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Abstract

Background: High-throughput RNA sequencing (RNA-seq) has evolved as an important analytical tool in molecular
biology. Although the utility and importance of this technique have grown, uncertainties regarding the proper
analysis of RNA-seq data remain. Of primary concern, there is no consensus regarding which normalization and
statistical methods are the most appropriate for analyzing this data. The lack of standardized analytical methods
leads to uncertainties in data interpretation and study reproducibility, especially with studies reporting high false
discovery rates. In this study, we compared a recently developed normalization method, UQ-pgQ2, with three of
the most frequently used alternatives including RLE (relative log estimate), TMM (Trimmed-mean M values) and UQ
(upper quartile normalization) in the analysis of RNA-seq data. We evaluated the performance of these methods for
gene-level differential expression analysis by considering the factors, including: 1) normalization combined with the
choice of a Wald test from DESeq2 and an exact test/QL (Quasi-likelihood) F-Test from edgeR; 2) sample sizes in two
balanced two-group comparisons; and 3) sequencing read depths.

Results: Using the MAQC RNA-seq datasets with small sample replicates, we found that UQ-pgQ2 normalization
combined with an exact test can achieve better performance in term of power and specificity in differential gene
expression analysis. However, using an intra-group analysis of false positives from real and simulated data, we found
that a Wald test performs better than an exact test when the number of sample replicates is large and that a QL F-
test performs the best given sample sizes of 5, 10 and 15 for any normalization. The RLE, TMM and UQ methods
performed similarly given a desired sample size.

Conclusion: We found the UQ-pgQ2 method combined with an exact test/QL F-test is the best choice in order to
control false positives when the sample size is small. When the sample size is large, UQ-pgQ2 with a QL F-test is a
better choice for the type | error control in an intra-group analysis. We observed read depths have a minimal
impact for differential gene expression analysis based on the simulated data.
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Background

High-through RNA sequencing (RNA-seq) has been in-
creasingly used in the studies of genomics and tran-
scriptomics over the last decade [1, 2]. Unlike cDNA
microarray technology, RNA-seq has wide applications
for the identification of novel genes or transcripts, muta-
tions, gene editing and differential gene expression [1,
3-7]. Recent clinical studies demonstrated the utility of
RNA-seq in identifying complex disease signatures via
transcriptome analysis [8, 9]. Despite this utility and im-
portance, optimal methods for analyzing RNA-seq data
remain uncertain.

For each sample in an RNA-seq experiment, millions
of reads with a desired read length are mapped to a ref-
erence genome by alignment tools such as Bowtie2/
TopHat2, STAR and HISAT2 [10-14]. The mapped
reads for each gene or transcript are subsequently used
to quantify its expression abundance. However, the sam-
ple read depth typically varies from one sample to an-
other and a direct comparison of gene expression
between samples cannot be performed. Thus,
normalization and proper test statistics are critical steps
in the analysis of RNA-seq data [15].

Normalization of RNA-seq read counts is an essential
procedure that corrects for non-biological variation of
samples due to library preparation, sequencing read
depth, gene length, mapping bias and other technical is-
sues [16—20]. This ensures proper modeling of biological
variations to directly compare and accurately detect ex-
pression changes between sample groups. Currently, a
number of normalization methods are available to cor-
rect for technical variations and biases. These include
methods to correct for read depth and transcript lengths,
most commonly formulated as RPKM (Reads Per Kilo-
base per Million mapped reads) and FPKM (Fragments
Per Kilobase per Million mapped fragments), which have
been implemented in DEGSeq and Cufflinks-CuffDiff (7,
19, 21, 22]. Other global scaling quantile normalization
methods consider either a TC (per-sample total counts)
[23], UQ (per-sample 75% upper quartile Q3) [17], Med
(per-sample Median Q2) [23], or Q (full quantile) imple-
mented in Aroma.light [24]. More complex methods based
on a size factor imputed include RLE normalization as im-
plemented in DESeq2/DESeq and TMM implemented in
edgeR for correcting read depth bias [16, 25, 26]. Still other
methods normalize by the expression of control genes such
as RUV for removing unwanted technical variation across
samples [17, 27], GC-content [28], or log, transformed read
counts implemented in voom-limma [24, 29]. In addition to
these traditional normalization methods, two abundance
estimation normalization methods have been recently
developed. One is called RNA-seq by Expectation-
Maximization using a directed graph model (RSEM) [30]
and the other is Sailfish which is an alignment-free
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abundance estimation using k-mers to index and count
RNA-seq reads [31]. More recently we developed a method
called UQ-pgQ2 (per-gene Q2 normalization following
per-sample upper-quartile global scaling at 75 percentile)
for correcting library depths and scaling the reads of each
gene into the similar levels across conditions [18, 32].

A number of studies have compared these normalization
methods and their impact on the downstream analysis for
identification of differentially expressed genes (DEGs)
(Table 1). Briefly, the earliest comparison studies reported
that UQ normalization followed by an exact test/LRT sig-
nificantly reduced the length bias of DE from RPKM rela-
tive to quantitative Real-Time polymerase chain reaction
(QRT-PCR) [17] and baySeq with UQ normalization had
the highest true positive rates with low false positive rates
(FPRs). The observed false discovery rate (FDR) from edgeR,
DESeq and TSPM methods was higher than the expected
rate of 0.05, while TSPM performs the worst when sample
sizes were as small as two [33]. In contrast, Rapaport et al.
reported that no single method was favorable in all compar-
isons. They observed that baySeq with UQ normalization
was the least correlated with qRT-PCR, Cufflinks-CuffDiff
had an inflated number of false positive predictions and
voom-limma package had comparable performance as
DESeq and edgeR [34]. Moreover, a recent study based on a
Spearman correlation analysis between read counts and
qRT-PCR for the two abundance estimation methods (Sail-
fish and RSEM) revealed that raw counts (RC) or RPKM
seemed to be adequate due to inconsistent results from
Sailfish and RSEM, suggesting that normalization methods
are not necessary for all sequence data [35]. An extensive
evaluation performed by Dillest et al. found that an exact
test combined with DESeq/TMM normalization was the
best for controlling the FDR below 0.05 for high-count
genes while RPKM, TC and Q normalization were sug-
gested to be abandoned [23]. Moreover, several studies
summarized that DESeq was often too conservative, edgeR,
NBPSeq, and EBSeq were too liberal, and voom/vst-limma
had good type I error control with low power for small
sample sizes [36—39]. These studies concur that DESeq is
preferred for controlling the number of false positives while
edgeR with TMM is slightly preferable for controlling false
negatives by achieving higher sensitivity.

Since DESeq with an exact test was overly conservative,
DESeq?2 with a Wald test was developed for improving the
sensitivity/power [25]. Subsequently, a comparison of RLE
normalization from DESeq2 with other existing methods
was performed by several studies (Table 1). In one of these
studies, a three-group comparison calculated the area
under a Receiver Operating Characteristic (ROC) curve
and recommended edgeR for count data with replicates
while DESeq2 with RLE normalization was recommended
for data without replicates [40]. Another study reported
that voom and edgeR were generally superior to other
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Table 1 Summary of studies comparing normalization methods for the DEG analysis

References Normalization Software Packages/ pipelines Replicates per Conclusions
methods condition (n)
Bullard et al. POLR2A, Q, TC, Genominator 2,4 POLR2A and UQ with LRT/Exact test significantly
2010 [17] uQ reduced the bias of DE relative to gRT-PCR
Kvam et al. DESeq, TMM, UQ DESeq, edgeR, baySeq, TSPM 2,4,5 baySeq with UQ normalization performed best with
2012 [33] highest sensitivity and low rates of false positives. But
all the methods had an inflated true FDR (> 0.1).
Rapaport F. DESeq, TMM, Cuffdiff, DESeq, edgeR, baySeq, 2,3 No single method emerged as favorable in all
et al. 2013 [34]  UQ, RPKM, FPKM, PoissonSeq, voom-limma comparisons, but baySeq with UQ method was least
Q, voom, correlated with gRT-PCR and Cuffdiff had an inflated
number of false positive predictions.
Li et al. 2015 DESeq, Med, Q,  DESeq, edgeR, Cufflinks-CuffDiff, RSEM, 2, 4 RC or RPKM seems to be adequate and the results
[35] RPKM, RC, TMM,  Sailfis from Sailfish and RSEM with RC or RPKM are
UQ, ERPKM inconsistent, resulting a conclusion of that
normalization methods are not necessary for all
sequence data.
Dilliest et al. DESeq, Med, Q,  DESeq, edgeR, Cufflinks-CuffDiff 2,3 Exact test from DESeq combined with DESeq/TMM
2013 23] RPKM, TC, TMM, normalization performed best in terms of control of
uQ FDR below 0.05 for high-count genes; RPKM, TC and Q
should be abandoned in DE gene analysis.
Soneson et al.  DESeq, TMM, DESeq, edgeR, EBSeq, baySeq, NBPSeq, 2,5, 10, 11 DESeq had poor FDR control with 2 samples and good
2013 [36] UQ, RPKM, FPKM, NOlseq, SAMseq, ShrinkSeq, TSPM, FDR control for larger sample sizes and low TPR.edgeR
voom, vst limma had poor FDR control with high TPR. Voom/vst-limma
had good FDR control, but low power for small sample
size.
Seyednasroliah  DESeq, TMM, DESeq, edgeR, baySeq, NOlseq, SAMseq, 2:6, 8,10,12, DESeq and limma were the safe choice and relatively
etal. 2013 [37]  UQ, RPKM, FPKM, " limma, CuffDiff2, EBSeq 16, 20, 24, 28  conservative while edgeR and EBSeq were too liberal.
voom DESeq and edgeR were the best tools
Zhang et al. DESeq, TMM, DESeq, edgeR, Cufflinks-CuffDiff 1:6,8, 14,20  TMM performed best in terms of sensitivity and DESeq
2014 [38] FPKM, was the best for control false positives. Both were not
sensitive to the read depth.
Linetal. 2016  DESeq, Med, Q,  DESeq, edgeR and SAS 2,3,5 DESeq and TMM normalization methods were
[39] RPKM, TC, TMM, recommended compared to the other methods.
uQ
Tang et al. RLE,TMM, UQ, DESeq, DESeq?2, edgeR, EBSeq, baySeq, 1, 3,6,9 In multi-group comparison, the proposed pipeline in-
2015 [40] RPKM, FPKM, Q,  SAMseq, PoissonSeq, voom-limma, TCC ternally using edgeR was recommended for count data
voom, with replicates while this pipeline with DESeq2 was rec-
ommended for data without replicates
Germain etal.  RLE, TMM, voom, Cufflinks-CuffDiff, DESeq2, edgeR, 3,5 With benchmarked differential expression analysis, in
2016 [41] TPM voom-limma general voom and edgeR showed the most stable
performance and be superior to other methods in
most assay with replicates of 3 and 5. But voom
significantly underperformed in transcript-level simula-
tion and edgeR shown suboptimal results in the SEQC
dataset
Maza E 2016 TMM, RLE, MRN  DESeq2, edgeR 1 The three methods gave the same results for a simple
[42] two-condition comparison withourt replicates.
Costa-Silva TMM, RLE, UQ,  Limma-Voom, NOlseq, DESeq2, 18 Limma-voom, NOIseq and DESeg2 had more consistent
et al. 2017 [43] voom SAMSeq, EBSeq, sleuth, baySeq, edgeR results for DEGs identification
Spies et al. Vst, Med, RLE, DyNB, EBSeq-HMM, FunPat, ImpulseDE2, 2,3, 5 DESeq2 and edgeR with a pairwise comparison
2019 [44] TMM Imms, next maSigPro, nsgp, splineTC, outperformed TC tools for short time course (< 8 time

timeSeq, edgeR, DESeq2

points) due to high false positive rate except
ImpulseDE2, but they were less efficient on longer time
series than splineTC and maSigPro tools.

methods for controlling the FDR with replicates of 3 and
5, but voom significantly underperformed in transcript-
level simulation [41]. In contrast, another study reported
that TMM, RLE and MRN gave the same results for a
two-condition comparison without replicates [42] while

limma-Voom, NOIseq and DESeq2 had more consistent
results for DEG identification [43]. A recent study using
RNA-seq time course data found DESeq2 and edgeR with
a pairwise comparison outperformed TC tools for short
time course (< 8 time points) due to high FPRs, but they
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performed worse on longer time series than splineTC and
maSigPro tools [44].

Taken together, these studies showed that TMM and/
or RLE associated with edgeR and DESeq2 outperformed
the others in terms of overall performance on sensitivity
and specificity [17, 23, 33, 34, 36, 37, 39-41, 43, 44].
However, these studies also reported that TMM and UQ
normalizations were too liberal or oversensitive, result-
ing in a large number of false positives, while RLE imple-
mented in DESeq with an exact test was too conservative
[23, 36, 37]. A recent study concluded that RLE/DESeq2
with a Wald test improves sensitivity compared with a
previous version of RLE/DESeq with an exact test. But
this comes with a trade-off for a relatively higher FPR
[25]. Later studies reported that the actual FDR pro-
duced from TMM/edgeR with an exact test, and RLE/
DESeq2 with a Wald test, was not controlled well in
many cases [18, 23, 33, 36, 37]. Most recently, edgeR of-
fered a quasi-likelihood (QL) F-test for testing DE genes
using negative binomial generalized models, which was
considered to be a preferred choice for the uncertainty
in estimating the dispersion for each gene when sample
sizes were small [45]. In our recent study, we found that
UQ-pgQ2 normalization combined with an exact test
from edegR performed slightly better than TMM and
RLE in terms of FDR when using MAQC data and simu-
lated data. However, all the methods had an inflated
FDR using MAQC datasets [18]. Thus, it remains unclear
which combination of normalization and test statistics can
minimize the number of false positives while taking into
consideration of sample size and read depth variations.
While studies comparing different normalization methods
have been widely reported and discussed, this issue for the
evaluation of newly developed normalization and testing
statistical methods has not been adequately addressed.

In this study, we evaluated the performance of two
commonly used packages (DESeq2 and edgeR) with three
statistical tests (exact test, QL F-test and Wald test), the
three most frequently used normalization methods (RLE,
TMM and UQ) and the more recently proposed two-
step normalization (UQ-pgQ2). Two benchmark MAQC
(Microarray Quality Control Project) datasets [34, 46, 47],
five real RNA-seq datasets from The Cancer Genome
Atlas (TCGA) website [48], and simulated data with vary-
ing read depths are used in this study.

Results

Statistical analysis of MAQC2 and MAQC3 for the
combined methods

In our previous study, we evaluated the effect of
normalization methods including DESeq, TMM, UQ-
pgQ2 and UQ based on DEG analysis using two MAQC
datasets and an exact test/edgeR. In this study, the ef-
fects of the Wald test/DESeq?2, exact test/QL F-test from

Page 4 of 17

edgeR and t-test/voom-limma were used to evaluate the
normalization and test statistical methods.

The number of true positive (TP) and false positive
(FP) genes calculated were based on the number of
DEGs identified from MAQC RNA-seq data given a
nominal FDR cutoff 0.05, and the total number of TPs
and true negatives (TNs) were based on qRT-PCR data.
We also calculated the positive predictive value (PPV),
the actual FDR, sensitivity and specificity for both data-
sets (Table 2). Using MAQC2 data, the analysis results
show that UQ-pgQ2 combined with an exact test/edgeR
has the highest specificity (85.1%) with the lowest actual
FDR (0.055) while the others ranged from 37.8 to 45.3%
with a FDR greater than 0.1 and slightly lower sensitivity
(96.7%). An exact test/TMM has the highest sensitivity
(98.5%) while the others ranged from 96.7 to 97.4%. The
UQ approach performed the worst in both sensitivity
and specificity, consistent with other findings [18].

While using a Wald test, the results show that UQ-pgQ2
outperformed the others with the highest specificity (66.9%
compared to the others from 43.9 to 46.0%) and a slightly
higher sensitivity (98.7% compared to the others from 95.9
to 96.4%). RLE has a slightly higher sensitivity (96.4%) than
the TMM and UQ methods while having a tradeoff of lower
specificity. When using the recently proposed QL F-test, the
results show that UQ-pgQ2 has the highest specificity
(58.7% compared to the others arranged from 24.5 to 28.0%)
and the highest sensitivity (99.7% compared to the others
99.2%). TMM with a QL F-test has a slightly higher specifi-
city (28%) than RLE/UQ (24.5%). Although a t-test for DEGs
analysis in RNA-seq studies is not commonly used due to
the distribution of the read counts in RNA-seq data follow-
ing a negative binomial [26, 49], the voom-limma package
has been recently proposed [29] and was reported to have
good control of FDR, but low power for small sample size
[36, 37]. Therefore, it is interesting to examine the results
from a t-test using log-transformation of read counts follow-
ing one of the four normalization methods. As expected, the
results show there is no difference between the UQ and
UQ-pgQ2 methods since the median scaling factor esti-
mated for each gene across samples in UQ-pgQ2 was can-
celed while applying a t-test [50]. Although UQ/UQ-pgQ2
performed relatively better than TMM and RLE, with a
specificity of 48.7%, there was a tradeoff with lower power
of 93.1%, consistent with previous reports [36, 37]. The re-
sults also suggested a t-test is not a better choice for the
TMM and RLE methods compared to other tests such as
a Wald test or an exact test/QL F-test.

Overall, for this comparison study of the four test statistics
(the exact test/QL F-test, Wald test and t-test), the results
from MAQC?2 data demonstrated that UQ-pgQ2 and TMM
combined with an exact test/Wald test performed much bet-
ter than using a QL F-test and t-test in terms of sensitivity/
power and specificity/FDR while UQ and RLE were varied.
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Table 2 Statistical analysis of DEGs from four normalization and test statistics given a nominal FDR < 0.05. Listed are the number of
TP and FP genes, the observed FDR and the PPV, sensitivity and specificity using MAQC datasets

Data Statistical test (package) Methods # of TP # of FP PPV Actual FDR Sensitivity Specificity
MAQC2 (n =2) Exact test (edgeR) UQ-pgQ2 377 22 0.945 0.055 0.967 0.851
™M 384 81 0.826 0.174 0.985 0453
RLE 380 91 0.807 0.193 0974 0385
uaQ 379 92 0.805 0.195 0.972 0378
Wald test (DESeq2) UQ-pgQ2 385 49 0.887 0.113 0.987 0.669
uQ 374 80 0.824 0.176 0.959 0460
TMM 374 82 0.820 0.180 0.959 0446
RLE 376 83 0.819 0.181 0.964 0439
T-test (voom-limma) UQ-pgQ2 & UQ 363 76 0.827 0.173 0931 0487
™M 373 97 0.794 0.206 0.956 0.345
RLE 364 92 0.798 0.202 0.933 0378
QL F-test (edgeR) UQ-pgQ2 387 59 0.868 0.132 0.997 0.587
TMM 385 103 0.789 021 0.992 0.280
RLE & UQ 385 108 0.781 0.219 0.992 0.245
MAQC3 (n=5) Exact test (edgeR) UQ-pgQ2 383 51 0.882 0.118 0.987 0.643
TMM 386 93 0.806 0.194 0.995 0350
RLE 386 98 0.798 0.202 0.995 0.315
uQ 386 98 0.798 0202 0.995 0315
Wald test (DESeq2) UQ-pgQ2 384 83 0.822 0.178 0.990 0420
uaQ 387 101 0.793 0.207 0.997 0.294
TMM 386 103 0.789 021 0.995 0.280
RLE 385 102 0.791 0.209 0.992 0.287
T-test (voom-limma) UQ-pgQ2 & UQ 362 58 0.862 0.138 0.932 0.594
RLE 376 64 0.856 0.146 0.969 0.552
TMM 350 60 0.853 0.146 0.902 0.580
QL F-test (edgeR) UQ-pgQ2 382 85 0818 0.182 0.985 0.406
TMM 385 99 0.796 0.205 0.992 0308
RLE 386 105 0.786 0214 0.995 0.267
uaQ 386 104 0.788 0212 0.995 0.273

The results from an additional analysis of MAQC3 with
five replicates had similar conclusions for UQ-pgQ2
normalization (Table 2). Briefly, UQ-pgQ2 with an exact
test was the best choice and achieved the highest specifi-
city among the four normalization methods for all four
test statistics. The results also show that all normalization
methods combined with a t-test/voom-limma achieved
better specificity than a Wald test and QL F-test while all
the methods have a sensitivity close to or above 90% with
a tradeoff of lower power than others. Thus, the results
using MAQCS3 data suggested that an exact test for UQ-
pgQ2 or a t-test from voom-limma seems to control the
FDR better than other methods when sample sizes or rep-
licates are relatively large.

Finally, the results from the analysis of both MAQC
datasets suggested the four normalization methods

combined with the three test statistics (exact test, QL F-
test and Wald test) can achieve a great sensitivity/power
while a t-test from voom-limma has relatively lower power
with unstable performance on the control of FDR. Al-
though the UQ-pgQ2 method performed relatively
better for controlling FPs, all normalization methods
have a problem maintaining the actual FDR below the
nominal level of 0.05, which agrees with previous re-
ports [18, 23, 33].

Within-group analysis of real cancer datasets for
detecting FPs given a desired sample size

A type I error rate and FDR are the most important per-
formance measures for evaluating DEG analysis
methods. The large number of replicates from TCGA
human cancer datasets including non-small cell lung
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cancer with adenocarcinoma subtype (AdLC), ovarian
cancer (OC) and triple negative breast cancer (BC) al-
lows us to perform within-group analysis of FPs for esti-
mation of a type I error rate. The four normalization
methods (TMM, RLE and UQ and UQ-pgQ2) combined
with the exact test, QL F-test or Wald test were com-
pared given a desired sample size of replicates in a single
group. The two synthesized groups with an equal and
desired sample size were randomly subsampled from the
same cancer subtype. Under the null hypothesis, the
genes between the two synthesized groups in this study
are not expected to be differentially expressed. Thus, the
DE genes identified are defined as FPs. Given a FDR cut-
off of 0.05 and an absolute value of FC cutoff at 2 as a
conventional way for identifying DEGs, the FPR (a
fraction of DEGs) and the number of FPs identified are
illustrated in Fig. 1 and Additional file 1: Figure SI,
respectively. Although the FPR for all the four
normalization methods based on the three datasets are
below 0.05, the performance of these methods are sig-
nificantly different.

First, using an exact test/QL F-test, we found that the
FPR in Fig. 1 increases as the sample size for all the
methods increases from 5 to 40 in the three cancer data-
sets (Fig. 1a, b, d,e, g and h). However, not unexpectedly,
this pattern was not observed when a Wald test was
used. With a Wald test, higher FPRs are observed when
sample sizes are five and they tend to decrease at larger
sample sizes of 10, 15, 20, 25, 35 and 40 (Fig. 1c, f and
i), but the FPR for different sample sizes varies (Fig. 1c).

Second, we found that the exact test at a sample size
of five can achieve a smaller value of FPRs than a Wald
test for all the methods (RLE in pink, TMM in green,
UQ in blue and UQ-pgQ2 in purple). This suggests that
when a sample size is small, an exact test is more con-
servative than a Wald test. Moreover, the QL F-test
combined with any of four normalization methods at
sample sizes of 5, 10 and 15 can achieve the smallest
FPR compared to the other two tests (Fig. 1b, e and h).
However, when a sample size becomes large (n > 15), a
Wald test for RLE, TMM and UQ is more conservative
than choosing the exact test or QL F-test.

Third, in this study, the differences among RLE,
TMM and UQ normalization methods are relatively
small and varied. We found that the two-step
normalization method UQ-pgQ2, consistently per-
formed better than the others by achieving the smal-
lest FPR and number of FPs given a desired sample
size in all scenarios (Fig. 1 and Additional file 1: Fig-
ure S1). Overall, the results illustrate that a QL F-test
with a UQ-pgQ2 may be the best option for DEG
analysis when FDR is more important to be consid-
ered. These observations are consistent for the three
real datasets.
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The effect of sequencing read depth of OC samples on
the analysis of FPs from the normalization methods and
test statistics

Next, we examined whether the read depth in a RNA-
seq study affects the number of FPs for the
normalization and test statistical methods given a de-
sired sample size. The read depths of the 379 OC sam-
ples range from 19 to 157 million reads. Two new
datasets were generated by simply reducing the read
depth of the OC samples to one-third or half. Thus, we
obtained one dataset with the read depth in the range of
12.8 to 104 million reads and the other with a range of
9.6 to 78.6 million reads. Given an FDR cutoff of 0.05
and an absolute FC cutoff of 2, the FPR estimated from
the number of FPs identified in Additional file 1: Figure
S2 and S3 is illustrated in Figs. 2 and 3.

Within-group analysis of three sets of data with differ-
ent read depths revealed that the FPR from higher read
depths (19-157 M and 12.8-104 M) in Fig. 2a to 2f is
slightly larger than those with smaller read depths (9.6—
78.6 M) in Fig. 2g to 2i regardless of normalization
methods and sample sizes. However, the difference for
the samples with the read depths between 19 and 157 M
and 12.8-104 M (a smaller change) is varied and very
small. Regardless of read depth, similar patterns are ob-
served between Figs. 1 and 2. Overall, UQ-pgQ2 method
is more conservative than the others in most of scenar-
ios given a desired sample size and statistical test. How-
ever, Fig. 2 shows that UQ-pgQ2 combined with a Wald
test in read depth of 9.6 to 78.6 million is more liberal at
the sample size of five.

Figure 3 and Additional file 1: Figure S3 further dem-
onstrate the difference between three test statistics (the
exact test in pink, QL F-test in green and Wald test in
blue) and three normalization methods. The FPR in-
creases as sample sizes increase while using the exact
test and QL F-test, but the impact of FPR by the sequen-
cing read depth are very small. For a Wald test, the FRP
is larger than the one from other tests when the sample
size is five. Moreover, the FPR from RLE and TMM
combined with the three tests are similar (Fig. 3a, b, d, e,
g and h). In contrast, UQ-pgQ2 from the three tests
(Fig. 3¢, f and i) can achieve lower FPR compared to
other normalization methods.

The effect of sequencing read depths from simulated
data on the analysis of FPs given a desired sample size
Each of the six simulated datasets contains 122 samples
with a desired mean read depth of 30, 40 and 50 million
reads with a standard deviation (SD) of 3 and 5 million
reads, respectively. In this study, we examined whether
the simulated data with a desired read depth and SD af-
fects the number of FPs/FPRs from different
normalization and test statistical methods given a
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desired sample size. Given a FDR cutoff of 0.05 and an
absolute value of FC cutoff at 2, the results are illus-
trated in Fig. 4 and Additional file 1: Figure S4.

Overall, the results from the simulated data are similar
to the ones illustrated in Figs. 1 and 2. When the read
depths increase from 30 to 50 million reads (Fig. 4a, d, g, j,
m and p), the FPR from an exact test slightly increases,
which is consistent with the observation from real data
(Fig. 1). But, these patterns were not observed when using
the Wald test and QL F-test. We also observed that UQ-

pgQ2 (purple) performed the best with the lowest FPR
while TMM (green) performed the worst with the largest
FPR using an exact test. For a Wald test, UQ-pgQ2 per-
formed the worst for a sample size of five and performed
the best for sample sizes of 10 or larger while the other
methods performed similarly. For a QL F-test, all the
methods perform similarly by achieving very small FPR
for a given sample size of 5, 10 and 15. When the sample
size is 20 or larger, similar results are observed except
TMM combined with the QL F-test can achieve a smaller
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Fig. 2 False positive rates estimated via intra-group analysis of 379 OC samples with different read depths. lllustrated are the fractions of FPs
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FPR than RLE and UQ methods. Taken together, with a
QL F-test, UQ-pgQ2 outperformed the other methods by
achieving the smallest value of FPR regardless of the sam-
ple sizes and sequencing read depth.

Between-group analysis for identifying DEGs from cancer
samples versus the normal controls given a desired
sample size

Finally, we evaluated the four normalization methods with
three test statistics based on the number of significant

DEGs identified using the paired BC data (117 BC and 112
control) and lung cancer data (535 AALC and 59 normal
control). Given a desired sample size, the cancer and con-
trol groups were subsampled from BC/AdLC and their
control samples for 50 times, respectively. The number of
DEGs detected from each method with a desired sample
size is the average of the number of DEGs while boot-
strapping for 50 times. Given an FDR cutoff of 0.05 and
an absolute FC cutoff of 2, the number of DEGs identified
is illustrated in Fig. 5.
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First, we found that the number of DEGs increases as
the sample size increases from 5 to 30 for each method
(Fig. 5a-f). As the sample size increases from 30 to 40,
the number of DEGs varies either slightly increasing
(Fig. 5a-d) or decreasing (Fig. 5e, f).

Second, given sample sizes of 15 or more, an exact test
combined with one of the four normalization methods
detected more DEGs than the QL F-test and Wald test
in the most scenarios, which indicates that the Wald test
and QL F-test are more conservative than the exact test

while the exact test has more power than others. How-
ever, given a sample size of five, the Wald test can iden-
tify more DEGs than the exact test and QL F-test.

Third, comparing the four normalization methods,
UQ-pgQ2 (purple) is more conservative than the others
in the most scenarios except the QL F-test for AALC
data, where UQ-pgQ2 achieved the highest detection
power for given sample sizes of 10 or larger (Fig. 5d).
However, given a sample size of five, the number of
DEGs detected from UQ-pgQ2 combined with the exact
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Fig. 4 False positive rates estimated from simulated data with variable read depths given fixed sample sizes. lllustrated are the fractions of FPs
estimated from the RLE, TMM, UQ and UQ-pgQ2 normalization methods using the exact test, QL F-test or Wald test for sample sizes of 5, 10, 15,
20, 25, 30, 35 and 40. Plots are based on 122 simulated data with the mean read depth of 30 million and SD of 3 (a-c) or 5 million (d-f); a mean
; a mean read depth of 50 million reads and SD of 3 (m-0) or 5 million (p-r)

test or QL F-test is small (Fig. 5a-c). This observation
suggests that RLE, TMM and UQ combined with the
exact test or QL F-test from edgeR are the better
choice for achieving a better detection power than
UQ-pgQ2 for a small sample size such as five and
the number of DEGs identified from UQ-pgQ2 looks
more reasonable given a sample size >10. Since we
do not know the number of true positives and true
negatives, we assume the method detecting the high-
est number of DEGs may have the highest sensitivity
or detection power.

Discussion

Some previous studies comparing normalization
methods have reported that both DESeq2 and edgeR with
an exact test/likelihood ratio test failed to maintain the
actual FDR below the nominal level of 0.05, suffering
from being” oversensitive” in some cases [14, 18, 23, 37, 51].
Our recently proposed normalization method, UQ-pgQ2,
combined with an exact test had a better performance than
the others in terms of controlling the type I error rate and
FDR. However, in that previous study, sample sizes (repli-
cates) for a two-group comparison were smaller than six in
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many cases. Currently, common sample sizes in RNA-seq
studies can range from a minimum of 3 up to several hun-
dreds of biological replicates. It is known that a Wald test
can be used for testing a hypothesis of a parameter when
sample sizes are usually larger than 30 based on an asymp-
totic theorem. Recently, edgeR provided a QL F-test which
was recommended for studies with a small number of repli-
cates in RNA-seq data. A study of single-cell differential ex-
pression analysis observed that edgeR/QLF performed well
after filtering out lowly expressed genes [52]. Thus, a com-
prehensive comparison of QL F-test and other test statistics
combined with newly developed normalization methods
(UQ-pgQ2 or voom-limma) for DEG analysis of bulk RNA-

seq data deem to be needed. Furthermore, one outstanding
question is whether the Wald test, QL F-test or t-test com-
bined with a normalization method performs better than an
exact test used in the previous study in terms of controlling
FDR. Another question is what is the best combination be-
tween normalization and test statistical methods for the
control of type I error rate given a desired sample size. To
address these issues, we focused on four normalization
methods and three test statistics using both real RNA-seq
datasets and simulated data given sample sizes at 5, 10, 15,
20, 25, 30, 35 and 40.

Initially, we used two benchmark MAQC datasets for
the DEGs analysis. The results from MAQC datasets
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show that UQ-pgQ2 combined with an exact test can
achieve the highest specificity with the sensitivity higher
than 90%. We also observed that edgeR with TMM
normalization performed better than RLE and UQ with
the Wald test or QL F-test in terms of sensitivity and spe-
cificity using the small samples sizes of MAQC datasets.
Next, we used an intra-group approach to calculate
the number of FPs and FPR from null datasets generated
from real data and simulated data. We compared these
methods by taking into consideration of sample sizes
and read depths. The results from this approach have
shown that in general the QL F-test combined with any
one of four normalization methods (RLE, TMM, UQ
and UQ-pgQ2) performs the best for achieving the low-
est value of FPRs when the sample size is small (<15).
However, when the sample size is large, UQ-pgQ2 com-
bined with the QL F-test performs the best and the
Wald test performs much better than an exact test and
QL F-test with FPR below 0.01. Moreover, we found the
read depths from simulated data with 30 to 50 million
reads have a minimal impact on detection power and
FDR. Furthermore, comparing DEG analysis of BC and
AdLC suggests that the RLE, TMM and UQ combined
with an exact test or a Wald test have higher sensitivity or
power than the UQ-pgQ2 method. However, these
methods may suffer oversensitivity when the sample sizes
are large. In addition, the results from AdLC show UQ-
pgQ2 combined the QL F-test achieves higher detection
power than other combined methods, but this observation
is not consistent with the one from BC datasets.
Furthermore, it is important to note that the evaluated
methods may not be applicable to all type RNA-seq data.
For example, single-cell RNA sequencing (scRNA-seq)
data has been increasingly used to assess different cell
states and cell types such as stem cell, neuron cell and
cancer cells [53-55]. A DEG analysis between different
cells in scRNA-seq can help to uncover driver genes in
cancer research [56]. Due to technical limitations, SCRNA-
seq data generally have low library sizes resulting in a
large fraction of ‘dropout’ events as well as huge hetero-
geneity, which introduces a major challenge in identifica-
tion of DEGs. Given the special characteristics, many new
methods have been developed especially for DE analysis of
scRNA-seq data [57-60]. A few studies have compared
DEG analysis tools for scRNA-seq data and found that
existing methods for analysis of bulk RNA-seq data per-
form as well as, or not worse than, those specifically devel-
oped for scRNA-seq data in terms of the power and FDR
[52, 61]. A recent study has conducted DEG analysis for a
comparison of eleven tools and two of them (edgeR and
DESeq2) were designed originally for bulk RNA-seq [62].
In this study, a high disagreement among these tools in
calling DEGs were identified due to a trade-off between
the sensitivity and FDR. It also reported that current
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methods developed for scRNA-seq did not show better
performance compared to edgeR and DESeq2, which is
consistent with the findings from previous studies. Thus,
it is reasonable for us to mention here whether the newly
developed normalization methods such as UQ-pgQ2 and
Med-pgQ2 can be used for DEG analysis in scRNA-seq
data for a control of FDR.

Finally, our study has some limitations. First, this work
is limited to gene-level analysis and balanced designs. Sec-
ond, the per gene normalization method, UQ-pgQ2, is
only used for the DEG analysis among the groups and is
not applicable for comparing genes within a group. Third,
we used within group analysis of several cancer subtypes
to identify DEGs and we assumed the DEGs as false posi-
tives that were used to calculate FPRs. Although this ap-
proach has been used to estimate the type I error or FPs
for the comparison of normalization and test statistical
methods in several studies [32, 37, 46], these identified
genes may contain some TPs due to the variation between
cancer patients. However, this limitation can be offset by
the two benchmark MAQC RNA-seq data. Finally, since
voom-limma with a t-test used for DEGs analysis in bulk
RNA-seq data, we need to address here that per gene
normalization in UQ-pgQ2 would not alter the DEG re-
sults due to the invariant property of t-test for the linear
transformations of gene counts across samples.

Conclusions

Taken together, we found the UQ-pgQ2 method with an
exact test is the best choice for DEG analysis in terms of
controlling false positives when using the benchmark
MAQC datasets. However, based on an intra-group ana-
lysis of real data and simulated data, we found UQ-pgQ2
combined with a QL F-test outperforms other methods
by achieving the smallest value of FPR, and a Wald test
from DESeq?2 can achieve a FPR below 0.05 when sample
sizes are large. We observed that the RLE, TMM and
UQ normalization methods combined with the Wald or
exact test/QL F-test performed similarly and read depths
have minimal impact on detection of DEGs from the
analysis of simulated data. We hope this new finding can
serve a guide for researchers to properly choose the
normalization and test statistical methods for identifying
DEGs while taking sample sizes into the consideration.
As scRNA-seq technology emerges, UQ-pgQ2 combined
with the QL F-test may be useful for DEG analysis of
scRNA-seq data for controlling FDR, but an evaluation
should be conducted in the future.

Methods

Data sources

Microarray quality control project (MAQC) RNA-seq data
Two benchmark RNA-seq datasets (MAQC2 and
MAQC3) were used for evaluation [18, 34, 46]. These
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datasets have two conditions: human brain reference
RNA (hbr) and universal human reference RNA (uhr).
MAQC2 RNA-seq data contains two replicates in each
condition (hbrl, hbr2, uhrl and uhr2). The hbrl / uhrl
and hbr2 / uhr2 samples were prepared and sequenced
in different labs. MAQC3 RNA-seq data contains five
replicates in each condition.

TagMan qRT-PCR data

In the MAQC project, a benchmark PCR dataset of 1044
genes was used for validation. Detailed information for
processing and analyzing this data has been previously
described [17, 18, 38, 47]. Briefly, we identified 388
genes as true positives and 143 genes as true negatives
to evaluate these methods.

Human cancer RNA-seq datasets from TCGA

Three types of human BC, OC and LC data were down-
loaded from TCGA website [48]. In this study, we used
one subtype from each cancer type. The 122 TNBC, 379
OC, 523 AdLC and 59 normal control samples were ex-
tracted using an R script (v3.5.2). For DEG analysis, 117
BC and 112 paired normal control samples were ex-
tracted. Lowly expressed genes in each TCGA dataset
were filtered out when the zero counts across samples
were greater than 50% across the samples. The
remaining genes were used for the downstream analysis.
These datasets are available in Additional file 2.

Simulated data using Monte Carlo method
The simulated data is based on the 122 TNBC samples
with a range of total read depth between 23.8 and 98.7
million reads. For our simulation, let G be the total
number of genes (G =30,831) with desired sample sizes
(n =5, 10, 15, 20, 25, 30, 35 and 40) denoted as the
number of replicates. Let R;, be the read counts in sam-
ple i and gene g and N; be the total number of reads
(read depth) in sample i as estimated from the 122
TNBC samples. Let p;, be the proportion for the gene g
in sample i, where p;, was estimated from R, divided by
N;. For simulating read depths, we modeled the inde-
pendent and desired read depth N; (i =1, ..., ;) to follow
a normal distribution with a mean of 30, 40 and 50 mil-
lion reads, and standard deviation of 3 million reads for
scenario one and 5 million reads for scenario two for
each N,. The resulting distributions are N;~N (30, 33
and N; ~N(30, 5%); N; ~N(40, 3°) and N;~N(40, 5%); and
N; ~ N(50, 3%) and N, ~ N(50, 52), respectively.

As an example, in the case of generating samples with
a mean read depth of 30 million reads and a standard
deviation of 3 million reads given a desired sample size
of five, first, ten samples for the two groups were ran-
domly selected from the set of 122 TNBC cases. We
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estimated p,, for each sample and generated read depths
based on N ~N(30, 3% using the Monte Carlo method.
Finally, the raw counts for each sample were generated
using multinomial distribution given a desired N; and a
vector of p,, for sample i. This procedure was repeated
50 times given desired sample size of 5, 10, 15, 20, 25,
30, 35 or 40 combined with N;~N(30, 32). Thus, the
data in the two groups was generated in the scenario of
N; ~N(30, 3%).

Sequence alignment and extraction of gene counts

The raw Sequence Read Archive (SRA) files for the
MAQC2 and MAQC3 with two conditions were con-
verted to .fastq files and then aligned to the human hg38
reference genome using STAR (v2.6.0c) [11] and the
Ensembl hg38 annotation gtf file (GRCh38.82). The
mapped counts for 60,483 genes per sample were ex-
tracted using HT Seq-scripts-count (version 2.7.5). Lowly
expressed genes with zero counts across all the samples
were further filtered. The MAQC datasets are available
in Additional file 2.

Normalization methods and software packages

The normalization methods, statistical tests and software
packages for the DEG analysis between the two-group
comparisons are summarized in Table 3. The R code
used in our analysis is available in Additional file 3.

Normalization methods

Four methods (RLE, TMM, UQ and UQ-pgQ2) were
used to normalize RNA-seq data. In this study, RLE and
TMM normalizations were implemented in DESeq2 and
edgeR, respectively [25, 63]. UQ and UQ-pgQ2 were im-
plemented using an R script [18, 23, 28]. UQ-pgQ2 uses
a two-step approach for normalization [18]. Briefly, as-
suming G genes and m samples, the scaling factor for
UQ normalization is calculated from the 75th percentile
(Q3) of the counts for each sample after removing genes
with zero counts. Gene g in sample j is scaled by the UQ
scaling factor and then multiplied by the mean of the

scaling factors from m samples. Therefore, X;{Q is gene

g in sample j with UQ normalized counts. Then, UQ-
normalized gene g is further scaled by its median (Q2) of
read counts across m samples and then multiplied by

100. Therefore, XgQ_p e g gene g in sample j and nor-
malized by UQ-pgQ2 method.

Software packages and test statistics used for DEGs
analysis

The exact test, QL F-test and Wald test were used for
the detection of DEGs. In this study, we used the exact
test and QL F-test implemented in edgeR (v3.24.3) [45].
A Wald test implemented in DESeq2 (v1.22.2) was
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Table 3 Summary of normalization methods combined with statistical tests in software packages used

Normalization Description of normalization Distribution Exact test Wald test
method
RLE Per sample by Relative Log Expression NB edgeR DESeq2
(v3.243) (v1.22.2)
T™MM Per sample by Trimmed Mean M-values NB edgeR DESeq2
(v3.243) (v1.22.2)
uQ Per sample scaled by upper quantile NB edgeR DESeq2
(v3.243) (v1.22.2)
UQ-pgQ2 Per sample scaled by upper quantile and per gene by medium across NB edgeR DESeq2
samples (v3.24.3) (v1.22.2)

NB negative binomial distribution

reported to improve the sensitivity compared with an
exact test implemented in DESeq [25].

Log-transformed Wald test in a NB distribution

The Wald statistical test is an asymptotic test based on
the normal approximation, which utilizes the large-
sample properties of maximum likelihood estimation
(MLE). In DESeq?2, the read counts Kj; in gene i sample j
is modelled by a generalized linear model (GLM) of the
NB family with a log link:

K;j~NB(mean = u;;, Dispersion = a;), u;; = s;u; and log
q; = 2 1% By -
normalize the gene read counts in sample j and the g; is
the true expression of gene i [25].

For a GLM with two conditions and a single gene in
sample j, the log-transformed Wald test has been de-
scribed in several studies [64—66]. Briefly, the treatment
and control group indicators (x,) take the value 1 and 0,
respectively, resulting Z—; = b1 . For the differential ex-

The s;=s5; is the size factor used to

pression gene analysis, the ratio p =¢,/go (a fold change)
is used for a hypothesis test. Testing the hypothesis of
g, Hy: p=1vs. Hy: p 21 is equivalent to Hy: 3, =0 vs. Hy:

B1#0 in GLM. The two-sided Wald test is defined as

| Zw |= B -
\/ Var(ﬁl)
the variance-covariance matrix of (3, ,5;), which is the
inverse of the Fisher information matrix of I, (8, and
B;) asymptotically. To reject the null hypothesis, |Z,]

, where the Var(B,) is estimated from

> Zj.q is defined. Thus, this gene with p-value less than
0.05 is called a DEG. For testing multiple genes simul-
taneously, the p-values are further corrected using
Benjamini-Houchberg FDR method [67].

Exact test in a NB distribution

Since RNA-seq data are read counts, an exact test has
been implemented similarly in DESeq and edgeR [26,
68]. For a gene in a two-group comparison, the exact

test has been described by several studies [18, 26, 69] .
Briefly, Y;; is denoted the normalized read counts of the
single gene in condition i = A and B, and replicate j=1,
..., n; Then, the distributions of Y; and Z;’ Y are as-
sumed to follow a negative binomial distribution with an
expected mean u; and dispersion ¢ expressed as:

Yei~Yei-NBugy 0), D27 Yy ~ NB(n; - s, o), E(S} Yy)
=n; - u;, and Var (Z;’ Yy) =niui+n; - u? - ¢ . The null
hypothesis Hy:u4 = up is to identify DEGs between condi-
tions A and B and the total normalized counts in each con-
dition are Y, = Z;”‘ Yy and Yp = Z;’B Y. The total
counts of two conditions for the gene are Ys= Y, + Y.

Since Y, and Y3 are assumed to be independent, the
joint probability of P(Ys=y4, Yz=yz ) under H, is
P(Yg4 = yg4) X P(Ygp = yep). Thus, the p-value from an
exact test [26] is calculated by summation of the prob-
ability of a pair of P(a, b) that is less than or equal to the
observed P(y4, yg) given that the overall summation of
P(a, b). The pair of variables a and b are defined as a =
0, ..., Ysand b =Ys— a. Then the p-value for gene g is

p. value = P1/P,, where

Py

ﬂ+b:Ys P(YA:a)XP(YBZb),

P(a,b) SP(yA,yB)
and

Py = Zu+b:Y5P(a’ b).

The p-value is further adjusted for multiple test cor-
rection using the Benjamini-Hochberg FDR method-
ology. A study reported that the exact test performed
better for achieving a smaller FDR than a Wald and like-
lihood ratio tests when the sample size is small [49].

Intra-group analysis to identify the number of FPs given a
desired sample size

To compare the methods, we utilized the desired num-
ber of replicates (5, 10, 15, 20, 25, 30, 35 and 40) to esti-
mate the number of false positives and the
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corresponding FPR, a fraction of DEGs via intra-group
analysis. Given sample sizes, two groups are generated
by randomly subsampling from a single cancer group.
Since the samples originate from the same condition,
the number of DEGs expected in such two-group com-
parisons should be zero. Thus, by this assumption, any
DEGs would be defined as false positives that were fur-
ther used for estimating FPR under a null hypothesis
(32, 37, 52, 70].

Bootstrap differential expression analysis of cancer versus
normal control samples given a desired sample size
Given desired sample sizes of 5, 10, 15, 20, 25, 30, 35
and 40, the two-group data (cancer and normal control)
were randomly subsampling from BC/AdLC and the
normal samples, respectively. Subsequently, the cancer
and control groups were normalized by one of the four
normalization methods used in this study. The DEG
analysis of the normalized data was performed with the
aid of edgeR, DESeq2 and limma tools. The results from
these packages include the log, transformed fold change,
p-values and Benjamini-Hochberg FDRs. In this study,
we defined significant DEGs using an absolute value of
log, FC cutoff at one (|FC| = 2) and a FDR cutoff at 0.05.
The bootstrapping process of running each DEG algo-
rithm was iteratively repeated 50 times. The mean num-
ber of DEGs corresponding to the standard error was
imputed from the 50 iterations.
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