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Abstract

Background: The H+-PPase (pyrophosphatase) gene family is an important class of proton transporters that play key
roles in plant development and stress resistance. Although the physiological and biochemical functions of H+-PPases
are well characterized, the structural evolution and functional differentiation of this gene family remain unclear.

Results: We identified 124 H+-PPase members from 27 plant species using complete genomic data obtained from
algae to angiosperms. We found that all analyzed plants carried H+-PPase genes, and members were not limited to the
two main types (type I and II). Differentiation of this gene family occurred early in evolutionary history, probably prior
to the emergence of algae. The type I and II H+-PPase genes were retained during the subsequent evolution of higher
plants, and their copy numbers increased rapidly in some angiosperms following whole-genome duplication (WGD)
events, with obvious expression pattern differentiation among the new copies. We found significant functional
divergence between type I and II H+-PPase genes, with both showing evidence for positive selection pressure. We
classified angiosperm type I H+-PPases into subtypes Ia and non-Ia, which probably differentiated at an early stage of
angiosperm evolution. Compared with non-Ia subtype, the Ia subtype appears to confer some advantage in
angiosperms, as it is highly conserved and abundantly expressed, but shows no evidence for positive selection.

Conclusions: We hypothesized that there were many types of H+-PPase genes in the plant ancestral genome, and that
different plant groups retained different types of these genes. In the early stages of angiosperm evolution, the type I
H+-PPase genes differentiated into various subtypes. In addition, the expression pattern varied not only among genes
of different types or subtypes, but also among copies of the same subtype. Based on the expression patterns and copy
numbers of H+-PPase genes in higher plants, we propose two possible evolutionary trajectories for this gene family.
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Background
H+-PPases (proton-translocating pyrophosphatase) are a
branch of membrane-bound pyrophosphatase enzymes
that hydrolyze inorganic pyrophosphate (PPi) to obtain
energy and transport protons across the cell membrane
[1]. These enzymes were considered to be unique to plants
and photosynthetic bacteria, but recent studies have found

that this gene family is also widespread among bacteria,
archaea, and primitive parasites, and emerged in the Last
Universal Common Ancestor (LUCA) [2].
The H+-PPase proteins can generally be divided into

two types according to their demand for potassium (K+)
ions: type I reaches its peak activity in the presence of
K+, while type II does not depend on the presence of K+

ions [3]. The dependence of type I H+-PPase proteins on
K+ ions is determined by the GNxxAAIG motif, in
which the first alanine (A) and the last glycine (G) resi-
dues play an important functional role [4, 5].
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Most research on plant H+-PPases has focused on the
type I H+-PPases, which are located on the vacuolar mem-
brane and are thus known as vacuolar proton pyropho-
sphatases (V-PPase); e.g., Arabidopsis AVP1 (At1g15690)
[6–8]. In plant cells, type I H+-PPases obtain energy
through the hydrolysis of PPi to transport protons across
the vacuole membrane, and adjust the pH in the vacuole
and cytoplasm [9]. Type I proteins are widely involved in
metabolic processes such as the enrichment of metal ions
in the vacuole [10] and hormone and nutrient transfer [9].
Overexpression of type I H+-PPase genes can significantly
enhance the ability of plants to cope with abiotic stresses,
such as anoxia or chilling [11], lack of nutrition [12],
drought, and high salt levels [13, 14]. This can also pro-
mote plant vegetative growth and produce plants with
large biomass [9, 13]. There are differences in the copy
number of H+-PPase genes in different plants. Different
members of this gene family may have specific expression
in different tissues, organs, or during different develop-
mental stages, but there is currently no compelling evi-
dence to support this [10]. Both type I and type II H+-
PPases have the same active site but have significant dif-
ferences in subcellular localization and expression levels.
For example, Arabidopsis AVP2 (At1g78920, a type II H+-
PPase) is located in the Golgi apparatus, and its expression
level is much lower than that of type I H+-PPases [15].
The structural evolution and functional differentiation

of this gene family have not been reported systematic-
ally. With the availability of increasing numbers of plant
genomes and the continuous improvement of the avail-
able protein tertiary structure model [16, 17], we cur-
rently have the ability to study the H+-PPase gene family
from a wider perspective. In the present study, we se-
lected 27 plant species with different taxonomic relation-
ships to identify and study the structure of H+-PPase
gene family members at the whole genome level. The
evolutionary relationships and expression patterns of dif-
ferent members of this gene family were investigated.
Further we performed functional diversity analysis and
positive selection analysis to explore the evolution of
their structure and function. Based on the research re-
sults, we provide a theoretical basis for further research
on the function of H+-PPase genes in plants.

Results
Cross-species distribution of H+-PPase genes in plants
Twenty-seven plants with relatively complete genome
annotations were selected for the identification of H+-
PPase gene family members. HMMER v 3.1 [18] was
used to search for candidate genes in complete protein
sequence data of different species (hidden Markov
model number: PF03030). After identification and filter-
ing, 124 H+-PPase gene family members were identified
(Table 1, Additional file 1). All plant species evaluated in

the present study contained at least one member of the
H+-PPase gene family. No algae contained more than
three of these genes, and many contained only one H+-
PPase gene (e.g., Cyanidioschyzon merolae, Dunaliella
salina, Chlamydomonas reinhardtii, Volvox carteri)
(Table 1, Additional file 1). In contrast, the angiosperm
species had several H+-PPase genes, with the eudicot up-
land cotton (Gossypium hirsutum), which reunited the
A- and D-genomes in recent history [19], having as
many as 16 H+-PPase genes. In the monocots, with ten
genes, maize (Zea mays) had second highest number of
H+-PPase genes. With just two H+-PPase genes, the
magnoliid columbine (Aquilegia caerulea) was the angio-
sperm with the fewest H+-PPase genes. We observed
that the expansion of the H+-PPase gene family was con-
centrated in the angiosperms.

Phylogenetic analysis of the plant H+-PPase gene family
members
To map the phylogenetic relationships between 124 H+-
PPase gene family members, two multiple alignment
methods (ClustalW [20], MUSCLE [21, 22]) and three
phylogenetic inference methods (neighbor-joining, NJ;
maximum likelihood, ML; minimum evolution, ME) were
employed. In addition, the H+-PPase domain sequence and
the full-length sequence were also analyzed separately. All
resulting phylogenetic trees had similar topologies (Add-
itional file 2). Considering the calculation time, the boot-
strap value, and the subsequent analysis needs, the
MUSCLE aligned full-length sequence and the NJ method
were selected for further analysis. Among the plant H+-
PPase gene family members identified in the present study
(Fig. 1a), only estExt_Genewise_ext.C_Chr_10614 in
Ostreococcus lucimarinus was on an independent evolu-
tionary branch. The other 123 members of the H+-PPase
gene family belonged to type I or type II branches. The
type I H+-PPase gene subgroup was the largest, and
accounted for 69.4% of the genes observed, while type II
genes accounted for the remaining 29.8%. This may be due
to the greater demand for type I H+-PPase gene expression
in plants, which contributed to the accumulation of these
gene copies.
In the angiosperm branches of type I and type II genes, a

large number of branch nodes had low bootstrap values.
This phenomenon may be the result from few overall dif-
ferences between the members on the related branches
(Additional file 2, Fig. 1a). Among them, the type II H+-
PPase protein members from the same species belonged to
closely related branches, while in the type I group, the op-
posite was true. Among the type I H+-PPases, a large clus-
ter from one branch of angiosperm type I genes with a
high bootstrap value (the red background area in Fig. 1a)
had structural differences with members on other branches,
and the protein sequences of the internal members of this
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branch had very high similarity. In order to study the pos-
sible differences among type I H+-PPase genes, this group
was classified as subtype Ia, and the remaining type I genes
were classified as subtype non-Ia.
By comparing the distribution of H+-PPase protein sub-

groups among algae and higher plants, we identified an

unbalanced distribution of gene family members in the
early stages of plant evolution. Red algae contain only type
II H+-PPases, while chlorophyceae green algae (D. salina,
C. reinhardtii, and V. carteri), which are more closely re-
lated to higher plants, contain only type I H+-PPases.
However, the relatively primitive mamiellophyceae green

Table 1 Characterization of the members of the H+-PPase gene family in 27 plant species

Species groups Species Number of members Annotation gene names

Red algae Cyanidioschyzon merolae 1 CMO102C

Galdieria sulphuraria 3 Gasu_15740, Gasu_15900, Gasu_28190

Green algae Micromonas pusilla 3 MicpuC2.estExt_fgenesh1_pm.C_20025, MicpuC2.estExt_fgenesh1_pg.C_30365,
MicpuC2.estExt_Genewise1Plus.C_60613

Ostreococcus lucimarinus 3 eugene.0400010383, estExt_Genewise_ext.C_Chr_10614, e_gwEuk.1.151.1

Dunaliella salina 1 Dusal.0221 s00015

Chlamydomonas reinhardtii 1 CHLRE_09g394436v5

Volvox carteri 1 Vocar.0009 s0186

Bryophytes Physcomitrella patens 4 PHYPA_000091, PHYPA_000092, PHYPA_001647, PHYPA_021933

Ferns Selaginella moellendorffii 4 SELMODRAFT_157618, SELMODRAFT_156843, SELMODRAFT_270614,
SELMODRAFT_270204

Angiosperms Amborella trichopoda 3 AMTR_s00025p00194920, AMTR_s00003p00014700, AMTR_s00033p00195690

Spirodela polyrhiza 3 Spipo1G0016600, Spipo31G0011200, Spipo3G0025000

Musa acuminata 8 GSMUA_Achr1G26020, GSMUA_Achr2G05200, GSMUA_Achr6G36430,
GSMUA_Achr7G20850, GSMUA_Achr3G13280, GSMUA_Achr5G23480,
GSMUA_Achr5G13160, GSMUA_Achr8G06450

Triticum aestivum 8 Traes_6BL_E905C1C95, Traes_6AL_5F50463BE, Traes_6DL_FC95036E1,
Traes_1DS_EF07A3CBD, Traes_1BS_1514DE4E9, Traes_7DL_3BA7EF708,
Traes_7BS_55CB27B54, Traes_7AL_AA1B5DFB5

Zea mays 10 Zm00008a030532, Zm00008a018655, Zm00008a012212, Zm00008a033578,
Zm00008a025249, Zm00008a034646, Zm00008a011941, Zm00008a002892,
Zm00008a025306, Zm00008a021157

Aquilegia coerulea 2 Aqcoe7G285200, Aqcoe7G376400

Beta vulgaris 3 BVRB_8g193170, BVRB_9g219460, BVRB_7g177860

Helianthus annuus 6 HannXRQ_Chr10g0314301, HannXRQ_Chr12g0357171, HannXRQ_Chr16g0500291,
HannXRQ_Chr04g0098051, HannXRQ_Chr05g0129041, HannXRQ_Chr09g0242721

Solanum lycopersicum 6 Solyc04g071880.2, Solyc07g007600.2, Solyc03g117480.2, Solyc12g009840.1,
Solyc01g100390.2, Solyc06g068240.2

Kalanchoe fedtschenkoi 6 Kaladp0048s0603, Kaladp0011s0323, Kaladp0036s0139, Kaladp0037s0358,
Kaladp0048s0764, Kaladp0095s0302

Vitis vinifera 4 VIT_09s0002g07880, VIT_09s0054g00700, VIT_14s0060g01280, VIT_11s0118g00350

Arabidopsis thaliana 3 AT1G15690, AT1G16780, AT1G78920

Theobroma cacao 4 TCM_026755, TCM_027289, TCM_027736, TCM_038184

Gossypium hirsutum 16 Gohir.D06G120900, Gohir.A06G116100, Gohir.A10G001500, Gohir.A05G122300,
Gohir.D05G123200, Gohir.A05G013400, Gohir.A06G052500, Gohir.D06G051500,
Gohir.A13G201700, Gohir.A09G085900, Gohir.D08G100800, Gohir.D09G086000,
Gohir.D13G207500, Gohir.A08G089700, Gohir.D10G001600, Gohir.A13G112000

Populus trichocarpa 6 Potri.010G254200, Potri.018G122700, Potri.013G009400, Potri.006G063000,
Potri.005G018700, Potri.018G119500

Cucumis sativus 3 Csa_1G212840, Csa_2G033950, Csa_7G447180

Glycine max 8 GLYMA_08G225500, GLYMA_08G214300, GLYMA_20G098300, GLYMA_13G162800,
GLYMA_17G108500, GLYMA_07G028500, GLYMA_07G001500, GLYMA_10G147500

Prunus persica 4 PRUPE_6G313800, PRUPE_3G091900, PRUPE_3G024800, PRUPE_7G250800

Notes: The two genes highlighted by the bold typeface indicate that the pair of genes are tandem repeats
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algae (Micromonas pusilla, O. lucimarinus), like bryo-
phytes, ferns, and angiosperms, contain both type I and II
H+-PPase genes (Table 2).

In addition, we explored the positions of 124 genes in
the background tree (Including 323 seed sequences from
database Pfam 32.0, Additional file 4). We found that

Fig. 1 Phylogenetic evolutionary tree, protein motifs, and gene structures of H+-PPase gene family members. a A neighbor-joining (NJ) phylogenetic
tree was constructed using the full-length sequence alignments of 124 H+-PPase genes identified using MUSCLE in MEGAX. Bootstrap supports are
indicated by the color of the branches. OTUs are labeled as follows: red algae (red); Mamiellophyceae (dark blue); Chlorophyceae (light blue);
Bryophytes (light green); Ferns (dark green); Angiosperm (black). Color blocks denote subtypes in angiosperms, with type Ia (red), type non-Ia (orange),
and type II (green) denoted. b Motifs of the H+-PPase proteins. The rectangles indicate the length and positions of motifs. The different colors indicate
15 motifs (left panel). The sequence logo for each motif is shown in Additional file 3. c Gene structures of the H+-PPase genes. The lengths of
rectangles and lines are scaled according to mRNA length. CDSs (green rectangles), UTRs (yellow rectangles), and introns (black line) are denoted
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type I and type II genes are located in the branches
where eukaryotes are abundant, and only estExt_Gene-
wise_ext.C_Chr_10614 in O. lucimarinus was located
distantly from the eukaryotes. This indicates that estExt_
Genewise_ext.C_Chr_10614 may therefore represent an
H+-PPase gene other than type I and type II.

Structural differentiation of the plant H+-PPase gene
family members
The mRNA sequence length of the H+-PPase genes varied
from 2246 bp (e_gwEuk.1.151.1 in O. lucimarinus) to 16,
779 bp (VIT_09s0054g00700 in grapes), and family mem-
bers within the same cluster had similar genetic structures.
Type I H+-PPase genes had relatively fewer exons that were
nonetheless longer than those in type II H+-PPase genes.
The full-length mRNA sequences of type II members were
longer than those of type I, and their exons were more
often interrupted by introns (Fig. 1c). This phenomenon
not only confirms that the two types of members have
experienced different evolutionary processes, but also may
be one of the reasons for the low expression of type II
members.
There were also significant differences in the amino acid

sequences of the proteins encoded by the plant H+-PPase
genes, the shortest of which containing 625 amino acids
(Gohir.D10G001600 in cotton, with deletion of the first
helix), and the longest containing 853 amino acids
(AMTR_s00025p00194920 in Amborella trichopoda), with
an average of 770 amino acids. We observed an average of
762 residues for type I proteins and 793 residues for type
II (including Gohir.D10G001600). The average isoelectric
point of type I proteins was 5.33 and that of type II was
slightly higher at 5.71 (Additional file 1).
Protein sequence analysis revealed that all H+-PPase pro-

teins shared motifs, including motif 1 located at core TM5–
TM6, motif 2 located at core TM11–TM12, motif 3 located
at TM13, and motif 6 located at TM9–TM10 (Fig. 1b). The
K+ ion-dependent determinant “GNxxAAIG” motif is
located within motif 2 (Additional file 3). The difference
between H+-PPase type I and type II proteins was mainly
reflected in the TM1 helix position of the N-terminus, the
motifs 9 (type I) / 15 (type II) in the TM7–TM8 region of
the middle section, and the motif 4 (type I) / motif 10 (type
II) in TM15–TM16 of the C-terminus (Fig. 1b).
By comparing the distribution of motifs and three-

dimensional models (SWISS-MODEL [23]), we found that
the structure of gene estExt_Genewise_ext.C_Chr_10614
seems to be similar to that of type II genes (Fig. 1b, Add-
itional file 5). Confoundingly, this gene also has a K+ ion-
dependent determining domain “GNTTAATG”, which is
similar to that of type I members (Additional file 1). These
characteristics further confirm the uniqueness of gene
estExt_Genewise_ext.C_Chr_10614 in O. lucimarinus.

Duplication events in H+-PPase genes in plants
After analyzing 27 plant species, only one pair of tandem re-
peats was found in moss (PHYPA_000091, PHYPA_000092;
Table 1, genes highlighted by bold typeface), and no tandem
repeats were identified in angiosperms with frequent dupli-
cation events. We searched the Plant Genome Duplication
Database (PGDD, http://chibba.agtec.uga.edu/duplication/)
for species with 7 or more copies of H+-PPase genes (i.e.,
corn, wheat, soybean, banana, and upland cotton). Although
the genomic segmental duplication information of some
species (wheat and upland cotton) has not been recorded in
the PGDD database, eight pairs of segmental duplications
were found in corn, banana, and soybean, two of which
were type II H+-PPase genes, while the other genes were of
the Ia subtype. The number of non-Ia subtype members is
small, which may indicate that no fragments containing
non-Ia subtype members underwent segmental duplication.
The estimated separation time based on the effective syn-
onymous substitution rate (Ks) value of fragment repetition
was similar to the WGD date of the species (Table 3).
To further study the duplication events in the evolution-

ary history of the H+-PPase gene family, we used upland
cotton as a model because it has the largest number of
members from this gene family. According to species evo-
lutionary relationships [19], we analyzed the genome col-
linearity among a primitive angiosperm (A. trichopoda),
grape, cocoa, and a diploid cotton (Gossypium raimondii),
and found that the number of H+-PPase genes increased
following WGDs in these species, including three amplifi-
cations in branches A, B, and C (Fig. 2a). In upland cotton,
the distribution of Ks values among different gene pairs
for all H+-PPases formed four clusters. The first three clus-
ters included the homomorphic gene pairs, while the
fourth cluster was composed of heterogeneous H+-PPase
gene family members (Fig. 2b; Additional file 6). The Ks
values between type Ia and non-Ia subtypes and between
types I and II in the fourth cluster indicate a highly similar
Ks distribution (Fig. 2b). The segregation period of H+-
PPase members in upland cotton was estimated according
to an average synonymous replacement rate of 2.6 bases
per 109 years (λ = 2.6 × 109) [36] (Fig. 2c). This calculation
indicated that the divergence events among homotypic
members were similar to the predicted doubling times
caused by three events that occurred in upland cotton as
follows: A, the WGD shared by angiosperms (γ event) [37,
38]; B, the WGD in the genus Gossypium, which occurred
57–70 Mya [30]; and C, the segregation of ancestors from
chromosomes A and D in tetraploid cotton, which oc-
curred between 5 and 10 Mya [36]. Regardless of the dif-
ferences between type I and type II or between Ia and
non-Ia subtypes within type I, similar divergence periods
were estimated between heterogeneous H+-PPase genes, as
indicated by their similar Ks distribution. This suggests
that the Ks values between the Ia and non-Ia subtypes has
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reached saturation, and this phenomenon was also ob-
served in species with a large number of H+-PPase genes
(Additional file 6). Therefore, the Ks value between
heterogeneous members can no longer be used to re-
liably estimate the separation time, indicating that the
differentiation between type I and type II and be-
tween Ia and non-Ia subtypes within type I occurred
at an early evolutionary stage.
In summary, PGDD data and analysis of H+-PPase

genes in upland cotton suggest that WGDs have played
the most important role in the accumulation of H+-
PPases in higher plant species.

Expression patterns of H+-PPases in plants
To assess the possible functional differentiation among
H+-PPases in plants, we compared the expression patterns
observed in cotton and corn, which have multiple gene

family members, and A. thaliana, which has fewer mem-
bers (Fig. 3). In most tissues at different developmental
stages, the highest gene expression of H+-PPases belonged
to the Ia subtype. The expression levels of H+-PPases in
type II were lower than those in type I, but we observed a
smaller difference than what was previously reported [15].
Under typical conditions, compared to A. thaliana, the

expression patterns in upland cotton and corn were
more complex, and each subtype of H+-PPase genes had
members with very low expression levels. However, most
genes were highly expressed in at least one organ or at
certain stages of development. Thus, differential expres-
sion patterns evolved among plant species with larger
number of H+-PPase gene family members.
The differentiation trends illustrated in Fig. 3 can be

more intuitively reflected by comparison of transcrip-
tomes from five species with increasing numbers of gene

Table 2 The plant H+-PPase gene family member subsets

Species group Species Distribution of subgroups

Type I Type II Others

Red algae Cyanidioschyzon merolae 1

Galdieria sulphuraria 3

Green algae Micromonas pusilla 2 1

Ostreococcus lucimarinus 1 1 1

Dunaliella salina 1

Chlamydomonas reinhardtii 1

Volvox carteri 1

Bryophytes Physcomitrella patens 2 2

Ferns Selaginella moellendorffii 2 2

Angiosperms Type Ia Type non-Ia

Amborella trichopoda 1 1 1

Spirodela polyrhiza 1 1 1

Musa acuminata 6 1 1

Triticum aestivum 3 2 3

Zea mays 6 2 2

Aquilegia coerulea 1 1

Beta vulgaris 2 1

Helianthus annuus 5 1

Solanum lycopersicum 4 1 1

Kalanchoe fedtschenkoi 4 2

Vitis vinifera 2 1 1

Arabidopsis thaliana 1 2

Theobroma cacao 2 1 1

Gossypium hirsutum 11 1 4

Populus trichocarpa 3 2 1

Cucumis sativus 1 1 1

Glycine max 4 2 2

Prunus persica 2 1 1
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family members: cucumber (GSM3048829–GSM30488
31, GSM1576573–GSM1576580), soybean (GSM170159
5–GSM1701597, GSM3714659–GSM3714661), poplar
(GSM2565710, GSM2565711, GSM2565718, GSM2565
719), maize (PRJNA171684), and upland cotton (GSE7
0369) (Fig. 4). We found that the expression pattern var-
ied not only among genes of different types or subtypes,
but also among copies of the same subtype. Further, the
more the number of copies, the more obvious was the
extent of differentiation. We speculate that functions of
new copies differentiated with unique roles in plant
growth and development as the number of copies
accumulated.

Functional divergence in the H+-PPases
The DIVERGE v3.0 program [39–41] was used to explore
whether amino acid substitutions along different branches
of the H+-PPase gene family led to the functional bifur-
cation in the two major branches. Since the estExt_Gene-
wise_ext.C_Chr_10614 in O. lucimarinus is on a branch of
its own, it was excluded from this analysis.
There was significant functional divergence between

type I and type II H+-PPases in our dataset, with seven
Type-I and 80 Type-II functionally divergent sites identi-
fied (Fig. 5; Additional file 7). This indicates that there
were different selective constraints on the distribution of
amino acid sequences between the two types of H+-PPase
genes, and that a large number of conserved amino acid
sites underwent radical substitution. In type I H+-PPases,
10 key amino acid residues were related to diphosphate
hydrolysis and proton pump function [16, 17], while five
of these were replaced in the type II H+-PPases, two of
which had undergone Type-II functional divergence (Fig.
5, AT1G15690.1 R246Q and E305A). In terms of the gene
structure, significant differences at key sites between these
types are likely to cause functional differentiation and
limit functional substitution among members. This would
also partially explain why all higher plants have both type
I and type II H+-PPase genes.

Positive selection in the H+-PPase gene family
We next investigated whether there was selective pres-
sure for differentiation among members of the H+-PPase
gene family on different phylogenetic branches. In the
present study, 124 H+-PPase genes were analyzed by
comparing the “free ratio” model, which assumes that
each branch in the phylogenetic tree has different ω
values, to the “one ratio” model, which assumes that the
whole evolutionary tree has the same ω value. According
to the likelihood ratio tests (LRT), the “free-ratio” model
was significantly better than the “one-ratio” model, indi-
cating that the different branches of the phylogenetic
tree were affected by significantly different selection
pressures (Table 4). Using type I and II H+-PPase
branches as the foreground branches (Additional file 8),
“Model A” and “Model A-null” models were compared
using the branch site model. This analysis showed that
the ω2 values of the type I and type II H+-PPase
branches were significantly higher than 1, and the
“Model A” model of the two branches was significantly
better than the “Model A-null” model in LRT detection
(Table 4). These two major branches of the H+-PPase
gene family could have been subjected to strong positive
selection pressure. We also employed a Bayes Empirical
Bayes (BEB) method to identify sites under positive se-
lection with a posterior probability of more than 95%.
One site was found amongst the type I genes, while 14
were found among the type II members with a posterior
probability of more than 95%, one of which had a pos-
terior probability of > 99% (396 N, AT1G15690.1 N284L)
(Table 4, Additional file 9). These results suggest that
plant type II H+-PPases were subjected to stronger posi-
tive selection pressure than type I genes.
In the interior of the angiosperm type I H+-PPase

branch, we conducted branch site model analysis on the
Ia subtype as the foreground branch (Additional file 10).
We found that although “Model A” was better than
“Model A-null”, the ω2 value of the Ia subtype branch
was not higher than 1, suggesting that the branch was

Table 3 Estimated dates for segmental duplication events of H+-PPase gene family members in the plant genome duplication
database

Species (λ) Gene pairs Ks (Mean ± s.d.) Estimated time (Mya) WGD (Mya)

Zea mays (6.5 × 10− 9) [24] Zm00008a033578 Zm00008a025249 0.4167 ± 0.4910 * ~ 1 2 [25], 70~9 0 [26],
~ 13 0 [27]

Zm00008a012212 Zm00008a002892 0.23 17.6923

Zm00008a021157 Zm00008a018655 0.27 ± 0.1697 *

Musa acuminata (4.5 × 10− 9) [28] GSMUA_Achr6G36430 GSMUA_Achr7G20850 0.52 ± 0.0743 57.7778 ~ 6 1 [28], ~ 6 5 [29],
70~9 0 [26], ~ 13 0 [27]

GSMUA_Achr1G26020 GSMUA_Achr3G13280 0.5157 ± 0.1242 *

Glycine max (6 × 10−9) [30] GLYMA_07G028500 GLYMA _08G214300 0.1413 ± 0.0847 11.775 5~13 and ~ 12 5 [31–35]

GLYMA _08G214300 GLYMA _13G162800 1.5033 ± 0.2768 125.275

GLYMA_07G001500 GLYMA _08G225500 0.1625 ± 0.1864 *

Key: *, Excessive standard deviation, not suitable for estimation. The gene name highlighted by the bold typeface indicates that the gene is a type II member; the
remaining genes are of subtype Ia
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not positively selected for in the angiosperm type I H+-
PPases. In addition, five positively selected sites were
identified in the branches of the Ia subtype; however, the
posterior probability was less than 95% (Table 4, Add-
itional file 9), indicating that the conservation of Ia sub-
types was stronger than that of the other plant type I
branches.

Key structural sites in plant H+-PPase proteins
In order to further describe the structural characteristics
of plant H+-PPases and screen for key sites, a multiple
sequence alignment was performed (Fig. 6) with five H+-
PPase protein sequences from A. thaliana and the most
primitive angiosperm, A. trichopoda.

We found that, of the 80 Type-II functional dispropor-
tionation sites, two were involved in proton pump function
(Fig. 5, residues indicated in red, AT1G15690.1 R246Q and

E305A), and seven sites were responsible for positive selec-
tion (one from type I H+-PPases, AT1G15690.1 Q368G; six
from type II H+-PPases, AT1G15690.1 N284L, I292C, M295R,

A448H, I497A and S688N). In addition, these nine key sites (Fig.
6, amino acids highlighted by green triangle) are mostly lo-
cated in the core functional helix (7/9), so amino acid sub-
stitutions at these sites may have a significant impact on
the function of the proton pump. On the other hand, the
key residues that regulate the K+ requirement of H+-PPase
protein are exactly at the positive selection sites for type II
H+-PPase (Fig. 6, amino acids highlighted by black crosses,

Fig. 2 Duplication events of H+-PPase genes in Gossypium hirsutum. a Syntenic relationships of H+-PPase genes among Amborella trichopoda, Vitis
vinifera, Theobroma cacao, Gossypium raimondii and Gossypium hirsutum. b Distribution of Ks values among H+-PPase genes in Gossypium
hirsutum. c Predicted divergence time of H+-PPase gene pairs
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Fig. 3 Expression profiles of H+-PPase genes in maize, upland cotton, and A. thaliana. The level of expression is shown by the color and intensity of
each block. The proteins with symbols alongside represent genes of different subtypes as follows: square, type non-Ia; triangles, type II; unlabeled, type
Ia. Data source: cotton, GSE70369; corn and A. thaliana, online database the Bio-analytic Resource for Plant Biology (BAR) http://bar.utoronto.ca/
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Fig. 4 Expression differentiation in H+-PPase gene family members. Genes of different subfamilies within one species are arranged in descending
order according to expression level in young roots. Black squares indicate type non-Ia; black triangles indicate type II; and unlabeled indicate type
Ia. * indicates no biological repeat in GSE70369

Fig. 5 Functional divergence sites in type-I and type-II H+-PPases. Left panel: The six core and ten outer transmembrane helices (TM) are shaded
in black and white, while sites responsible for both type-I and type-II functional divergence are indicated in orange and blue. Right panel:
magnified view of the proton transport pathway. The residues and structures involved in proton transport are labeled as follows (Reference
model: 6afu.1.A): two of the 80 Type-II functionally divergent sites (AT1G15690.1 R246Q and E305A) are indicated in red, while other substitutions and
conserved residues are indicated in green and magenta respectively. The figure was produced using the pyMOL programs
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AT1G15690.1 A541K, G544T). We therefore hypothesize that
the ability to function independently of K+ is an evolution-
ary advantage for the type II members. Using a newly pub-
lished model [16, 17], we found the key region that defines
K+ demand (GNxxAAIG) is located in TM12, which is
slightly different from previous studies [4, 5].
In summary, among different types, many key regions of

H+-PPase, including proton transport and potassium ion-
dependent determinants, are involved in functional diver-
gence and positive selection to varying degrees. Therefore,
different types of H+-PPase may play distinct roles.

Discussion
Evolutionary processes of H+-PPase genes in plants
Although the atypical gene, estExt_Genewise_ext.C_Chr_
10614 from O. lucimarinus, is an isolated observation in
our analysis, it is effectively expressed in transcriptome
data (GSM1134625) and can be mutually confirmed with
previous results [42]. Therefore, we believe that the plant
H+-PPase gene family contains at least three different
types of protein that originated from the LUCA. Genetic
segregation into these types occurred very early in evolu-
tionary history, and each type has experienced a long
period of independent evolution. This ancient genetic di-
vergence is similar to that of the V-ATPases and their sib-
ling homologous F-ATPases [2].
In the present study, H+-PPase gene family members

have diversified ways of presentation in different species,
such as: only type I in green algae of class Chlorophyceae;
only type II in red algae; type I & type II in higher plants
and some green algae. In addition, other type of H+-PPase
genes have still been found in plants such as “estExt_Gene-
wise_ext.C_Chr_10614”. The genome assembly of the spe-
cies involved in this study is reliable; however, the reference
genome of any species could not be perfect, which also
makes it unavoidable to eliminate the possibility of omis-
sion in the search results. Therefore, we are still not sure

whether this gene family has undergone evolutionary
events, such as horizontal gene transfer (HGT) and gene
loss, as these events are not uncommon in the early stages
of evolution [43].

Differentiation of angiosperm type I H+-PPase subtypes
In angiosperms, type I H+-PPase members may have
undergone unique differentiation events. In the present
study, angiosperm type I H+-PPases were divided into Ia
and non-Ia subtypes. All angiosperms contained Ia sub-
type members, and 72% (13/18) of angiosperms had mem-
bers from the non-Ia subtype. In the most primitive
angiosperm- Amborella, only two type I H+-PPase genes
are present, belonging to the Ia and non-Ia subtypes
(Table 2). In species that express more than seven H+-
PPase members, such as upland cotton, the Ks values be-
tween the Ia and non-Ia subtypes were significantly higher
than those in homotypic members, and reached saturation
(Fig. 2b, c, and Additional file 6). There may have been
different subtypes of the type I H+-PPase genes in the
angiosperm ancestor, which gradually evolved to form the
structural trunk made up of the present subtypes.
We also found that Ia subtype members had the high-

est sequence conservation, the highest copy numbers,
and were distributed across all 18 angiosperms included
in the present study (Table 2). Further, the members of
this subtype had the most variable expression patterns,
and the members with the highest expression levels were
also from this subtype (Figs. 3 and 4). Based on these re-
sults, we hypothesize that the Ia subtype could be the
dominant H+-PPase variant in angiosperms.

Two evolutionary trajectories of H+-PPase gene family
Among angiosperms, species with multiple H+-PPase genes
and those with fewer than four H+-PPase genes follow dif-
ferent evolutionary trajectories. Over time, the new species
separated from their ancestors and gradually formed two

Table 4 Parameter estimation and likelihood ratio tests for the free-ratio and branch-site models among plant H+-PPase genes

Cluster Model np
a

Ln L Estimates of parameters (ω2) LRT P-value Positive
selected
sites bBackground branch Foreground branch

Not required One-ratio 183 − 135,266.4315 – – 0.000000000* Not Allowed

Free-ratio 363 −134,256.0879 – – Not Allowed

Type I Model A 186 −132,447.573101 0.03780 999.00000 0.000000002* 1

Model A-null 185 −132,465.522435 1 – Not Allowed

Type II Model A 186 −132,461.505672 0.03773 26.50916 0.005794019* 14

Model A-null 185 −132,465.312309 1 – Not Allowed

Type Ia c Model A 118 −66,571.582278 0.03457 1.00000 0.000000000* None

Model A-null 117 −67,324.741260 1 – Not Allowed

Note: *, p < 0.01
aNumber of parameters in the ω distribution
bThe number of positive-selection sites inferred at posterior probabilities > 95%
cPhylogenetic relationships used for the branch-site model analysis (Additional file 10)
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trails. One trail could be characterized by new species
evolved accompanying copy number inclement of H+-
PPase gene (Fig. 7, light red arrow). Species on this trail
(e.g., upland cotton) often experienced multiple WGD
events (i.e., high numbers of duplicate genes), with multiple
H+-PPase genes specifically expressed in different develop-
mental stages and tissues. However, the differentiation of
expression patterns was mainly concentrated among
homomorphic gene types with similar sequences. The
differentiation of expression patterns was more obvi-
ous as the number of gene family members in a spe-
cies increased (Figs. 3 and 4). This describes an

evolutionary trajectory in which genes have almost
the same sequences but exhibit spatiotemporal differ-
entiation, defined as the sub-functionalization.
In contrast, on the other trail, the copy numbers of

H+-PPase genes in newly emerging species were low
(Fig. 7, light blue arrow). Cucumber and A. thaliana can
be found on this trail, and each of them have no more
than three H+-PPase genes with stable relative expres-
sion levels in different tissues and developmental stages
(Figs. 3 and 4). We describe this trajectory of responding
to multiple transcriptional needs with one gene as multi-
functionalization.

Fig. 6 Multiple sequence alignment of H+-PPase protein sequences. AT1G15690.1, ERN14318, and ERN03082 belong to type I, among which
ERN03082 is non-Ia and the rest are Ia. AT1G16780.1 and ERN12531 belong to type II. Transmembrane helices (TM) in the reference sequence
(AT1G15690.1) are outlined and numbered, and the six core and ten outer TMs are indicated in black and white, respectively. Arrows indicate key
sites in the reference sequence involved in proton transport. Dots indicate the amino acids responsible for functional divergence (Type-I: blue,
Type-II: red). The red and blue outlined boxes indicate amino acids that might be responsible for positive selection of type I and type II H+-
PPases, respectively. Functional disproportionation sites that are responsible for positive selection or involved in proton transport are indicated
with green triangles. Black crosses represent key sites for K+ demand

Zhang et al. BMC Genomics          (2020) 21:195 Page 12 of 17



Sub- and multi-functionalization have distinct character-
istics during the evolution of a gene family. For example,
sub-functionalization avoids the risk of mutation, while
multi-functionalization carries a smaller genetic burden.

Conclusion
Among the 27 plant species examined in the present
study, all possessed H+-PPase genes, with 124 different
H+-PPase gene family members identified. The vast ma-
jority of these could be divided into two categories: type I
and type II, with type I further differentiated into subtypes
Ia and non-Ia. There were significant differences in the
copy numbers of H+-PPase genes among different plant
species, and the species with higher copy numbers were
usually angiosperms. We also found that the accumulation
of H+-PPase gene copies in angiosperms was mainly due
to WGD events in each species. In lower plants (e.g., red
algae and green algae), the different types of H+-PPase
genes were unevenly distributed, while all higher plants
(e.g., vascular plants) contained combinations of both type
I and type II H+-PPase genes. Phylogenetic analysis, motif
analysis, and the prediction of tertiary structures of differ-
ent H+-PPase proteins indicated that “estExt_Genewise_

ext.C_Chr_10614” in O. lucimarinus is distinct from both
type I and type II. We also confirmed significant differ-
ences in the expression patterns between type I and type
II H+-PPase genes, and identified different expression pat-
terns between homomorphic H+-PPase genes in species
with multiple gene copies. We estimated the functional di-
vergence between type I and type II H+-PPase proteins
caused by amino acid substitution, and found that two of
the ten functionally related key amino acid sites were re-
lated to Type-II functional divergence. We also found that
both type I and type II H+-PPase branches were subjected
to very strong positive selection pressures. However, there
was no obvious positive selection among members of the
Ia subtype in angiosperms. These results improve our un-
derstanding of the structural evolution and functional dif-
ferentiation of the plant H+-PPase gene family, and
provide a foundation for further exploration of the func-
tion and potential applications of this gene family.
Based on significant differences in the number of H+-

PPase genes in angiosperms and the differentiation among
homomorphic members, we propose two gene family evo-
lutionary trajectories (sub- and multi-functionalization)
that explain the observed evolutionary phenomena.

Fig. 7 Different evolutionary trajectories of H+-PPase gene family members in angiosperms. Genome duplication levels were estimated by
reported genome doubling events, with data collated from the online database CoGepedia (http://genomeevolution.org). Divergence time
indicates the estimated divergence time of the genus that each species belongs to according to data obtained from the online database
Timetree (http://www.timetree.org). *, the “divergence time” of Gossypium hirsutum (GH) indicates the time of A- and D-genomes were reunited.
AMT: Amborella trichopoda; AC: Aquilegia coerulea; AT: Arabidopsis thaliana; Beta: Beta vulgaris; CS: Cucumis sativus; Soy: Glycine max; GR: Gossypium
raimondii; GH: Gossypium hirsutum; Banana: Musa acuminata; Poplar: Populus trichocarpa; Peach: Prunus persica; Rise: Oryza sativa; Tomato: Solanum
lycopersicum; SP: spirodela polyrhiza; Cacao: Theobroma cacao; Wheat: Triticum aestivum; Grape: Vitis vinifera; Maize: Zea mays
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Methods
Data sources
Twenty-seven representative plants with relatively
complete annotated genome data were selected as the
research subjects from the APG taxonomy [44] and
phylogenetic relationships. Taxonomic evolutionary rela-
tionships among species were visualized using the
Timetree online tool (http://www.timetree.org/) [45, 46]
(Additional file 11). The genomic data were downloaded
from the Ensembl Plants dataset (https://plants.ensembl.
org) and the Plant JGI Database phytozome v12.1
(https://phytozome.jgi.doe.gov/pz/portal.html). For gen-
ome version information, see Additional file 12.
A curated seed alignment containing 323 representa-

tive H+-PPase proteins was downloaded from Pfam 32.0
[47] (http://pfam.xfam.org/). This seed alignment was
used as a background to explore the genetic position of
the plant H+-PPases.

Identification of H+-PPase gene family members
The hidden Markov model (HMM) (pfam number:
PF03030) for the characteristic domain of H+-PPase pro-
teins was downloaded from the Pfam database (http://pfam.
xfam.org) [47]. HMMER v 3.1 [18] was used to search for
candidate genes in the whole protein sequence data of each
different species. Because the protein domain of the H+-
PPase gene family is large (650 amino acids), the sequence
coverage rate was more than 80%, and the e-value was less
than 1 × 10− 200. Proteins with domain separation in inter-
vals of no more than 50 amino acids, a sum of sequence
coverage of more than 90%, and protein e-values of less
than 1 × 10− 200 for each section were used as candidates.
The longest transcript of each gene was selected as the can-
didate member and submitted to SMART (Simple Modular
Architecture Research Tool: http://smart.embl-heidelberg.
de) [48] for verification. These results were used for down-
stream analysis of the H+-PPase gene family.

Analysis of H+-PPase gene and protein structure
The structural information of gene transcripts was ex-
tracted from GFF3 (Generic Feature Format Version 3)
annotation files, and the protein motif structure was ob-
tained using the online tool MEME [49, 50] (http://
meme-suite.org/tools/meme 5.04). The main parameters
were as follows: the search motif type was 15, the distri-
bution number of each motif in the sequence was 0 to 1,
the size range was 6 to 100, and the p value was less
than 10− 5. The resulting data were compiled and sub-
mitted to the online tool iTol [51] (https://itol.embl.de /
4.3.2) to visualize protein structures.
The protein sequences were submitted to the SWISS-

MODEL [23] website for tertiary protein structure pre-
diction. Then, the predicted structure maps of different

types of H+-PPase proteins were exported using PyMOL
(http://www.pymol.org) software.

Establishment of phylogenetic relationships
We analyzed the results of the two multiple alignment
methods (ClustalW and MUSCLE) and three phylogenetic
inference methods (NJ, ML, and ME) in MEGAX [52] with
1000 bootstrap replicates to choose stable phylogenetic trees.
Because of the need for functional divergence analysis

and positive selection analysis, whole protein sequences
were used to construct phylogenetic relationships among
H+-PPase gene family members. For more accurate sub-
group division, we also performed phylogenetic analysis
of specific functional domains as a reference.
According to the seed alignment presented in the

Pfam dataset, MUSCLE aligned functional domain se-
quences was used to explore the position of the plant
H+-PPases in the background tree.

Analysis of family member expansion
We focused on two replication mechanisms for H+-PPase
gene family members: segmental duplication and tandem
duplication [53]. We considered members of the H+-PPase
gene family that were no more than 10 genes apart as tan-
dem duplications [54]. Segmental duplication was deter-
mined by PGDD, and the corresponding repeat fragments
and Ks values [55] were obtained. In addition, for up-
land cotton, analyses of the genomes of evolutionarily
related species and a search for segmental duplica-
tions over different periods was conducted with
MCscanX (v. python) [56] and blast2.7.1 software.
The separation time between the corresponding genes
was estimated according to the formula T = Ks/2 λ
[55]. The Ks values among gene members in different
species were calculated with CODEML [57].

Gene expression pattern analysis
Transcriptome data were mined from the Gene Expres-
sion Omnibus DataSets (GEO), the Sequence Read
Archive (SRA) database, and the Bio-analytic Resource
for Plant Biology (BAR) http://bar.utoronto.ca/. For spe-
cies whose gene IDs were difficult to match to the ID in
the high-throughput data, we used Salmon [58] (v
0.13.1) to analyze the expression levels of all genes in a
selected species and extract the transcripts per million
(TPM) value for the H+-PPase genes, after quality detec-
tion and filtering using FastQC (v 0.11.8) and Trimmo-
matic (v 0.38) [59].
In order to compare the expression of H+-PPase genes

in specific tissues of different species, we calculated and
compared the relative expression.
The following formula was used for calculating relative

gene expression intensity:
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Functional divergence analysis and positive selection
analysis
The DIVERGE v3.0 [39–41] software was used to deter-
mine whether amino acid substitutions in the H + -PPase
gene family caused significant changes in site-specific
differences according to either the evolutionary rate
(Type-I) or amino acid properties (Type-II) after the
emergence of two paralogs.
Analysis of the positive selection in H+-PPase gene

family members was based on the CODEML program
[57, 60, 61] in PAML, using the ML method and the
branch-site model to identify whether a particular evolu-
tionary branch was positively selected for. Subsequently,
we searched for positively selected sites on that branch.
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