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Abstract

produce contig sets from de novo assemblies.

the transcriptome for downstream analyses.

Background: RNA-Seq is the preferred method to explore transcriptomes and to estimate differential gene
expression. When an organism has a well-characterized and annotated genome, reads obtained from RNA-Seq
experiments can be directly mapped to that genome to estimate the number of transcripts present and relative
expression levels of these transcripts. However, for unknown genomes, de novo assembly of RNA-Seq reads must
be performed to generate a set of contigs that represents the transcriptome. These contig sets contain multiple
transcripts, including immature mRNAs, spliced transcripts and allele variants, as well as products of close paralogs
or gene families that can be difficult to distinguish. Thus, tools are needed to select a set of less redundant contigs
to represent the transcriptome for downstream analyses. Here we describe the development of Compacta to

Results: Compacta is a fast and flexible computational tool that allows selection of a representative set of contigs
from de novo assemblies. Using a graph-based algorithm, Compacta groups contigs into clusters based on the
proportion of shared reads. The user can determine the minimum coverage of the contigs to be clustered, as well
as a threshold for the proportion of shared reads in the clustered contigs, thus providing a dynamic range of
transcriptome compression that can be adapted according to experimental aims. We compared the performance of
Compacta against state of the art clustering algorithms on assemblies from Arabidopsis, mouse and mango, and
found that Compacta yielded more rapid results and had competitive precision and recall ratios. We describe and
demonstrate a pipeline to tailor Compacta parameters to specific experimental aims.

Conclusions: Compacta is a fast and flexible algorithm for the determination of optimum contig sets that represent

Keywords: RNA-Seq, de novo assembly, Corset, Grouper, Transcriptomics

Background

RNA-Seq is the most frequently used method to explore
transcriptomes, i.e., sets of mRNA molecules expressed
in a cell, tissue, organ or whole organism under particu-
lar conditions [1, 2]. To generate samples for RNA-Seq,
mRNA isolated from a given sample is converted to cir-
cular DNA (cDNA) that includes a mixture of frag-
ments. The ¢cDNA is sequenced to obtain ‘reads’ that
represent parts of the original mRNA molecules. When
a sample genome is known, the reads can be mapped to
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a reference sequence to reconstruct the transcripts and
estimate their relative abundance.

However, when no genome is available, reads must be
assembled de novo before attempting to reconstruct the
expressed transcripts and estimate their relative abun-
dance. Transcriptome assemblers including Trinity [3],
Soap de novo [4], ABySS [5] or Spades [6], among
others, perform this assembly to generate ‘contigs’ - se-
quences arising from reads that overlap or by the use of
‘Brujin graphs’ [7].

De novo assembly of eukaryotic transcriptomes is
challenging both due to dataset size that can include bil-
lions of reads and the difficulties in identifying alterna-
tively spliced variants [7], alternative gene alleles [8],
small variants within a gene family [5] or close gene
paralogs [9, 10]. This assembly problem is exacerbated
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by temporal transcription, wherein significant parts of
the genome, both coding and non-coding segments, are
transcribed only at specific points during development
or under specific conditions [11, 12]. Moreover, a large
fraction of reads can belong to nascent RNAs, and thus
include introns that could contribute to many contigs in
the assembly [13]. As a result, transcriptome assemblies
typically produce very large contig sets that in some
cases are many-fold larger than the number of genes in
the entire species genome. For example, de novo assem-
bly of the transcriptome for the polychaete annelid Pla-
tynereis dumerilii using Trinity gave a set of 273,087
non-redundant contigs, which were identified through a
pipeline that included sequence homology to only 17,
213 genes [14], nearly 16-fold fewer than the number of
contigs.

Transcriptome assemblers output many contigs that
reflect the diversity found in the original mixture of
mRNA molecules. However, for downstream analyses,
these large contig collections must be culled to yield a
smaller and more tractable set, which ideally groups
contigs into transcripts produced by the same gene.
Methods to group contigs can involve the use of se-
quence information, such as cd-hit-est [15], or use only
the information about which reads map to each contig.
The two main programs using the second approach are
Corset [16] and Grouper [17].

Corset takes the set of reads and hierarchically clusters
the contigs based on the proportion of shared reads. The
program first filters out contigs that have a low number
of mapped reads (< 10 by default) and then cluster con-
tigs based on shared reads, while separating contigs hav-
ing different expression patterns between samples. This
approach thus avoids placing two or more paralogs or
alternatively spliced forms into the same cluster through
the use of a likelihood ratio test across groups of sam-
ples having a fixed P value threshold of approximately
107°. A distance threshold for clustering can be set by
the user, but the default value of 0.3 is equivalent to
sharing of 70% of the reads between two entities, i.e.,
original contigs or clusters already obtained by the algo-
rithm. The number of shared reads is also updated at
each iteration and clustering of a contig set stops when
either all the contigs have been grouped into a single
cluster or the current minimum distance increases above
the distance threshold.

The Corset algorithm has two disadvantages: First, it
uses a fixed number of reads to assess contig coverage,
disregarding contig and read lengths; Second, and per-
haps more importantly, the Corset algorithm depends
heavily on results of a likelihood ratio test to segregate
into clusters those contigs that could be the product of
two different genes. The nature and number of condi-
tions used to obtain different transcriptome samples can
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be unpredictable and, in principle, extremely diverse.
However, Corset output depends on these conditions
and thus groups working with the same organism could
conceivably obtain significantly different sets of clusters
to represent the transcriptome. Also, for annotation of
ongoing eukaryotic genome projects, an equimolar mix-
ture of RNA from different tissues of the same species is
sequenced [18]; in these cases the approach used by Cor-
set that segregates contigs from the same gene is not
useful because only one ‘condition’ is used and thus a
maximum likelihood test cannot be performed.

Grouper is another algorithm that generates contig
clusters based on shared reads. Similar to Corset, outputs
generated by the Grouper algorithm exclude contigs hav-
ing fewer than 10 reads; this threshold cannot be modi-
fied by the user. Also, like Corset, Grouper uses a
likelihood ratio test of expression estimates that vary sig-
nificantly across conditions to separate contigs under
the assumption that such contigs arose from different
paralogous genes. Optional Grouper filters allow infor-
mation for ‘orphan’ reads (when paired reads are used),
whereas the ‘min-cut’ filter uses the likelihood ratio test
to completely separate contigs, thus avoiding long path
joining. Interestingly, Grouper does not have a user ad-
justable threshold for weight (or distance) by which con-
tigs are clustered and instead relies only on the
abovementioned filters to cluster or segregate contigs.
Grouper also has an associated module to label (anno-
tate) clusters using information from a closely related
genome.

Grouper shares the same disadvantages with Corset,
i.e, the program uses an arbitrary minimum number of
reads to consider whether a contig is valid (in Grouper
the user cannot modify this value) and contig segrega-
tion depends on the RNA-Seq experimental conditions.

The ideal behavior for an algorithm to cluster contigs
obtained by de novo assembly of a transcriptome would
be to output a group of clusters (contig sets) that per-
fectly represent actual gene expression, i.e., a set wherein
the relationship between cluster and gene is one to one.
There are strong arguments concerning the impossibility
of obtaining such an ‘ideal’ algorithm in the absence of
detailed knowledge about the genome sequence in ques-
tion and using only the information given by multi-
mapping files that relate reads to contigs. In mathemat-
ical terms, we have an identifiability problem, meaning
that different sets of parameters (genes) can give a set of
reads having identical statistical profiles (number of
reads per contigs), making it impossible to determine
the set of genes that generated the output. As clearly
demonstrated by [19], to correctly identify transcripts
based entirely on RNA-Seq data, at minimum gene-
boundary data are needed, and data concerning tran-
scription start sites, splice junctions and polyadenylation
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sites are also useful. As noted by Boley et al. [19], “This
means that it is not always possible to positively identify
alternative transcript isoforms, even as the read depth
approaches infinity”. Confronted with the problem of
clustering contigs from an unknown genome, we have
no information concerning factors such as genome size
and complexity [20, 21], allele and gene copy variations
[22] or variations in exon-intron architecture [23].
Under this scenario, the best use of information from de
novo assembly is formation of a contig cluster that can
be used to identify the core set of expressed genes that
allows the most effective comparison of the relative ex-
pression of such entities based on the design of the
RNA-Seq experiment.

With the aim of reducing the complexity of RNA-Seq
data analyses, we present Compacta, a fast, flexible, and
computationally efficient way to group contigs obtained
from de novo assembly into clusters to represent the
core set of genes expressed in a given experiment as well
as to allow identification of gene sets and enhance statis-
tical power for detection of differential expression. The
algorithm depends on only two parameters: filtering of
low coverage contigs based on effective coverage and
clustering strength. After running Compacta, a single
contig, representing each cluster obtained, can be used
for downstream analyses for gene identification and de-
tection of differential gene expression.

Implementation

Compacta is designed to reduce the number of contigs
to a smaller set of representative sequences while pre-
serving the information about relative expression given
by read abundance. Its output can be used for down-
stream analyses to identify contigs and differential gene
expression patterns.

Prior to using Compacta, transcriptomes must be as-
sembled de novo using tools such as Trinity [3], Soap de
novo [4] or Spades [6]. Sequencing reads are then
mapped back to the assembled transcriptome using
alignment-based software such as Bowtie2 [24] or Hisat2
[25] to obtain a multi-mapped binary file in the ‘BAM’
format [26]. BAM files are the initial input for Compacta
and contain information about the contig set given by
the assembler as well as the reads that map to each set.

Compacta has two core parameters, —d = d, a thresh-
old for when two contigs belong to the same cluster,
and -1 =1/, the threshold needed for the minimum effect-
ive coverage for a contig to enter the clustering algo-
rithm. The value for d ranges between zero and one and
controls the extent of clustering. When d=0.3, for ex-
ample, all pairs of contigs sharing 30% or more of the
reads that reference the contig having fewer reads will
be clustered into a single entity. Meanwhile, / =2 implies
that only those contigs having a total coverage that is
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twice the contig length in terms of sequencing read
lengths will enter into the clustering process. Default
values for these two parameters are d=0.3 and [=2,
which are determined in the input as “-d 0.3 -1 2”. In
addition to file locations, Compacta includes options for
number and names of samples and experimental groups,
as well as options that allow parallelization of part of the
algorithm.

Compacta output comprises files that: (i) define the
obtained clusters as sets of the original contigs; (ii) give
the number of reads (raw count) of each cluster for each
sample input; and (iii) describe the type of clusters ob-
tained. The following list describes the parameters of the
Compacta algorithm.

1. Input. A set of BAM files and Compacta options.
BAM file data are parsed for the next step. The
sample origin of reads is preserved for inclusion in
the output.

2. Graph computation. From sets of ¢ contigs and r
reads in BAM files, Compacta creates an undirected
graph with ¢ vertices corresponding to contigs and
¢(c - 1)/2 connections (edges) between vertices. The
weight, wy, of an edge connecting contigs i and j; i
~ J, is calculated

where R; and R; are the number of reads that independ-
ently map to contigs i and j, respectively, while R; is the
total number of reads that map to both contigs i and j;
i.e, R; is the number of reads shared by contigs i and j.
This function is well defined since min (R;R;) > 0. The
weight of an edge, w;;, ranges from zero, when the edge
contigs share no sequencing reads indicating no similar-
ity (disconnected contigs), to one, indicating that one of
the contigs is a proper subset of the other.

1. Filtering of low evidence contigs. The value ¢; is
defined as the length of contig i and s; is the sum of
the lengths of all reads that map to that contig. If
s; < (I x c;), where [ is the parameter “-I' input by the
user, the contig i is disconnected from any other
vertices in the graph and will be reported as a ‘low
evidence contig’. Disconnection of contig i implies
setting all weights w;; = 0 for all values of j, in turn
implying that when the set of contigs considered in
subsequent algorithm steps fulfill the condition
s;2 (I x ¢;), they are considered to be contigs with
sufficient evidence of expression.

2. Pre-cluster detection. Connected contigs
(vertices) are detected and isolated sub-graphs are
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marked as ‘pre-clusters’ that are each loaded into a
heap structure self-ordered by edge weight,
ensuring that the first value in the heap is always
the edge having the heaviest weight, i.e., the largest
value of w;.

3. Clustering. Compacta processes each pre-cluster
using an agglomerative algorithm. At each iteration,
the algorithm selects the edge having the highest
weight and, if this weight is above the defined
threshold d (parameter input as -d), the nodes are
grouped into a new entity. In this scenario, weights,
w; are re-calculated for the new conformation of
the pre-cluster and the process is repeated until the
first edge in the heap has a weight that is less than
the threshold d or all its contigs are clustered to-
gether. The final content of the heap structure,
which can contain one or more clusters, goes to the
output.

4. Output. Once Compacta processes all pre-clusters,
it produces files that include the description of each
cluster (sets of the original contigs), as well as lists
indicating which contig could represent each one of
the clusters, either by being the longest contig in
the cluster or the one that has the largest number
of reads mapping to it.

In summary, from BAM files containing the informa-
tion of the original contigs and reads mapping to them,
Compacta produces a set of representative contigs for
use in downstream analyses.

Algorithm implications
As with other software designed to reduce transcriptome
complexity, such as Corset or Grouper, Compacta uses a
graphical approach that ignores nucleotide sequence and
considers contigs only as sets of sequencing reads. Two
contigs, i and j, will be connected in the graph if they
share some reads, ie., if their intersection is not empty
and w; > 0. In step (2) of the algorithm, the graph is
constructed. Even when in principle all pair comparisons
between contigs must be performed, only the ones for
which the weights are larger than zero (w; > 0) need to
be stored and analyzed downstream. The logic behind
weight calculation is that contigs sharing a large propor-
tion of reads will also be ‘alike’ at the sequence level,
allowing read position within contigs to be disregarded.
Thus, if w; =0 we will consider that the corresponding
contigs are completely unrelated, whereas w;; =1 means
that the smaller contig is a proper subset of the second,
or, when they are the same size, they will be some per-
mutation of the positions of the same reads.

In step (3) of the algorithm, Compacta uses effective
contig coverage, expressed as the number of times that
the full-length contig is covered by reads, as a measure
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to detect and discard low evidence contigs. The user
controls the strength of filtering via parameter /; By set-
ting /=3, for example, only those contigs having suffi-
cient numbers of reads to cover the contig length three
times will pass the filter and continue for downstream
analysis. This parameter allows the user to limit the sub-
set of contigs of interest. Thus, if only those genes hav-
ing high expression levels are relevant, / can be set to a
high value. Filtered contigs are not discarded, but are in-
cluded in the output in which they are identified as low
evidence singletons’. In contrast, Corset and Grouper
allow selection of contigs only through a fixed threshold
in the number of reads that map to each contig, inde-
pendently of contig length. In Corset this threshold can
be changed by the user and by default is set to 10, while
in Grouper the threshold is fixed as 10 reads. However, a
fixed threshold number of reads is inadequate to judge
contigs having different lengths. For example, consider
the situation in which reads of 250 bp are used and a
contig of length 750bp is produced by 9 overlapping
reads. Here, the effective contig coverage is (250 x 9)/
750 =3, and Compacta will reasonably pass such a
highly covered contig for any value of / < 3, whereas Cor-
set and Grouper would discard such a contig considering
it as ‘low coverage’, and thus it would not appear in the
output.

The graph constituted by all contig pairs having w;; > 0
are input into the fourth step of the algorithm, ‘pre-clus-
ter detection’. Here a pre-cluster is defined as a set of
inter-connected contigs, or, in graph theory terms, as a
‘connected graph’ [27]. In simple terms, in a pre-cluster
there is a path that connects, either directly or indirectly,
all contigs that form such a structure. If a pre-cluster
graph is plotted, it is possible to go from any of the con-
tigs to any other contig by following a path. An import-
ant computational advantage of Compacta is that each
pre-cluster is loaded into a self-ordered heap structure,
in which the first edge always has the largest w;; value.
This heap structure is similar to ordered binary trees,
and can save considerable time [28], because arrays hav-
ing millions of components are not sorted at each
iteration.

The core of the Compacta algorithm is step (5), in-
volving agglomerative clustering of connected contigs or
‘pre-clusters’ that can be performed in parallel. The pro-
cessing of each pre-cluster is independent of other data,
and thus its clustering can be sent as an independent
thread, making optimal use of computer resources. With
the same goal, sets of pre-clusters could be distributed
to independent nodes in computer clusters. Clustering
of a pre-cluster structure proceeds by grouping into a
single entity pairs of sets having weight w;; that surpass
the threshold d input by the user. Given that the pre-
cluster is loaded into a self-ordered heap, the algorithm
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needs only to analyze the first element of the heap, thus
saving valuable time. Clustering of two entities, i and j
(that could be original contigs or previously identified
clusters), happens only if w;;>d and in that case both
entities are grouped together, after which weights be-
tween the new entity and all those in the pre-cluster are
re-calculated and the algorithm iterated. In the opposite
case, such as when w;; < d during the iterations, the en-
tire content of the heap is sent to the output, including
the definitions of clusters and the number of reads that
map to them. This process guarantees that the number
of entities in the output is smaller than or at most equal
to the number of input contigs. A simple example of this
process is presented in Section 1 of Additional file 1.

Any contig clustering algorithm that does not use dir-
ect sequence information but instead uses a graphical
approach must have a parameter homolog to the weight
threshold d used by Compacta. For example, in Corset
and Grouper this homolog parameter is the distance be-
tween contigs, which is simply the inverse additive of
Compacta d, ie., 1 -d for the threshold and 1-w;; for
the weights, which in these programs are conceptualized
as distances. In addition to the criterion used to filter
‘low evidence contigs’ as mentioned earlier, computa-
tional implementation of Compacta differs from those in
Corset and Grouper in the use of efficient self-sorting
heap structures to dynamically store pre-clusters, which
in turn allows the clustering step of Compacta to be
fully parallelized or distributed, thus making optimum
use of computer resources, including multi-core clusters.

Another substantial way that Compacta differs from
Corset and Grouper is that Compacta uses no computa-
tional methods to determine if two contigs were the
product of transcription from ‘the same gene’, whereas
both Corset and Grouper attempt to estimate and con-
sider contig origin. In our opinion, in the absence of
genomic information, accurate prediction of whether
two contigs are the product of: a) different alleles of the
same gene, b) alternative splicing forms produced from
the same gene or c¢) two highly similar genes (close para-
logs or two close members of the same gene family) is
essentially impossible due to the high diversity and con-
formations of eukaryotic genomes.

Compacta will be particularly useful when no genome
is available for a given organism, and the researcher
wants to: a) Have a core set of sequences representing
the major expressed genes that allows putative identifi-
cation via comparisons with well-known orthologs; and
b) Perform differential expression analysis of core genes
expressed in the transcriptome. To achieve these aims,
the ability to downsize the potentially very large number
of contigs given by the assembler into a smaller and
more manageable set of representative sequences is
valuable.

Page 5 of 13

Adjusting Compacta to assembly complexity

RNA-Seq experiments capture many transcript types
such as nascent or pre-mature RNAs [13] or non-coding
sequences like long non-coding RNAs [29]. In fact, the
ratio of transcribed non-coding to coding sequences can
vary enormously; in humans this ratio is 47:1, but in
nematodes is only 1.3:1 [30]. The assembly process is
likely to yield many related contigs that represent tran-
scription variants of the same gene as alternative splicing
forms, alleles, or products of the transcription of close
paralogs of the same gene or gene family. Here we dis-
cuss the features that Compacta offers to reduce assem-
bly complexity in a general framework.

Given a particular assembly, say t, consisting of a
group of ¢ contigs and r reads related by multi-mapping
files (BAM’ files), we can use Compacta to reduce the
set of ¢ contigs to a smaller set of z representative clus-
ters such that z<c. Apart from filtering low-evidence
contigs with the parameter -1=/, the number of clusters
given by the algorithm is a function only of the param-
eter d —the threshold for clustering contigs into clusters,
say fitd) =z, or simply flcd) =z, considering only the
number of input contigs, ¢, and the number of clusters
output, z. By setting d =0 we will cluster all contigs that
share one or more reads, because in that case all contig
pairs {i,j} that fulfill R; > 0 will give a weight w;; > 0 and
thus be clustered together, giving the smallest number
of clusters in the output. The number of clusters result-
ing from that operation can be termed z,,,, where f(c,
d =0) = z,,;,, which represents the maximum assembly
reduction that can be achieved by the algorithm. By
clustering all contigs with the slightest evidence of se-
quence similarity (i.e., one or more shared reads) we can
group all alleles, alternative splicing variants and close
paralogs genes into a single cluster. However, using this
approach we could also group into a single cluster tran-
scripts produced by different genes that share sequence
motifs that expand in sequence length beyond the length
of a single read. Under the same experimental condi-
tions, and with high sequencing depth, we can assume
that read length will have a strong effect in determining
the value of z,,, short reads will cause z,,, to be
smaller than when long reads are used. On the other
hand, if d is set to 1, we will ask the algorithm to group
only contigs that share all reads of the smaller contig,
because in order to have w;; = R;/min (R,R;) = 1 we must
have R;; = R; or R;;=R;. In that case, we will have a max-
imum number of clusters in the output, where flc,d =
1) = Zyua such that Compacta will cluster only those
contigs that are proper subsets of the longest contig in
the group (pre-cluster) and will likely produce clusters
containing only highly similar gene alleles, splicing forms
that share most exons in the genes, or very close para-
logs. Taken together, from this analysis we can conclude
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that flc,d) = z is a non-decreasing function of d with do-
main in the interval [0,1] for d and co-domain in [z,,,,
Zmax) for z. The fact that fic,d) = z is non-decreasing fol-
lows from the fact that a larger value of d can only in-
crease the number of output clusters, z, given that the
clustering algorithm will be more stringent, i.e., if d; <
d, then flc,d;) <flcdy). Due to the speed of Compacta,
performing two runs with extreme values, d=0 and d =
1, to obtain the values of z,,, and z,,,, for a particular
assembly is not computationally expensive. Having the
range of possible z values allows the researcher to fix a
target value z°, 2,,;, < 2" < 2,4 and, using a numerical
method, obtain the value of d (e.g., d), such that f(c,
d’) = z" by performing a set of Compacta runs.

Source data and software evaluation

Three RNA-Seq datasets from Arabidopsis (Arabidopsis
thaliana), mango (Mangifera indica) and mouse (Mus
musculus) were processed to compare Compacta with
other clustering tools.

In Table 1 the ‘Source’ column provides the reference
for the corresponding dataset; the column ‘Accession’
shows accession identifiers for data deposited in the Se-
quence Read Archive [34] of GenBank; the column
‘Reads (Gb)’ indicates the approximate giga base pairs of
raw data; and ‘Contigs’ shows the number of contigs ob-
tained from the assembly. The Arabidopsis and mouse
datasets were assembled de novo using the Trinity as-
sembler version 2.4.0 with default parameters, whereas
the mango dataset assembly generated by Trinity was
kindly provided by Dr. Miguel A. Herndndez Onate [32].

Compacta, Corset and Grouper were run with default
parameters using as input the contigs for each assembly
obtained from the sources shown in Table 1 (Fig. 1).

Results shown in Fig. 2 were obtained using Arabidop-
sis assembly contigs (see Table 1) and performing
repeated runs of Compacta using different values of the
d parameter, whereas all contigs from such assemblies
were identified by comparing those sequences using
stringent BLAST parameters [35] with the set of all pos-
sible Arabidopsis transcripts. Details of this analysis are
given in Section 3 of Additional file 1.

Results presented in Fig. 3 were obtained by running
CD-HIT, Compacta, Corset, Grouper and the clustering
facility of the Trinity suite on the contigs from assem-
blies of the Arabidopsis and mouse datasets (Table 1);

Table 1 Data sources. Sources and characteristics of the RNA-
Seq data used in this study

Organism Source Accession Reads (Gb) Contigs
Arabidopsis [31] ERPO16911 36.0 106,895
Mango [32] SRP043494 62.5 107,744
Mouse [33] PRINA474181 410 327,616
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details of these experiments as well as additional ana-
lyses are given in Sections 2 and 3 of Additional file 1.

Results and discussion

Compacta is faster than clustering alternatives

To evaluate the absolute and relative execution time for
Compacta, Corset and Grouper we used three transcrip-
tomes from Arabidopsis, mango (Mangifera indica) and
mouse (Mus musculus) assembled de novo that included
106,895, 107,744 and 327,616 contigs, respectively. All
three algorithms were run with default parameters and
the run time for each program with each assembly was
obtained (Fig. 1; see Material and Methods for details).
Table 2 shows the number of clusters output by Com-
pacta, Corset and Grouper for the Arabidopsis, mouse
and mango datasets. Compacta produced a larger num-
ber of contigs in the Arabidopsis and mouse real data-
sets, and the smaller number of contigs for the mango
dataset and the simulated datasets of Arabidopsis and
mouse. This reflects the fact that Corset and Grouper do
not include contigs with low coverage in their output,
while Compacta includes contigs with low coverage as
single contig clusters.

In Fig. 1 the bar height corresponds to the run time
for each program (bar group; X-axis) operating on the
three assemblies that are denoted by different colors.
The numbers above the bars for “Corset” and “Grouper”
groups give the time taken by the program divided by
the time taken by Compacta to analyze the same assem-
bly. For example, the number 28 above the red bar for
the “Corset” group indicates that Corset took approxi-
mately 28-fold more time to finish the run for the Arabi-
dopsis assembly than Compacta (26.6186 h/0.9675h ~
28).

Compacta was approximately 28-, 25- and 197-fold
faster than Corset for the Arabidopsis, mango and mouse
assemblies, respectively. The differences in execution
time could be attributed to two factors: First, Corset uses
a statistical formula to try to evaluate the gene of origin
for each contig and Compacta does not; and Second,
Compacta uses auto-sorting heaps, whereas Corset sorts
all remaining contigs pairs in each iteration. A basic ag-
glomerative clustering algorithm, such as that imple-
mented for Corset, has a computation time of O(#°) and
slows as the input size increases, as demonstrated by
[28]. As mentioned above, Compacta uses an agglomera-
tive algorithm with a heap that auto-sorts elements upon
insertion and deletion that reduces computation time up
to O(n* logn) [28], which is considerably faster than the
other algorithms, particularly when the size of the input
data increases. Although Compacta may not always be
faster than Corset for all possible assemblies, we predict
that Compacta will be at least 10 times faster than
Corset for any complex assembly from eukaryotic
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340
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Grouper

organisms. This prediction is based not only on our ex-
perimental results (Fig. 1), but also in the fundamentally
more efficient way in which Compacta handles contig
clustering by avoiding sorting the pre-cluster structure
at each iteration, which adds significantly to the Corset
run time.

On the other hand, in comparing Grouper and Com-
pacta we see that Compacta is faster than Grouper for
the mango and mouse assemblies by 15- and 340-fold,
respectively, but slower for the Arabidopsis assembly for
which Compacta took 0.9675h and Grouper took only

0.1332 h, a ratio of = 0.1 in favor of Grouper. The differ-
ence seen between Grouper and Compacta in processing
the Arabidopsis assembly is due to Grouper's use of
equivalence files, which are simpler to parse and contain
less information than the BAM files used by Compacta.
However, for larger and more complex assemblies, such
as those for mango and mouse, input file parsing repre-
sents a much small fraction of the total processing time,
such that Compacta is faster than Grouper (c.f., Com-
pacta was 340-fold faster than Grouper for the mouse
assembly; last bar in Fig. 1). Moreover, Grouper relies on
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Fig. 2 Compacta results for the Arabidopsis assembly. Values for d are displayed on the X-axis and the Y-axis shows the percentage of clusters (z;
red line), number of Arabidopsis sequences identified (n4s; blue dotted line) and efficiency (Ef = nay/z; green dashed line) as a function of d
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a Stoer—Wagner min-cut function that is repeatedly exe-
cuted with a computation time of O (mn + n* logn) [36],
whereas Compacta uses the auto-sorting heap that has
an execution time of O(n? logn) [28]. Conservatively,
Compacta is at least 10-fold faster than Grouper for
clustering complex eukaryotic assemblies.

Compacta adaptability to RNA-Seq objectives

As shown above, Compacta can be adjusted through the
d parameter to give a number of clusters within the
range [ZimZmax], Where z,,, corresponds to d=0 and
Zymax corresponds to d = 1. Here we demonstrate and dis-
cuss the consequences of selecting particular values for
d to adjust the clustering results according to the par-
ticular aims of an RNA-Seq experiment. Because Com-
pacta is fast, runs can be performed for a grid of d
values and the results can be used for downstream ana-
lyses to identify genes and detect differential expression.
Compared with the costs of RNA-Seq library construc-
tion and sequencing, the costs for bioinformatic analyses
are negligible such that more time can be spent to

Table 2 Number of representative contigs selected by each
algorithm from each transcriptome when run with default
parameters

Arabidopsis Mouse Mango

Real Simulated Real Simulated Real
Compacta 33542 21518 223169 19844 28,356
Corset 27,080 26414 95,079 23,716 38448
Grouper 27,949 23,026 57,501 18,652 38,063

perform such analyses to obtain optimum information
from the data. Each d value gives z clusters, and the re-
searcher can then select z contigs (one for each cluster)
and use tools such as BLAST [35] to identify representa-
tive contigs in the transcriptome of a related species, or
BUSCO [37] to assess contig set completeness. Test runs
of differential expression programs, such as edgeR [38],
can be performed with each representative set of contigs
to evaluate the suitability of the results for achieving the
particular aims of an RNA-Seq experiment. Here we
show results obtained by running Compacta with the
Arabidopsis assembly that generated the speed test re-
sults (Fig. 1; see Source data and Software evaluation
and Section 3 of Additional file 1 for details).

The Arabidopsis assembly resulted in 106,895 contigs
that were sent as a query to a BLAST database contain-
ing the full Arabidopsis cDNA set, which comprises 41,
671 different sequences. BLAST hits were filtered by
coverture, bit score and E-value giving a total of 23,607
significant concordances. The Arabidopsis assembly was
run through Compacta using a grid of d values and with
the parameter [ set to its default value of 2 (for details
see Section 3 of Additional file 1).

Table 3 shows that the dynamic range of Compacta for
this assembly goes from z,,;, = 13,770 clusters when d =0
t0 Z,4x = 103,262 clusters when d=1; a 7.5-fold change
between the maximum and minimum values. By taking
the largest contig as representative of each cluster, the
number of distinct Arabidopsis sequences identified (col-
umn 74, in Table 3) varies from a minimum of 3344 when
d =0 to a maximum of 23,607 for d = 1. This latter value
corresponds to the total number of Arabidopsis sequences
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Table 3 Compacta results for the Arabidopsis assembly. d -
Parameter value, z - Number of clusters (representative contigs),
nys - Number of Arabidopsis sequences identified

d z Nas
0.000 13,770 3344
0.035 (d) 28,704 18,381
0.500 34,860 20,455
0.955 (d) 40,656 21,254
1.000 103,262 23,607

identified in the entire assembly. The ratio between the
maximum and minimum of Arabidopsis sequences identi-
fied is 23,607 / 3344 ~ 7, which is similar to the ratio z,,,,/
Zymin Of = 7.5 However, we will see that the proportion of
changes in the number of clusters and identified se-
quences do not follow a linear function of d.

The percentages of clusters, z, number of identified se-
quences, 14, and clustering efficiency, Ef, defined as Ef=
nuy/z, are estimated as curve functions of d, which again
does not have a linear relationship as shown by the grey
dashed line with slope 10 (Fig. 2). Nevertheless, these
three curvilinear functions show a relatively small slope (=
0) for d values between 0.1 and 0.9, whereas in the left
and right hand extremes the three functions show sudden
slope changes; from very high to relatively low near d =
0.035 and, conversely, from a relatively low to a very high
slope near d = 0.955 (Fig. 2; see Table 3 for the estimated
values at these critical points). Although generalizations
cannot be made based on this one example, it is reason-
able to assume that for almost all assemblies the values for
number of clusters, identified sequences and efficiency will
be non-linear functions of d having two critical points at
which a sudden slope change at d;~0 and d,~1 and a
relatively flat change (low slope) around 4=0.5 occur.
The values for d; and d, are shown in Table 3 for the Ara-
bidopsis assembly, and these values can be easily esti-
mated for any particular assembly.

The curves for the Arabidopsis assembly show that
there will be an unavoidable loss of accuracy in the ana-
lysis of assemblies obtained de novo from RNA-Seq ex-
periments (Fig. 2). This inaccuracy results from not
taking into account genome architecture, which in turn
can confound identification of the gene from which each
transcript originated to create multiple putative tran-
scripts of which an unknown proportion could be arti-
facts, i.e., transcripts that do not exist physiologically.
Fortunately, clustering assemblies to reduce this com-
plexity can address the problem.

In the following discussion we will assume that the re-
searcher has putatively identified all original contigs, has
determined the approximate points dj, d, for the assem-
bly of interest, has obtained sets of representative contigs
at d equal to 0, d, 0.5 d, and 1, and performed

Page 9 of 13

differential expression analyses for all d values shown
above. We will be looking for a ‘Goldilocks’ point for d
where there are not ‘too few’ or ‘too many’ contigs to
obtain biologically relevant knowledge from our data.

Analyses of a representative set of contigs at d =0 will
give the minimum resolution of the assembly, because
all representative contigs at that point represent com-
pletely independent ‘genes’ or ‘gene families’ and conse-
quently the number of identified sequences will be a
minimum (Fig. 2; blue dotted line). Based on this selec-
tion, all reads mapping to the contigs will have a unique
hit, and thus the statistical power of detection of differ-
entially expressed entities will be a maximum, because
reads are not shared between the entities analyzed. Aside
from other considerations, the differential expression
analysis at d =0 has the advantage of displaying a broad
scenario; entities that are differentially expressed will
show sets of genes that are surely affected by experimen-
tal conditions, even if many splicing variants and other
similar transcripts are grouped and represented by a sin-
gle transcript.

However, for many purposes, the number of represen-
tative sequences at d =0 will be ‘too few’ and further
analyses will be needed to improve accuracy.

On the other extreme, at d =1, we have the largest
number of representative contigs, and consequently the
largest number of identified sequences (Fig. 2; dotted
blue line). However, the procedure efficiency is lowest at
this point (Fig. 2; dashed green line), meaning that many
contigs represent the same identified sequence (Ef=n,y/
z is at its minimum), and thus very little advantage is
gained from the clustering procedure, because many
representative sequences will be redundant and
characterize the same gene. At this point, the statistical
power is also reduced because fewer reads map to each
individual contig when compared with the other extreme
(i.e., d=0). Thus, d =1 will give us ‘too many’ contigs.

Examining the point around which d = d, for the Arabi-
dopsis assembly gives d~0.035 (Table 3). At approxi-
mately this point the curves for znu, and Ef show a
sudden slope change, going from a sharp increase to a
more steady state that will continue for values of d >d,
and up to d < d,. The d; point gives large increases in the
number of contigs, z, and identified sequences, 7,4, when
compared with the point at d =0, say Az(d) =z(d =d,) -
z(d = 0) = 28,704—-13,770 = 14,934 (~ 15% of increment),
Anay(d) = nas(d = dj) — nas(d = 0) = 18,381-3344 = 15,037
(= 65% of increment; see Table 3 and Fig. 2). Also near
d =d,, at d = 0.05, we obtain the maximum efficiency, max
(Ef) = 18,381/19962 ~ 0.92 (see Fig. 2 and Section 3 of
Additional file 1 for details). In the context of information
content, the d value at which max (Ef) is reached is opti-
mal; i.e., we will not have ‘too few’ or ‘too many’ contigs to
represent assembly diversity and thus this point is the
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‘Goldilocks point on 4. If the differential expression of the
representative contigs at max (Ef) is satisfactory for the
aims of the RNA-Seq experiment, the analysis at this point
could be reported as the final result.

The pipeline sketched here to obtain an optimum
point for the parameter 4 that corresponds to the max-
imum efficiency, max (Ef), can be easily performed with
an assembly obtained from any RNA-Seq experiment. In
general, the most complex decision for the researcher is
selection of a well-known and closest organism with
which to suitably compare the organism under study.
When such selection is done, a simple BLAST experi-
ment using all contigs from the assembly as queries and
the full transcriptome of the known organism as the tar-
get can be easily performed (details of this procedure are
presented in Section 3 of Additional file 1 for the Arabi-
dopsis assembly). Alternatively, or additionally, the re-
searcher could perform a BUSCO experiment (see [35]
and the website with [37]). The general lines of the pro-
cedure are, first, to obtain all BUSCO terms that corres-
pond to all contigs in the assembly, and upon gathering
these terms, use the sets of representative contigs ob-
tained with Compacta with a grid of d values. As with
BLAST, with BUSCO we can obtain a point d that will
correspond to the maximum efficiency, max (Ef), but in
this case the Ef for each value of d is defined as the
number of BUSCO terms found over the number of con-
tigs. An additional advantage of the BUSCO approach is
that the terms found will generally have straightforward
biological interpretations, which is useful for under-
standing differential expression analyses.

Comparing Compacta with other clustering tools
Compacta does not directly use sequence information
(as do tools like CD-HIT [15]) but instead uses reads
that are shared between contigs. It also does not use
statistical approaches to try to determine the gene of ori-
gin for each contig (as do Corset or Grouper), and as
such is not fully comparable with all clustering tools.
However, we did perform various comparisons and the
results are summarized below, with details and other
analyses presented in Section 2 of Additional file 1.

An ideal clustering algorithm for assemblies will cor-
rectly identify all contigs that arise from transcription of
the same locus and cluster all of these contigs together.
On the other hand, contigs arising from transcripts ori-
ginating from different loci will always belong to differ-
ent clusters. However, two kinds of errors, false positives
(where two contigs from different loci are clustered to-
gether) and false negatives (where two contigs that be-
long to the same locus are not clustered together) can
occur.

In Table 4 we present four possibilities for the classifi-
cation of contig pairs, and the frequency of each one of
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the cases (in each of the 4 cells of the table) is repre-
sented by 4, b, ¢ and d, whereas the sum of the frequen-
cies, a+b+c+d, gives the total number of pair-wise
contig comparisons. A perfect clustering algorithm will
have =0 and ¢=0, and we can define two metrics to
measure an algorithm behavior, termed Recall’, R=a/
(a +c¢) and ‘Precision’, P=a/(a + b). Clearly, the perfect
algorithm will have R =1 and P =1, whereas R< 1 imply
the existence of false negatives (¢ > 0) and P< 1 implies
the existence of false positives (b > 0).

We estimated recall, R, and precision, P, of 5 cluster-
ing algorithms for Arabidopsis and mouse assemblies
that were used to evaluate execution time (see Fig. 1 and
Source data and Software evaluation). We again com-
pared Compacta with mainly graph-based Corset and
Grouper and also with CD-HIT, which relies exclusively
on sequence information [15] and the Trinity program
for contig grouping [39], which is based on De Bruijn
graphs. For the comparison, all five programs were run
using default parameters.

The program having the lowest recall for both as-
semblies was CD-HIT, and the values significantly dif-
fered from the higher values produced by the other 4
programs (Fig. 3). This difference could be because
CD-HIT uses only information for direct contig like-
ness at the sequence level, and thus produces mul-
tiple false negatives when contigs that are truly
related are not grouped. On the other hand, CD-HIT
had the highest precision for both assemblies, imply-
ing a low frequency of false positives that again is at-
tributable to the direct use of sequence information:
when CD-HIT clusters two or more contigs, it does
so based on high sequence similarity. A disadvantage
of CD-HIT is that the clusters it produces contain
only a small number of contigs —those that are highly
similar at the sequence level, and the user has little
control over the degree of assembly compression
(data not shown; see Section 2 of Additional file 1).

We also observed that the recall ratios for Corset,
Compacta, Grouper and Trinity were relatively similar
within both mouse and Arabidopsis assemblies, but the
values for mouse were always lower than those for Ara-
bidopsis (Fig. 3). The higher complexity of the mouse as-
sembly relative to that for Arabidopsis can explain the
generally lower recall ratios of the four programs and
that higher numbers of false negatives can be produced
with complex assemblies. Compacta had the highest re-
call for Arabidopsis, while Grouper had the highest recall
for the mouse assembly.

In contrast to the results for recall, for all five pro-
grams precision was marginally higher for the mouse as-
sembly relative to that for Arabidopsis (Fig. 3),
suggesting that the relative proportion of false positives
does not increase with assembly complexity.
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Table 4 Case classification for contig pairs after clustering. g, b, ¢ and d are frequencies resulting from a clustering experiment

No Total

Same locus?
Yes
Clustered? Yes a (true positive)
No ¢ (false negative)
Total a+ c (single locus)

b (false positive) a+ b (positives)
d (true negative)

b+ d (different loci)

¢ +d (negatives)

a+b+c+d

In terms of precision, and excluding the CD-HIT case
discussed above, in all cases Corset, Compacta, Grouper
and Trinity have a precision around 0.8 (Fig. 3); at P =
0.85 and P ~0.84 Corset and Grouper, respectively, had
the highest precision for the Arabidopsis assembly,
whereas Compacta and Trinity both had P~0.78. For
the mouse assembly, Corset had the highest precision
(P~ 0.95) while Compacta and Grouper both had P~ 0.9,
and Trinity had P~ 0.89. Even when Compacta did not
have the highest precision in the assemblies studied, it was
faster than the other programs, and, importantly, can be
adjusted to yield an optimum number of clusters with the
highest efficiency (see previous section). These advantages
compensate for the minor loss of precision upon compar-
ing Compacta with Corset and Grouper. Furthermore, be-
cause Compacta does not try to determine the gene origin
of each contig, its results are independent of the RNA-Seq
experimental design (treatments), whereas Corset and
Grouper are affected by experimental factors due to the
use of statistical tools to try to estimate genes from which
contigs originated.

We compared the precision and recall for Compacta
with a yeast assembly and generated sets of simulated
assemblies for Arabidopsis, mouse and yeast with plots
of precision x recall for all comparisons (Section 2 in
Additional file 1). We also compared differential expres-
sion patterns from various assemblies (Section 4 in
Additional file 1). Together these results showed that
Compacta efficiently detected differential expression pat-
terns after assembly clustering.

Conclusions

In most cases de novo assemblies produce an excess
number of contigs, many of which represent minor tran-
scription variants from expression of the same gene. We
assert that without full genome information segregating
contigs by gene of origin is very difficult, if not impos-
sible. Thus, for genomes that do not have complete in-
formation, researchers must reduce the analytical
complexity by selecting a set of contigs to represent the
entire transcriptome. Compacta provides flexibility in
the selection of sets of representative contigs for down-
stream analysis. Its dynamic range goes from maximum
transcriptome compression —wherein all contigs that
share common reads are represented by a single contig,
down to minimum compression, wherein only those

contigs that are subsets of the same reads are clustered
together and thus represented by a single contig. Be-
cause Compacta is fast, many test runs can be made to
find the optimum level of transcriptome compactness
according to the specific aim of a given experiment.

Availability and requirements
Project name: Compacta.

Project home Page: https://github.com/bioCompU/
Compacta or https://doi.org/10.5281/zenodo.3469484
Home page includes a source code tar ball, compiled ex-
ecutables and a software manual with demos.

Operating Systems: any Unix-based system with proper
installation, or Linux x 86 with standalone executable.

Programming Language: C++.

Other Requirements: Samtools, zlib library and a
C++ compiler.

Recommended Hardware: The memory needed to
run the software is determined by the size of the largest
input BAM file. Compacta loads the input files in mem-
ory and releases them after data pre-processing. As such,
when the input data are loaded, only a small amount of
memory is needed for processing. For a given dataset
Compacta typically requires more memory than that of
tools such as CD-HIT-EST, but less than that needed by
Corset and transcriptome assemblers. The experiments
shown in this study were performed on a computer with
64 Gb RAM, and an Intel CoreTM™ processor i7—6700
with 4 cores.

License: GNU GPL version 3.

Restrictions for use by non-academics: None.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512864-020-6528-x.

Additional file 1. Supplementary results. Additional text and figures are
ordered according to sections in the main text.

Abbreviations
BAM: Binary Alignment Map; bp: base pair; cDNA: complementary DNA;
Ef. Efficiency; mRNA: messenger RNA

Acknowledgements

The authors thank Juan Bautista Teran Fraijo and Marfa del Socorro Fraijo
Encinas for helping us secure financial support from COFUPRO. We also
thank Oscar Julio Luna, Cecilia Piri Alcaraz, Lucia Preciado Gamez and Hugo
Piri for administrative support during the project. We are grateful to Dr.


https://github.com/bioCompU/Compacta
https://github.com/bioCompU/Compacta
https://doi.org/10.5281/zenodo.3469484
https://doi.org/10.1186/s12864-020-6528-x
https://doi.org/10.1186/s12864-020-6528-x

Razo-Mendivil et al. BMC Genomics (2020) 21:148

Miguel A. Herndndez-Onate for support during the development of this
software and for providing the de novo mango assembly.

Authors’ contributions

FR-M programmed Compacta, performed the analyses and wrote the first
draft of the manuscript. CH-K and OM conceived the research, supervised
both software development and analyses and wrote the final version of the
manuscript. All authors reviewed and approved the final manuscript.

Funding

This work was supported in part by COFUPRO (A/GTO/RGAG-2014-076-
Consorcio de Fundaciones PRODUCE). FR-M acknowledges the Mexican
Council of Science and Technology (CONACyT) for support from a PhD
scholarship (261122) during the development of the project. The funding
body did not contribute to the design of the study or collection, analysis
and interpretation of data and in writing the manuscript.

Availability of data and materials

The datasets used in this study are available in the Sequence Read Archive
(SRA) with accession numbers SRP043494, ERPO16911 and SRP149554 for
Mango, Arabidopsis and Mouse datasets, respectively. The source code and
standalone executable of the version of Compacta used in this study are
available at https://doi.org/10.5281/zenodo.3469484.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 2 October 2019 Accepted: 22 January 2020
Published online: 11 February 2020

References

1. Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H,
Merril CR, Wu A, Olde B, Moreno RF, et al. Complementary DNA sequencing:
expressed sequence tags and human genome project. Science. 1991;
252(5013):1651-6.

2. Ozsolak F, Milos PM. RNA sequencing: advances, challenges and
opportunities. Nat Rev Genet. 2011;12(2):87.

3. Grabherr MG, Haas B, Yassour M, Levin JZ, Thompson D, Amit |, Adiconis X,
Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A,
Rhind N, Di Palma F, Birren B, Nusbaum C, Lindblad-Toh K, Regev A. Full-
length transcriptome assembly from rna-seq data without a reference
genome. Nat Biotechnol. 2011;29:644-52. https://doi.org/10.1038/nbt.1883.

4. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang
J,Wu G, Zhang H, Shi 'Y, Liu Y, Lu Y, Han C, Cheung DW, Yiu S-M, Peng S,
Xiaogian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam T-W, Wang J.
SOAPdenovo2: an empirically improved memory-efficient short-read de
novo assembler. GigaScience. 2012;1(1):2047. https://doi.org/10.1186/2047-
217X-1-18.

5. Birol |, Jackman SD, Nielsen CB, Qian JQ, Varhol R, Stazyk G, Morin RD, Zhao
Y, Hirst M, Schein JE, Horsman DE, Connors JM, Gascoyne RD, Marra MA,
Jones SJM. De novo transcriptome assembly with ABYSS. Bioinformatics.
2009;25(21):2872-7. https;//doi.org/10.1093/bioinformatics/btp367 http://
oup.prod.sis.lan/bicinformatics/article-pdf/25/21/2872/6058661/btp367.pdf.

6. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin
VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N,
Tesler G, Alekseyev MA, Pevzner PA. Spades: A new genome assembly
algorithm and its applications to single-cell sequencing. J Comput Biol.
2012;19(5):455-77. https;//doi.org/10.1089/cmb.2012.0021.

7. Martin JA, Wang Z. Next-generation transcriptome assembly. Nat Rev Genet.
2011;12(10):671.

8. Audano PA, Sulovari A, Graves-Lindsay TA, Cantsilieris S, Sorensen M, Welch
AE, Dougherty ML, Nelson BJ, Shah A, Dutcher SK, et al. Characterizing the
major structural variant alleles of the human genome. Cell. 2019;176(3):
663-75.

9.

20.

21,

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Page 12 of 13

Koonin EV. Orthologs, paralogs, and evolutionary genomics. Annu Rev
Genet. 2005;39:309-38.

Indrischek H, Wieseke N, Stadler PF, Prohaska SJ. The paralog-to-contig
assignment problem: high quality gene models from fragmented
assemblies. Algorithms Mol Biol. 2016;11(1):1.

Huang Y-z, Passey DA, Yang Z, Yu J, Wong GK. Is “junk” dna mostly intron
dna? 2015.

Wong GK-S, Passey DA, Yu J. Most of the human genome is transcribed.
Genome Res. 2001;11(12):1975-7.

Ameur A, Zaghlool A, Halvardson J, Wetterbom A, Gyllensten U, Cavelier L,
Feuk L. Total RNA sequencing reveals nascent transcription and widespread
co-transcriptional splicing in the human brain. Nat Struct Mol Biol. 2011;
18(12):1435.

Chou H-C, Acevedo-Luna N, Kuhlman JA, Schneider SQ. Pdumbase: a
transcriptome database and research tool for platynereis dumerilii and early
development of other metazoans. BMC Genomics. 2018;19(1):618.

Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large
sets of protein or nucleotide sequences. Bioinformatics (Oxford, England).
2006;22:1658-9. https://doi.org/10.1093/bioinformatics/btl158.

Davidson NM, Oshlack A. Corset: enabling differential gene expression
analysis for de novo assembled transcriptomes. Genome Biol. 2014;15:410.
https://doi.org/10.1186/513059-014-0410-6.

Malik L, Almodaresi F, Patro R. Grouper: graph-based clustering and
annotation for improved de novo transcriptome analysis. Bioinformatics.
2018;34(19):3265-72. https://doi.org/10.1093/bioinformatics/bty378.

Vlasova A, Capella-Gutiérrez S, Rendén-Anaya M, Herndndez-Onate M,
Minoche AE, Erb |, Camara F, Prieto-Barja P, Corvelo A, Sanseverino W, et al.
Genome and transcriptome analysis of the mesoamerican common bean
and the role of gene duplications in establishing tissue and temporal
specialization of genes. Genome Biol. 2016;17(1):32.

Boley N, Stoiber MH, Booth BW, Wan KH, Hoskins RA, Bickel PJ, Celniker SE,
Brown JB. Genome-guided transcript assembly by integrative analysis of
RNA sequence data. Nat Biotechnol. 2014;32(4):341.

Bennetzen JL, Ma J, Devos KM. Mechanisms of recent genome size variation
in flowering plants. Ann Bot. 2005;95(1):127-32.

Lee S+, Kim N-S. Transposable elements and genome size variations in
plants. Genomics Inform. 2014;12(3):87.

Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N, Redon R, Bird
CP, De Grassi A, Lee G, et al. Relative impact of nucleotide and copy number
variation on gene expression phenotypes. Science. 2007;315(5813):848-53.

Zhu L, Zhang Y, Zhang W, Yang S, Chen J-Q, Tian D. Patterns of exon-intron
architecture variation of genes in eukaryotic genomes. BMC Genomics.
2009;10(1):47. https://doi.org/10.1186/1471-2164-10-47.

Langmead B, Salzberg S. Fast gapped-read alignment with bowtie 2. Nat
Methods. 2012,9:357-9. https//doi.org/10.1038/nmeth.1923.

Kim D, Langmead B, Salzberg S. Hisat: A fast spliced aligner with low memory
requirements. Nat Methods. 2015;12:357. https//doi.org/10.1038/nmeth.3317.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis
G, Durbin R, Subgroup GPDP. The sequence alignment/map format and
samtools. Bioinformatics. 2009;25(16):2078-9. https://doi.org/10.1093/
bioinformatics/btp352.

Essam JW, Fisher ME. Some basic definitions in graph theory. Rev Mod Phys.
1970:42(2):271.

Kurita T. An efficient agglomerative clustering algorithm using a heap.
Pattern Recogn. 1991;24:205-9. https//doi.org/10.1016/0031-3203(91)90062-A.
Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into
functions. Nat Rev Genet. 2009;10(3):155.

Frith MC, Pheasant M, Mattick JS. Genomics: The amazing complexity of the
human transcriptome: Nature Publishing Group; 2005. Eur J Human Genet. 2005;
13:894-7. https//doi.org/10.1038/sj.ejhg.5201459. published online 22 June 2005.
Liu H, Ma X, Han HN, Hao YJ, Zhang XS. Atprmt5 regulates shoot
regeneration through mediating histone h4r3 dimethylation on krps and
pre-mrmna splicing of rkp in Arabidopsis. Mol Plant. 2016,9(12):1634-164.
https://doi.org/10.1016/j.molp.2016.10.010.

Tafolla-Arellano J, Zheng Y, Sun H, Jiao C, Ruiz May E, Hernandez M,
Gonzalez Leon A, Safudo R, Fei Z, Domozych D, KC Rose J, Tiznado-
Herndndez M. Transcriptome analysis of mango (Mangifera indica 1.) fruit
epidermal peel to identify putative cuticle-associated genes. Sci Rep. 2017;7:
46163. https://doi.org/10.1038/srep46163.

GeneBank: China Agricultural University, Raw Sequence Reads. https://www.
ncbi.nim.nih.gov/bioproject/PRINA474181/


https://doi.org/10.5281/zenodo.3469484
https://doi.org/10.1038/nbt.1883
https://doi.org/10.1186/2047-217X-1-18
https://doi.org/10.1186/2047-217X-1-18
https://doi.org/10.1093/bioinformatics/btp367
http://oup.prod.sis.lan/bioinformatics/article-pdf/25/21/2872/6058661/btp367.pdf
http://oup.prod.sis.lan/bioinformatics/article-pdf/25/21/2872/6058661/btp367.pdf
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1093/bioinformatics/btl158
https://doi.org/10.1186/s13059-014-0410-6
https://doi.org/10.1093/bioinformatics/bty378
https://doi.org/10.1186/1471-2164-10-47
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1038/nmeth.3317
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1016/0031-3203(91)90062-A
https://doi.org/10.1038/sj.ejhg.5201459
https://doi.org/10.1016/j.molp.2016.10.010
https://doi.org/10.1038/srep46163
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA474181/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA474181/

Razo-Mendivil et al. BMC Genomics

34.
35.

36.

37.

38.

39.

(2020) 21:148

GeneBank: Sequence Read Archive. https://www.ncbi.nlm.nih.gov/sra/
Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning
DNA sequences. J Comput Biol. 2000;7(1-2):203-14.

Stoer M, Wagner F. A simple min-cut algorithm. J ACM. 1997;44:585-91.
https://doi.org/10.1007/BFb0049404.

Siméo FA, Waterhouse RM, loannidis P, Kriventseva EV, Zdobnov EM. Busco:
assessing genome assembly and annotation completeness with single-copy
orthologs. Bioinformatics. 2015;31(19):3210-2.

Robinson MD, McCarthy DJ, Smyth GK. EdgeR: a bioconductor package for
differential expression analysis of digital gene expression data.
Bioinformatics. 2010;26(1):139-40.

Haas B, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Brian
Couger M, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N,
Strozzi F, Weeks N, Westerman R, William T, Dewey C, Regev A. De novo
transcript sequence reconstruction from Rna-seq using the trinity platform
for reference generation and analysis. Nat Protoc. 2013;8(8):1494. https://doi.
0rg/10.1038/nprot.2013.084.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 13 of 13

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions



https://www.ncbi.nlm.nih.gov/sra/
https://doi.org/10.1007/BFb0049404
https://doi.org/10.1038/nprot.2013.084
https://doi.org/10.1038/nprot.2013.084

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Algorithm implications
	Adjusting Compacta to assembly complexity
	Source data and software evaluation

	Results and discussion
	Compacta is faster than clustering alternatives
	Compacta adaptability to RNA-Seq objectives
	Comparing Compacta with other clustering tools

	Conclusions
	Availability and requirements
	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

