investigate the distribution pattern of reads
along a transcript, we assessed the location of reads
based on the annotation of gene model. We showed that
the peak of reads distribution was evident at the 3" re-
gion of transcripts (Fig. 2); when assessing the 1kb up-
stream and downstream areas of TTS and stop codon,
we found that the peak of reads were located closely up-
stream of TTS and downstream of stop codon (Fig. 2b-
¢). These results implied that the processed reads were
efficient to determine the 3'-ends, including 3’'UTR se-
quences and the polyA signals.

Changes of PACs between different temperature stress
conditions

The polyA containing reads were subjected to clustering
analysis to identify the polyA-site cluster (PAC) based
on the location and relative abundance of PAS-reads.
The samples of different treatments were independ-
ently analyzed for PAC identification, and combined
reads were also used to reveal the total PAC sites.
We showed that the PAC sites were dominantly lo-
cated in the 3'UTR regions of genes (Supple. Table
S3). The nucleotide composition pattern around
PAC sequences were studied. The 50bp upstream
and downstream regions were scanned to display the
nucleotide composition using combined reads
(Fig. 3a). We revealed that the regions were domin-
ant with A and U, and A and U showed distinct but
complementary distribution patterns (Fig. 3a). A
spike of A was revealed at the polyA site indicating
the cleavage region; and a spike of C was also found
just in front of the A spike (Fig. 3a). The profile of
the nucleotides was consistent with polyA sites in
other plant species suggesting a conserved mechan-
ism of polyadenylation.

To determine the signal elements around PAC se-
quences, the 50bp upstream and downstream regions
were examined to identify the patterns of sequences.
The 6-nt window of nucleotides was used to reveal the
common patterns (Loke et al. 2005). The top 30 signals
were displayed, and we found that “AATAAA” and
“ATAAAA” were most frequent in all samples except
for the all “T” and all “A” hexamers; and the locations of
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“AATAAA” and “ATAAAA” were consistent between
samples around the 16-26 nt upstream area (Fig. 3b),
supporting that those were canonical polyA signals.
Interestingly, we showed that there was one unique hex-
amer that was specific to sample: “ATTTTG” in control,
“ATTTTTA” in cold stress, “TTTTAA” in heat stress
(Fig. 3b); and both heat and cold samples missed the G-
containing hexamer close to the polyA cleavage site
(Fig. 3b). These results suggest that the temperature
stress may induce the usage of different polyA signals
to generate distinctive alternative splicing isoforms.
We also identified a conspicuous enrichment of
“AAAAAA” 5-10 downstream the polyA cleavage site
in all samples (Fig. 3b), supporting a new APA sequence
signature in P. trichocarpa. Furthermore, we noticed that
a small fraction of PACs was derived from antisense tran-
scripts (Supple. Table S3). To further investigate the oc-
currence of antisense PACs between samples, we
quantified the PACs from antisense, and showed that the
heat condition extensively promoted the generation of

antisense PACs (near 2 fold increase), but not in cold con-
dition (Fig. 3c).

The characterization of sequence signatures of shifted
PACs between temperature stresses

The genes with multiple PACs (proximal and distal
PACs) were analyzed to uncover APA patterns in re-
sponse to temperature stresses. We found that there
were 3429 and 3139 genes that possessed the shifts of
PACs under heat and cold stresses respectively (Supple.
Dataset 2, 3; Fig. 4a). To investigate the signals for usage
of shifted PACs, the sequences near PACs in cold and
heat conditions were analyzed to compare with the
PACs under control condition (Fig. 4b-e). We analyzed
the frequencies of hexamers in the 50 upstream and
downstream regions, and found that “TTTTTT” and
“AAAAAA” were most abundant in all samples, which
was consistent with the previous result (Fig. 4b-e, Fig.
3b). Notably, the enrichment of “AAAAAA” at the
downstream of polyA tail cleavage site was missing
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significantly responsive to treatments (Kolmogorov-
Smirnov test, p-Value< 0.01). We found that only a small
proportion of genes both changed the polyA tails under
heat and cold, indicating a distinctive responsive mech-
anism of APA under heat and cold conditions (Fig. 5b);
and majority of the change of 3" end was within 250 bp,
but the heat condition tended to generate more longer
or shorter ends (Fig. 5d-e). We further assessed the po-
tential consequences of the gene coding region, and un-
covered that there were 32 and 19 genes with altered
CDS under heat and cold conditions respectively, due to
the APA events (Fig. 5¢).

To investigate the function of genes with shifted PACs,
GO enrichment analysis was performed to identify the
over-representative functional GO terms (Supple. Data-
set 6). We found that heat and cold stresses enriched
several GO terms involved in the RNA metabolism, such
as “RNA splicing”, “RNA processing” and “RNA binding”
(Supple. Dataset 6). And GO terms related to direct gene
expression regulation, including “regulation of transcrip-
tion”, “regulation of transcription factor” and “transcrip-
tion by RNA polymerase II”, were revealed under the
heat condition (Supple. Dataset 6). We further analyzed
the functions of shifted genes through KEGG enrich-
ment analysis. We showed that 9 and 12 KEGG path-
ways were significantly enriched under the cold and heat
stresses respectively (Fig. 6). Some important pathways
related to gene transcription and regulation, including
“Spliceosome”, “mRNA surveillance pathway”, “Basal
transcription factors”, were both enriched under cold
and heat (Fig. 6). Taken together, these results suggested
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that the cold and heat stresses induced a significant
change of the polyadenylation process, which might con-
tribute to the stress responses.

Discussion

The survival of plants under some extreme stress condi-
tions (e.g. heat, cold, salt, drought, and etc.) is dependent
on the coordinated responses of various biochemical and
physiological processes that are controlled by changes of
gene expression. In recent years, global change of polyA
site has been found to play an important role of gene
regulation in plants [21]. Particularly, non-canonical
transcript isoforms that are induced by APA under
stress conditions are emerging as a transcriptomic
signature to understand the transcriptional and post-
transcriptional regulation of gene expression [15].

P. trichocarpa, as a model tree species, is an ecologic-
ally and economically important woody plant all over
the world. With the wide-span distribution of environ-
mental conditions, P. trichocarpa withstands multiple
stresses to survive under natural environments [22]. In
P. alba, a transcriptomic study using single-molecule
long-read sequencing technology has revealed 10,213
APA sites including 2212 genes with more than one
polyadenylation sites [23]. We have shown here that a
widespread APA under the cold and heat stresses in P.
trichocarpa. A total of 25,919 PACs (TPM >5) have
been identified covering over 20,000 genes (Supple.
Table S3). We have revealed that there are 3429 and
3139 genes that shifted the polyA sites upon heat and
cold stresses respectively (Fig. 4a). These results indicate
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that the change of polyA tail is a common responsive
phenomenon to stress in P. trichocarpa. In this work, we
find that around 60-70% of PACs locate in the 3'UTR
representing the canonical polyA sites (Supple. Table
S3). For those non-canonical PACs (e.g. 5UTR, CDS,
antisense), a complementary characterization focusing
on stress-induced isoforms will be valuable to reveal po-
tential roles of APA-mediated gene regulation. One
striking difference between cold and heat is the induc-
tion of antisense PACs. The heat stress induced about 2
fold antisense PACs comparing to cold and control con-
ditions. The role of APA-mediated antisense transcripts
has been extensively investigated at the FLC locus in
Arabidopsis [24]. The subset of FLC antisense tran-
scripts are regulated by various developmental and en-
vironmental cues to regulate flowering transition [25].
Our results of antisense PACs imply that specific APA
events responsive to heat stress could be involved in
generating regulatory antisense transcripts to regulate
gene functions.

Through sequence analysis, we show that the signa-
tures associated with polyA tails are conserved with
other plant species (Fig. 3a, b); the hexamers, such as
“TTTTTT”, “AAAAAA”, “AATAAA”, “ATATAT” and
etc., are commonly enriched in the near upstream elem-
ent regions (NUE) [10]. Also, the signatures remain
largely identical between control and stress conditions in
P. trichocarpa (Fig. 3b). One exception is that: the G-
containing hexamer “ATTTTG” in NUE is missing in
heat and cold stresses (Fig. 3b). It suggests that the
change of polyA tails under stresses may require the al-
teration of designated sequence contexts. A comparative
study between sorghum and maize, two closely related

monocots, has shown that preference of sequence signa-
tures associated with PACs were influenced by species
and tissue types [26]. A recent study from Camellia ja-
ponica has revealed that certain hexamers are preferen-
tially selected for the polyadenylation of coding and
non-coding transcripts [27]. Taken these together, our
results provide insights of extensive APA events in gen-
erating transcriptome diversity and gene regulation re-
sponsive to temperature stresses. One disadvantage of
PAS-seq is that it doesn’t allow for identifying comple-
mentary transcript isoforms. Therefore, a direct isoform
sequencing would be valuable for investigating the APA-
mediated transcripts in future.

The APA sequence signals around the cleavage site
has been identified as cleavage elements (CE) in Arabi-
dopsis [28]. We find that, in the genes displayed the
shifting of polyA tails under heat and cold stress, the se-
quence signatures are changed considerably (Fig. 4b-e).
Particularly, we have shown that the enrichment of
“AAAAAA” downstream the polyA cleavage site was
missed under the heat condition (Fig. 4€). In Arabidop-
sis, the “AAAAAA” is not identified from the compar-
able region, and CE is wusually rich in Ts [28].
Interestingly, in a recent study of sorghum, the hexamer
“AAAAAA” has been revealed prominently in PACs
from both 3’'UTR and intron at the same region; and
heat, salt and drought stresses do not affect the enrich-
ment [17]. These results indicate that the heat stress
could induce the usage of specific sequence signals to
confer unique APA-mediated transcripts. But the mech-
anism of the specificity requires further information
from functional analysis of proteins involved in the
polyA site selection.
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Methods

Plant materials and growth conditions

The P. trichocarpa Nisqually-1 clone was maintained in
a greenhouse as described [29]. For temperature treat-
ments, the aseptic cuttings of P. trichocharpa (8—10 cm)
were kept in the rooting media [30] for about 30 days
before the treatments. The growth chamber was under
long-day conditions (16-h light/8-h dark) at 24°C and
40% humidity. To perform the low temperature treat-
ment, a freezer was controlled by a temperature sensor
(PURUI G6000, Ningbo, China). To perform the high
temperature treatment, an incubator was set to appro-
priate temperature prior to the experiment to stabilize
the internal temperature. Whole seedlings of at least
three individuals were collected for sample preparation.

PAS-seq library construction, sequencing and data
processing

For the sequencing library construction, total RNA was
treated with RQ1 DNase (Promega, Madison, USA) to
remove DNA. The quality and quantity of the purified
RNA were determined by measuring the absorbance at
260 nm/280 nm (A260/A280) using smartspec plus
(BioRad, Munich, Germany). RNA integrity was further
verified by 1.5% agarose gel electrophoresis. For each
sample, 5 ug of total RNA was used for PAS-seq library
preparation using SMART RT system. In brief, polyade-
nylated mRNAs were purified with oligo (dT)-conju-
gated magnetic beads (Invitrogen, USA). Purified RNA
was fragmented, and reverse transcription was per-
formed with a modified RT primer harboring dT18 and
two additional anchor nucleotides at the 3’ terminus.
Then DNA was synthesized with Terminal-Tagging
oligo DNA using ScriptSeq™ v2 RNA-Seq Library Prep-
aration Kit (Illumina, USA). The cDNAs were purified
and amplified, and PCR products corresponding to 300—
500 bp were purified, quantified and stored at —80°C
before sequencing. For high-throughput sequencing, the
libraries were prepared following the manufacturer’s in-
structions and applied to Illunima HiSeq X Ten system
for 150 nt paired-end sequencing. The reads were fil-
tered for quality checking, and only the end 1 sequences
of clean reads were used for downstream analyses. The
sequencing and initial reads processing were performed
by ABlife Inc. (Wuhan, Hubei Province, China). All se-
quencing data were deposited under National Center for
Biotechnology = Information  Bioproject  accession
PRJNA61765.

Sequence mapping and PAC identification

The reference genome of Populus trichocarpa (version
3.1) was downloaded from Phytozome [31]; https://
phytozome.jgi.doe.gov). The reads mapping was
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performed by TopHat2 allowing 2 mismatches [32].
To obtain the expression abundance, the RPKM
(Reads per kilobase of a gene per million reads) value
was calculated [33].

For identification of polyA-site cluster (PAC), the 3’
mapped polyA reads were initially determined as polyA
sites; and then quantified based on the Tag Per Million
(TPM) method [TPM (PAC) =reads mapped to polyA
site (PAC)*1,000,000/total reads]. The identification of
PAC was performed using the CAGEr package [34]; in
brief, the polyA sites within 20 nt with TPM over 0.5
were clustered. The PAC within 100 nt in different PAS-
Seq libraries were further clustered to generate the PAC
sequences (Supple. Dataset 1). For APA analysis, PAC
sequences with only one polyA site or TPM less than 3
were filtered. The total PAC sites were independently
determined through combing the sequencing reads with
TPM cutoff of 5. To identify genes with shifted PACs,
the difference of PAC locations was calculated by
CAGEr to obtain shift score (Supple. Dataset 2, 3).
The Kolmogorov-Smirnov test was performed to iden-
tify significant shifts of PACs with p-value <0.01
(Supple. Dataset 2, 3).

Nucleotide composition and sequence signature analysis
The abovementioned PACs for each sample were used
for motif analysis. And the 50 bp upstream and down-
stream sequences of each PAS were extracted. For the
nucleotide distribution analysis, the composition of each
PAS at each position were calculated. And the sequence
motifs were analyzed using the SignalSleuth2 [28] with
the following options: k = 6 (where k is the length of the
motif) and top 30 motifs.

For stress-induced analysis, sequences of genes with
shifted PACs were extracted according to the position
information (Supple. Dataset 4, 5) using an in-house py-
thon script. The PACs for each treatment were divided
into two groups: one was the PACs under control condi-
tion, and another one under the treatment condition.
The sequence motif analysis was performed using Sig-
nalSleuth2 as mentioned above, and only the PACs shift
distance over 50 were used for the analysis.

Functional enrichment analysis

For functional analysis of shifted genes, the annotation
information from Gene Ontology and Kyoto
Encyclopedia of Genes and Genomes of P. trichocarpa
genes were obtained. The enrichment of GO terms and
KEGG pathway was identified based on the significance
of the hypergeometric tests, and further corrected by
FDR (Hochberg). The corrected p-values less than 0.05
were determined as significant enrichment. Significantly
enriched GO terms were categorized into molecular
function, biological process and cellular component as
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listed in Supple. Dataset 6. For KEGG analysis, the en-
richment ratio was calculated as: Enrichment ratio of
each KEGG pathway = subset of genes / total number of
pathway genes.
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