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Abstract

Background: Post-database search is a key procedure in peptide identification with tandemmass spectrometry
(MS/MS) strategies for refining peptide-spectrum matches (PSMs) generated by database search engines. Although
many statistical and machine learning-based methods have been developed to improve the accuracy of peptide
identification, the challenge remains on large-scale datasets and datasets with a distribution of unbalanced PSMs. A
more efficient learning strategy is required for improving the accuracy of peptide identification on challenging
datasets. While complex learning models have larger power of classification, they may cause overfitting problems and
introduce computational complexity on large-scale datasets. Kernel methods map data from the sample space to
high dimensional spaces where data relationships can be simplified for modeling.

Results: In order to tackle the computational challenge of using the kernel-based learning model for practical
peptide identification problems, we present an online learning algorithm, OLCS-Ranker, which iteratively feeds only
one training sample into the learning model at each round, and, as a result, the memory requirement for computation
is significantly reduced. Meanwhile, we propose a cost-sensitive learning model for OLCS-Ranker by using a larger loss
of decoy PSMs than that of target PSMs in the loss function.

Conclusions: The new model can reduce its false discovery rate on datasets with a distribution of unbalanced PSMs.
Experimental studies show that OLCS-Ranker outperforms other methods in terms of accuracy and stability, especially
on datasets with a distribution of unbalanced PSMs. Furthermore, OLCS-Ranker is 15–85 times faster than CRanker.
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Introduction
Tandem mass spectrometry (MS/MS)-based strategies
are presently the method of choice for large-scale pro-
tein identification due to its high-throughput analysis
of biological samples. With database sequence search-
ing method, a huge number of peptide spectra gener-
ated from MS/MS experiments are routinely searched
by using a search engine, such as SEQUEST, MASCOT
or X!TANDEM, against theoretical fragmentation spectra
derived from target databases or experimentally observed
spectra for peptide-spectrum match (PSM). However,
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most of these PSMs are not correct [1]. A number of com-
putational methods and error rate estimation procedures
after database search have been proposed to improve the
identification accuracy of target PSMs[2, 3].
Recently, advanced statistical and machine learning

approaches have been studied for better identification
accuracy in the post-database search. PeptideProphet [4]
and Percolator [5] are two popular ones among those
machine learning-based tools. PeptideProphet employs
the expectation maximization method to compute the
probabilities of correct and incorrect PSM, based on the
assumption that the PSM data are drawn from a mixture
of the Gaussian distribution and the Gamma distribu-
tion which generate samples of the correct and incorrect

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-020-6693-y&domain=pdf
http://orcid.org/0000-0002-6991-7162
mailto: liangxijunsd@163.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Liang et al. BMC Genomics          (2020) 21:324 Page 2 of 13

PSMs. Several works have extended the PeptideProphet
method to improve its performance. Particularly, decoy
PSMs were incorporated into a mixture probabilistic
model in [6] at the estimation step of the expectationmax-
imization. An adaptive method described in [7] iteratively
learned a new discriminant function from the training
set. Moreover, a Bayesian nonparametric (BNP) model
was presented in [8] to replace the probabilistic distribu-
tion used in PeptideProphet for calculating the posterior
probability. A similar BNP model [9] was also applied to
MASCOT search results. Percolator starts the learning
process with a small set of trusted correct PSMs and decoy
PSMs, and it iteratively adjusts its learningmodel to fit the
dataset. Percolator ranks the PSMs according to its con-
fidence on them. Some works [10, 11] have also extended
Percolator to deal with large-scale datasets.
In fact, Percolator is a typical method of supervised

learning. With given knowledge (labeled data), supervised
learning can train a model with labeled data and uses
it to get an accurate prediction on unlabeled data. In
[12], a fully supervised method is proposed to improve
the performance of Percolator. Two types of discriminant
functions, linear functions and two-layer neural networks,
are compared. The two-layer neural networks is a nonlin-
ear discriminant function which adds lots of parameters
of hidden units. As expected, it achieves better identifica-
tion performance than the model with linear discriminant
function [12]. Besides, the work in [13] used a generative
model, Deep Belief Networks, to improve the identifica-
tion.
In supervised learning, kernel functions have been

widely used to map data from the sample space to high
dimensional spaces where data with non-linear relation-
ships can be classified by linear models. With the kernel-
based support vector machine (SVM), CRanker [14]
has shown significantly better performance than linear
models. Although kernel-based post-database searching
approaches have improved the accuracy of peptide identi-
fication, two big challenges remain in practical implemen-
tation of kernel-based methods:

(1) The performance of the algorithms degrades on the
datasets with a distribution of unbalanced PSMs,
in which case some datasets contain an extremely
large proportion of false positives. We call them
“hard dataset” as most post-database search meth-
ods degrade their performances on these datasets;

(2) Scalability problems in both memory use and com-
putational time are still barriers for kernel-based
algorithms on large-scale datasets. Kernel-based
batch learning algorithms need to load the entire
kernel matrix into memory, and thus the memory
requirement can be very intense during the training
process.

In some extent, the above challenges also exists in other
post-database searching methods. A number of recent
works are related to the two challenges. The methods of
data fusion [15–18] integrate different sources of auxiliary
information, alleviated the challenge of “hard datasets”.
Moreover, cloud computing platform is used in [19] to
tackle the intense memory and computation requirement
for mass spectrometry-based proteomics analysis using
the Trans-Proteomic Pipeline (TPP). Existing researches
either integrated extensive biological information or lever-
aged hardware support to overcome the challenges.
In this work, we develop an online classification algo-

rithm to tackle the two challenges in kernel-based meth-
ods. For the challenge of “hard dataset”, we extend
CRanker [14] model to a cost-sensitive Ranker (CS-
Ranker) by using different loss functions for decoy and
target PSMs respectively. The CS-Ranker model gives a
larger penalty for wrongly selecting decoy PSMs than that
for target PSMs, which reduces the model’s false discovery
rate while increases its true positive rate. For the challenge
of scalability problems , we design an online algorithm
for CS-Ranker (OLCS-Ranker) which trains PSM data
samples one by one and uses an active set to keep only
those PSMs effective to the discriminant function. As a
result, memory requirement and total training time can
be dramatically reduced. Moreover, the training model is
less prone to converging to poor local minima, avoiding
extremely bad identification results.
In addition, we calibrate the quality of OLCS-Ranker

outputs by using the entrapment sequences obtained from
“Pfu” dataset published in [20]. Although the target-decoy
strategy has become a mainstream method for the qual-
ity control in peptide identification, it cannot directly
evaluate the false positive matches in identified PSMs.
We aim to use the entrapment sequence method as an
alternative of target-decoy strategy in the assessment of
OLCS-Ranker [21, 22].
Experimental studies have shown that OLCS-Ranker

not only outperformed Percolator and CRanker in terms
of accuracy and stability, especially on hard datasets, but
also reported evidently more target PSMs than those
reported by Percolator on about half of datasets. Also,
OLCS-Ranker is 15 ∼ 85 times faster on large datasets
than the kernel-based baseline method, CRanker.

Results
Experimental setup
To evaluate the OLCS-Ranker algorithm, we used six
LC/MS/MS datasets generated from a variety of biological
and control protein samples and different mass spectrom-
eters to minimize the bias caused by the sample, type of
mass spectrometer, or mass spectrometrymethod. Specif-
ically, the datasets include universal proteomics stan-
dard set (Ups1), the S. cerevisiae Gcn4 affinity-purified
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complex (Yeast), S. cerevisiae transcription complexes
using the Tal08 minichromosome (Tal08 and Tal08-large)
and Human Peripheral Blood Mononuclear Cells (PBMC
datasets). There are two PBMC sample datasets which
were analyzed with the LTQ-Orbitrap Velos with MiPS
(Velos-mips) and MiPS-off (Velos-nomips) respectively.
All PSMs were assigned by the SEQUEST search engine.
Refer to [23] for the details of the sample preparation and
LC/MS/MS analysis.
We converted the SEQUEST outputs from *.out format

to Microsoft Excel format for OLCS-Ranker and removed
all blank PSMs records if any. Statistics of the SEQUEST
search results of the datasets are summarized in Table 1.
A PSM record is represented by a vector of nine

attributes: xcorr, deltacn, sprank, ions, hit mass, enzN,
enzC, numProt, deltacnR. The first five attributes inherit
from the SEQUEST algorithm and the last four attributes
are defined as

• enzN: A boolean variable indicating whether the
peptide is preceded by a tryptic site;

• enzC: A boolean variable indicating whether the
peptide has a tryptic C-terminus;

• numProt: The number that the corresponding
protein matches other PSMs;

• deltacnR: deltacn/xcorr.

Based on our observation, “xcorr” and “deltacn” played
more important roles in identification of PSMs, and
hence, we used 1.0 for the weights of the two features,
and 0.5 for all others. Also, Gaussian kernel k(xi, xj) =
exp (

‖xi−xj‖2
2σ 2 ) was chosen in this experimental study.

The choice of parameters, C1,C2, σ , is a critical step in
the use of OLCS-Ranker. We performed a 3-fold cross-
validation and the values of parameters were chosen
by maximizing the number of identified PSMs. Detailed
cross-validation results could be found in Additional file 2.
The PSMswere selected according to the calculated scores
under FDR level 0.02 and 0.04, respectively, and FDR was
computed using the following equation

FDR = 2D/(D + T),

Table 1 Statistics of datasets

Total Target PSM Decoy PSM

Yeast 14892 6703 8189

Ups1 17335 8974 8361

Tal08 18653 9907 8746

Tal08-large 69560 42222 27338

Velos-mips 301879 208765 93114

Velos-nomips 447350 307549 139801

where D is the number of the spectra matched to decoy
peptide sequences and T is the number of the PSMs
matched to target peptide sequence. As the performance
of OLCS-Ranker is not sensitive to the algorithm param-
eters, we constantly set M = 1000, m = 0.35|S|, where
S is the active index set and |S| denotes its size, in this
experimental study.
OLCS-Ranker was implemented with Matlab

R2015b. The source code can be download from
https://github.com/Isaac-QiXing/CRanker. All exper-
iments were implemented on a PC with Intel Core
E5-2640 CPU 2.40GHz and 24Gb RAM.
For comparison with PeptideProphet and Percolator, we

followed the steps described in Trans Proteomic Pipeline
(TPP) suite[24] and [10]. In PeptideProphet, we used the
program MzXML2Search to extract the MS/MS spectra
from the mzXML file, and the search outputs were con-
verted to pep.XML format files with the TPP suite. In Per-
colator, we converted the SEQUEST outputs to a merged
file in SQT format [25, 26], and then transformed it to PIN
format by sqt2pin integrated in Percolator suite[10]. We
used ’-N’ option of the “percolator” command to specify
the number of training PSMs.

Comparison with benchmark methods
We compared OLCS-Ranker, PeptideProphet and Per-
colator on the six datasets in term of the numbers of
validated PSMs at FDR = 0.02 and FDR = 0.04. The
performance of a validation approach is better if it can val-
idate more target PSMs than the other approach under the
same FDR. Table 2 shows the number of validated PSMs
and the ratio of this number to the total of each dataset. As
we can see, OLCS-Ranker identified more PSMs on three
datasets, similar numbers of PSMs on the other three
datasets, compared with PeptideProphet or Percolator.
Compared with PeptideProphet, 25.1%, 4.9% and 2.4%

more PSMs were identified by OLCS-Ranker at FDR =
0.02 on Tal08, Tal08-large and Velos-nomips, respectively.
Compared with Percolator, 12.2%, 10.0% and 3.4% more
PSMs were identified by OLCS-Ranker at FDR = 0.01 on
Yeast, Tal08 and Velos-nomips, respectively. On Ups1 and
Tal08-large OLCS-Ranker identified a similar number of
PSMs to that of Percolator. The numbers of PSMs iden-
tified by the three methods on each dataset under FDR
= 0.04 are similar to those under FDR = 0.02.
We have also compared the overlapping of target PSMs

identified by the three approaches as a PSM reported by
multiple methods is more likely to be correct. Figure 1
shows that the majority of validated PSMs by the three
approaches overlaps, indicating high conference on the
identified PSMs output by OLCS-Ranker. Particularly, on
Yeast, the three approaches have 1197 PSMs in common,
covers more than 86% of the total target PSMs identified
by each of the algorithms. This ratio of common PSMs is
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Table 2 Number of PSMs output by PeptideProphet, Percolator, and OLCS-Ranker

Dataset Method
FDR= 0.02 FDR= 0.04

Targets Decoys Ratio Targets Decoys Ratio

Yeast

PepProphet 1379 13 0.206 1436 29 0.214

Percolator 1225 12 0.183 1366 27 0.204

OLCS-Ranker 1374 13 0.205 1467 29 0.219

Ups1

PepProphet 506 5 0.056 545 11 0.061

Percolator 471 4 0.052 554 11 0.062

OLCS-Ranker 473 4 0.053 528 10 0.059

Tal08

PepProphet 911 9 0.092 948 20 0.096

Percolator 1036 10 0.105 1059 21 0.107

OLCS-Ranker 1140 10 0.115 1156 22 0.117

Tal08-large

PepProphet 14966 152 0.354 15516 317 0.367

Percolator 15793 159 0.374 16164 329 0.383

OLCS-Ranker 15706 157 0.372 16078 327 0.381

Velos-mips

PepProphet 116533 1177 0.558 120080 2450 0.575

Percolator 116046 1172 0.556 120952 2468 0.579

OLCS-Ranker 117084 1182 0.561 120033 2448 0.575

Velos-nomips

PepProphet 166790 1684 0.542 173935 3549 0.566

Percolator 165174 1668 0.537 174361 3558 0.567

OLCS-Ranker 170722 1723 0.555 177007 3611 0.576

“Targets”: number of selected target PSMs; “Decoys”: number of selected decoy PSMs; “ratio”: the ratio of the number of selected target PSMs under FDR= 0.04 to the total
number of target PSMs in the dataset; “PepProphet”: PeptideProphet

Fig. 1 Overlap of identified target PSMs by PeptideProphet, Percolator and OLCS-Ranker. PepProphet: PeptideProphet
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86% and 75% on Ups1 and Tal08, respectively, and more
than 90% on Tal08-large, Velos-mips and Velos-nomips.
Furthermore, the overlapping PSMs identified from

OLCS-Ranker and each of PeptideProphet and Percolator
is more than those overlapping PSMs identified from Pep-
tideProphet and Percolator. On Yeast, besides the over-
lapping among three methods, OLCS-Ranker and Pep-
tideProphet identified 128 PSMs in common and OLCS-
Ranker and Percolator identified 25 PSMs in common. In
contrast, PeptideProphet and Percolator have only 3 PSMs
in common. Similar patterns occurred on other datasets.
Not surprisingly, OLCS-Ranker validated more PSMs

than other methods in most cases. For a closer look, we
compared the outputs by OLCS-Ranker and Percolator
on Velos-nomips in Fig. 2. For visualization, we project
PSMs in nine-dimensional sample space to a plane which
can be seen, as shown in Fig. 2. As we can see, the red
dots are mainly distributed in the margin region, and they
are mixed with decoy and other target PSMs. Percola-
tor misclassified these red dots, OLCS-Ranker, however,
has correctly identified them using nonlinear kernel. Simi-
larly, we have observed this advantage of OLCS-Ranker on

Yeast, Tal08 and Velos-mips datasets as well. These figures
could be found in Additional file 1.
Hard datasets and normal datasets
Note that in Table 2, all the three approaches reported

relatively low ratios of validated PSMs on Yeast, Ups1
and Tal08 dataset. As aforementioned, we call them “hard
datasets”, in which a large proportion of incorrect PSMs
usually increases the complexity of identification for any
approach. Particularly, the ratios on Yeast, Ups1 and Tal08
are 0.204∼0.219, 0.05∼0.062, and 0.096∼0.117, respec-
tively, while the ratios on the other datasets (“normal
datasets”) are larger than 0.35.

Model evaluation
We used receiver operating characteristic (ROC) to com-
pare the performances of OLCS-Ranker, PeptideProphet
and Percolator. As shown in Fig. 3, OLCS-Ranker reached
highest TPRs among the three methods at most values
of FPRs on all datasets. Compared with PeptideProphet,
OLCS-CRanker reached significantly higher TPR lev-
els on Tal08 and Tal08-large dataset. Compared with
Percolator, OLCS-CRanker reached significantly higher

Fig. 2 Distribution of identified PSMs by Percolator and OLCS-Ranker. The blue and yellow dots represent target and decoy PSMs, respectively, the
cyan dots represent the target PSMs identified by Percolator (98.8% of them have also been identified by OLCS-Ranker), and the red dots represent
the target PSMs identified by OLCS-Ranker only. The dotted line represents the linear classifier given by Percolator, and its margin region is defined
by the region bounded by the two solid lines. The two-step projection is given as follows. Step 1. Rotate the sample space. Let 〈b, u〉 + b0 = 0 be
the discriminant hyperplane trained by Percolator, with feature coefficients b =[ b1, · · · , bq], intercept b0, and number of features q. Let P ∈ Rq×q be
orthogonal rotation matrix with w =[ 1, 1, 0, · · · , 0]∈ Rq such that Pw = b. Then the hyperplane after rotation is
〈Pw, u〉 + b0 = 0 ⇔ 〈w, PTu〉 + b0 = 0 ⇔ 〈[ 1, 1] , [ x1, x2] 〉 + b0 = 0, with PTu =[ x1, · · · , xq]. PSM u in sample space Rq is rotated as
PTu =[ x1, · · · , xq]. Step 2. Project the rotated PSMs to a plane with the first two rotated coordinates x1 and x2 (two axes in the figure). The dotted
line 〈[ 1, 1] , [ x1, x2] 〉 + b0 = 0 is the linear classifier. 〈[ 1, 1] , [ x1, x2] 〉 + b0 = +1 and 〈[ 1, 1] , [ x1, x2] 〉 + b0 = −1 are the boundaries of the margin
of the linear classifier
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Fig. 3 ROC curves. Relationship of TPR and FPR of the identified PSMs by PeptideProphet, Percolator and OLCS-Ranker. a. On Ups1; b. On Yeast; c.
On Tal08; d. On Tal08-large; e. On Velos-mips; f. On Velos-nomips

TPR levels on Yeast, Tal08 and Velos-nomips dataset.
On Velos-nomips, the TPR values of OLCS-Ranker were
about 0.04 higher (i.e., about 8% more identified target
PSMs) than that of Percolator with FPR levels from 0
to 0.02 (corresponding FDR levels from 0 to 0.07). In
general, OLCS-Ranker outperformed PeptideProphet and
Percolator in terms of the ROC curve.
We have also examined model overfitting by the ratio

of identified PSMs in the test set to the number of
the total identified PSMs (identified_test/identified_total)
versus the ratio of the size of training set to the size
of total dataset (|train set| / |total set|). As Peptide-
Prophet does not use the supervised learning frame-
work, we only compared OLCS-Ranker with Percola-
tor and CRanker in this experiment. Assume that cor-
rect PSMs are identically distributed over the whole
dataset. If neither underfitting nor overfitting occurs,
then the ratio of identified_test/identified_total should
be close to 1 - |train set|/|total set|. For example, at
|train set|/|total set| = 0.2, the expected ratio of identi-
fied_test/identified_total is 0.8. Particularly, the training
sets and test sets were formed by randomly selecting
PSMs from the original datasets according to the val-
ues of = 0.1, 0.2, · · · , 0.8. For each value of train/total,
we computed the mean value and the standard devia-
tion of the ratios of identified_test/identified_total based
on 30 times of running Percolator and OLCS-Ranker,
and results were shown in Fig. 4. As we can see, the

identified_test/identified_total ratios reported by OLCS-
Ranker are closer to the expected ratios than those of
Percolator does on Yeast on Ups1. Take |train set|/|total
set| = 0.2 in Fig. 4a, as an example, in which 20%/80% of
PSMs were used for training/testing, and the correspond-
ing expected identified_test/identified_total ratio is 0.8.
The actual identified_test/identified_total ratio of OLCS-
Ranker is 0.773 with standard error 0.018, and 0.861 with
standard error 0.043 by Percolator.
Due to the extraordinary running time of CRanker,

we only compared OLCS-Ranker and CRanker at
|train set|/|total set| = 2/3, and listed the results in
Table 3. Although CRanker showed the same ratios
of identified_test/identified_total on normal datasets
as OLCS-Ranker did, its ratios on hard dataset are
less than the expected ratio, 1/3. While the identi-
fied_test/identified_total ratio of CRanker is 0.272 and
0.306 on Ups1 and Tal08 respectively, the ratio of OLCS-
Ranker is 0.334 and 0.342, respectively. The results indi-
cate that compared with CRanker, OLCS-Ranker over-
comes the overfitting problem on hard datasets.
Furthermore, we have compared the outputs of Per-

colator and OLCS-Ranker with different training sets to
examine the stability of OLCS-Ranker. Usually, the out-
put of a stable algorithm does not change dramatically
along with input training data samples. We have run Per-
colator and OLCS-Ranker 30 times at each value of |train
set|/|total set| ratio = 0.1, 0.2, 0.3, · · · , 0.8.
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Fig. 4 Identified_test/Identified_total versus |train set|/ |total set|. x-axis: train/total ratio, the ratio of the number of selected training PSMs to the
total number of PSMs in the dataset; y-axis: test/total ratio, the ratio of the number of PSMs identified on the test set to the number of PSMs
identified in the total dataset. The dotted line segment between (0,1) and (1,0) indicates the expected test/total ratios. a. On Yeast; b. On Ups1; c. On
Tal08; d. On Tal08-large; e. On Velos-mips; f. On Velos-nomips

The average numbers of identified PSMs and its stan-
dard deviations were plotted in Fig. 5. As we can see, both
algorithms are stable on normal datasets. However, on
Yeast and Ups1, deviations of outputs by OLCS-Ranker
are smaller, especially when |train set|/|total set| ratio is
small.
Table 3 Comparing OLCS-Ranker with CRanker algorithm

Dataset Method #PSMs test
total RAM (Mb) time (s)

Yeast
CRanker 1386 0.339 1503.6 667.8

OLCS-Ranker 1387 0.320 87.2 16.9

Ups1
CRanker 510 0.272 2034.0 1507.0

OLCS-Ranker 477 0.334 160.2 19.3

Tal08
CRanker 1030 0.306 2347.9 1579.6

OLCS-Ranker 1150 0.342 28.9 26.0

Tal08-large
CRanker 15531 0.334 6107.9 10090.1

OLCS-Ranker 15863 0.331 601.0 116.7

Velos-mips
CRanker 117301 0.334 6123.1 9052.9

OLCS-Ranker 118266 0.333 699.3 495.5

Velos-nomips
CRanker 170092 0.332 6128.9 11478.5

OLCS-Ranker 172445 0.333 395.7 754.3

The algorithm efficiency
In order to evaluate the computational resources con-
sumed by OLCS-Ranker, we compared its running time
and used memory with that used by the kernel-based
baseline method, CRanker. As the whole training data is
needed for CRanker to construct its kernel matrix, it is
very time-consuming on large datasets. Instead, CRanker
divided the training set into five subsets by randomly
selecting 16000 PSMs for each subset. The final score of a
PSM is the average of the scores on the five subsets.
Table 3 summarized the comparison of OLCS-Ranker

and CRanker in terms of the total number of identi-
fied PSMs, the ratio of identified PSMs in the test set
to the number of total identified PSMs, used RAM and
elapsed time. As we can see, it took CRanker from about
10 min to half an hour on three small datasets, Ups1,
Yeast and Tal08, and about 3 h on comparatively large
datasets, Tal08-large, Velos-mips and Velos-nomips. In
contrast, it took OLCS-Ranker only 13 min on the largest
dataset Velos-nomips, about 15 ∼ 85 times faster than
CRanker. Moreover, OLCS-Ranker consumed only about
1/10 of RAM that used by CRanker on small datasets.



Liang et al. BMC Genomics          (2020) 21:324 Page 8 of 13

Fig. 5 The number of identified target PSMs with various number of training PSMs. x-axis: train/total ratio, the ratio of the number of training PSMs
to the total number of PSMs the total dataset; y-axis: identified targets, the number of identified target PSMs. a. On Yeast; b. On Ups1; c. On Tal08; d.
On Tal08-large; e. On Velos-mips; f. On Velos-nomips

On large datasets, OLCS-Ranker has low memory cost.
It uses about 400Mb RAM on the tested largest dataset,
Velos-nomips. By contrast, CRanker could not efficiently
deal with large-scale datasets since large kernel matrix
could not load into to memory. The memory of CRanker
list in the table is used for training its five small-sized
sub-models.
In summary, OLCS-Ranker requires less computational

time and memory than C-Ranker does. The analysis is
given as follows. CRanker uses a batch learning method
in training process and has to maintain a n-by-n dense
kernel matrix, where n is the number of PSMs. In con-
trast, OLCS-Ranker uses an online learning algorithm,
which iteratively trains the model by taking only one
data sample at each round. Moreover, OLCS-Ranker only
needs to keep data samples in the active set in the mem-
ory. Hence, the requirement of computational resources
during the model-training process is significantly
reduced.
Particularly, the memory required by CRanker is O(n2),

with n the number of training PSMs, while it is O(|S|2)
required by OLCS-Ranker, where |S| is the number of

PSMs in the active set S. As the value of n is usu-
ally very large, CRanker can hardly run a dataset with
more than 20,000 PSMs on a normal PC. However, the
maximum size of the active set |S| in OLCS-Ranker is
pre-selected and far less than the value of n for large
datasets.
From the perspective of computational complexity,

CRanker needs to solve a series of convex sub-problem.
Each subproblem is essentially an SVM classification
problem, and the computational complexity is between
O(n2) and O(n3). Thus, the computational complexity
of CRanker is at least O(n2). However, OLCS-Ranker
deals with one PSM sample, at the computational cost
of O(|S|2), at each round. Thus, the computational com-
plexity of OLCS-Ranker is bounded by O(n|S|2), which is
usually far less than that of CRanker when |S| � n.

Evaluation by the entrapment sequence method
The entrapment sequence method was introduced as an
alternative of target-decoy strategy to validate true PSMs
in mass spectrometry data analysis. We have evaluated
the performance of OLCS-ranker with the entrapment
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sequences obtained from “Pfu” dataset published in refer-
ence [20].
We use the entrapment hits to calculate the false

match rate (FMR) to assess the quality of the iden-
tification results. Fig. 6 depicts corresponding FMRs
under a series of FDR levels of OLCS-Ranker. It is
shown that with both Tide (Fig. 6a) and Comet (Fig. 6b)
search engines, OLCS-Ranker has approximately lower
FMR levels than those of FDRs in identified sample
PSMs and peptides, which indicates the identification
results are reasonable according to the definition of
FMR.
We also compared the identification results of OLCS-

Ranker using different search engines with those in [20]
under 0.01 FDR for PSM and peptide, respectively, and
results are listed in Table 4. It is shown that in most cases
the FMRs estimated by entrapment hits are roughly equal
to 0.01. Particularly, with the Comet search engine at FMR
= 0.009, OLCS-Ranker identified 10603 PSMs, 6% more
than those identified by Crux Percolator. Similarly for
identified peptides, the number given by OLCS-Ranker
is about 6% (5667 − 5343)/5343 = 6.06%) more than
that of Crux Percolator. With the Tide search engine,
OLCS-Ranker identifies approximately the same num-
ber of PSMs and peptides as those of Crux Percolator,
but has lower FMR levels. Thus, in terms of identi-
fication number and FMRs given by this entrapment
sequence test, OLCS-Ranker has shown the quality of
its identified results is at least as high as that of Crux
Percolator.

Conclusions
We have presented a cost-sensitive post-database search
approach, OLCS-Ranker, for peptide identification to

Table 4 The identification numbers and FMRs under FDR = 0.01
on Pfu dataset of various searching methods

Method Identification number FMR

Sample PSM Tide + Crux percolator 6799 0.013

X!Tandem + percolator 9889 0.011

Mascot + PepDistiller 9864 0.013

Comet + Crux Percolator 9922 0.009

Tide + OLCS-Ranker 6897 0.008

Comet + OLCS-Ranker 10603 0.009

Sample peptide Tide + crux percolator 3878 0.016

X!Tandem + percolator 5320 0.012

Mascot + PepDistiller 5360 0.015

Comet + crux percolator 5343 0.010

Tide + OLCS-ranker 3806 0.008

Comet + OLCS-ranker 5667 0.011

overcome the challenges of “hard datasets” and scalabil-
ity problem with the kernel-based learning model. We
designed an online cost-sensitive model to tackle a large
portion of decoy PSMs in hard datasets by assigning them
larger penalties. Moreover, OLCS-Ranker has shown
better scalability than CRanker due to significantly
reduced memory requirement and total training time.
Experimental studies have shown that OLCS-Ranker
outperformed benchmark methods in terms of accu-
racy and stability. Also, compared with CRanker, OLCS-
Ranker is about 15∼85 times faster over tested datasets
and has overcome the overfitting problem on hard
datasets.

Fig. 6 False match rate under various FDR level on Pfu dataset of OLCS-Ranker, FMR = Nentrapment/Ntarget. a. Tide + OLCS-Ranker; b. Comet +
OLCS-Ranker
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Materials andmethods
Basic CRanker model
CRanker [14] cast identification of target PSM as a clas-
sification problem. Let � = {xi, yi}ni=1 ⊆ Rq × {−1, 1} be
a set of n PSMs, where xi ∈ Rq represents its i-th PSM
record with q attributes, and yi ∈ {1,−1} is the corre-
sponding label indicating a target or decoy PSM. Define
�+ = {j | yj = 1}, �− = {j | yj = −1}. The identifica-
tion task is to train a discriminant function for filtering out
the correct PSMs from the target PSMs (ones with labels
“+1”).
While class labels in a standard classification problem

are all trustworthy, a large number of “+1” labels in PSM
identification are not correct. CRanker [14] introduced
weight θi ∈[ 0, 1] for each PSM sample (xi, yi) to indicate
the degree of the reliability of the label yi. Particularly, θi =
1 indicates that label yi is definitely correct, θi = 0 indi-
cates that it is definitely incorrect, and θi ∈ (0, 1) indicates
that label yi is probably correct. In fact, all “−1” labels
(decoy PSMs) are correct, and thus θi = 1 for all i ∈ �−.
Based on Support Vector Machine (SVM) [27], CRanker
can be solved by the following optimization problem

minw,θ
1
2‖w‖2 + C

∑n
i=1 θih(yif (xi)) − λ

∑n
i=1 θi

s. t. θi = 1, i ∈ �−,
0 ≤ θi ≤ 1, i ∈ �+,

(1)

where C > 0 is the regularization parameter, λ > 0 is
the parameter controlling the number of identified PSMs,
h(t) = max(0, 1 − t) is the hinge loss function, and
f (xi) = 〈w,φ(xi)〉 is the value of discriminant function at
xi with feature mapping φ(·). As shown in [28, 29], a larger
value of parameter λ selects more PSMs into the training
process.

Cost-sensitive ranker model
In this section, we present a cost-sensitive (CS) classifi-
cation model to partially tackle the stability problem of
CRanker over datasets with a distribution of unbalanced
PSMs. Unlike the CRanker model, the CS model uses dif-
ferent loss functions for decoy and target PSMs. In fact,
learning errors should be treated with different penal-
ties in peptide identification. If the discriminant function
assigns “+1” label to a decoy PSM, then we know for sure
that the label assignment is wrong. In this case, the learn-
ing error is more likely caused by the model itself rather
than the quality of the data sample, and hence we should
give the loss function a large penalty. On the other hand,
if a target is classified as negative and assigned label “−1”,
we are not even sure whether the label assignment is cor-
rect, and thus we consider a small penalty for the loss
function. Based on these observations, we incorporate the
new penalty policy into model (1) and the new model is

described as follows:
minw,θ

1
2‖w‖2 + C1

∑
i∈�− θih(yif (xi))

+C2
∑

i∈�+ θih(yif (xi)) − λ
∑n

i=1 θi
s. t. θi = 1, i ∈ �−,

0 ≤ θi ≤ 1, i ∈ �+,

(2)

where C1 > 0, C2 > 0 are weights for the losses of the
decoys and targets, respectively. Model (2) is named cost-
sensitive ranker model and denoted by CS-Ranker. As
we choose a larger penalty for decoy losses, C1 ≥ C2
always holds.

The convex-concave procedure for solving CS-Ranker
In order to solve the CS-Ranker model, we transform
(2) to its DC (difference of two convex functions) form.
According to the method in [29], if a pair of w∗ ∈ Rn

and θ∗ ∈ Rn is an optimal solution to CS-Ranker model
(2), then w∗ is also an optimal solution of the following
problem

min
w

1
2
‖w‖2 + C1

∑

i∈�−

h(yif (xi)) + C2
∑

i∈�+

Rs(yif (xi))

(3)

where Rs(t) = min(1 − s, max(0, 1 − t)), s = 1 − λ
C2
.

Since Rs(t) = H1(t) − Hs(t), with Hs(t) = max(0, s − t)
andH1(t) = max(0, 1− t), then model (3) can be recast as

min J(w) = Jvex(w) + Jcav(w), (4)

where
Jvex(w) = 1

2‖w‖2 + C1
∑

i∈�− H1(yif (xi))
+C2

∑
i∈�+ H1(yif (xi)),

Jcav(w) = −C2
∑

i∈�+ Hs(yif (xi)).
(5)

Jvex(·) and Jcav(·) are convex and concave functions respec-
tively. Hence, Problem (4) can be solved by a standard
Concave-Convex Procedure (CCCP) [30], which itera-
tively solves subproblems

wk+1 = argminw Jvex(w) + J ′cav(wk) · w (6)

with initial w0. The subproblem (6) can be solved by its
Lagrange dual [31]:

maxα G(α)=− 1
2

∑
i,j αiαjk(xi, xj) + 〈α, y〉 + ∑

i∈�+ C2η
k
i

s. t. Ai ≤ αi ≤ Bi, , i = 1, . . . , n
Ai = min(0,C1yi), i ∈ �−
Bi = max(0,C1yi), i ∈ �−
Ai = min(0,C2yi) − C2ηiyi, i ∈ �+
Bi = max(0,C2yi) − C2ηiyi, i ∈ �+

(7)

where ηi =
{
1, if yif (xi) < s,
0, otherwise .

Model (7) is a kernel-based learning model with k(·, ·)
the kernel function. Then k(xi, xj) calculates, in feature
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space, the pairwise inner product of PSM records of xi
and xj, which are represented in vector format. Hence,
OLCS-Ranker can handle PSM records generated by any
search engine as long as the output PSMs are represented
in vector format.

The online learning algorithm for CS-Ranker model
Inspired by the work in [32, 33], we obtain the discrim-
inant function for CS-Ranker by solving its DC form
(3).
Different from classical classifiers which take all PSM

samples at once, the online CS-Ranker algorithm
(OLCS-Ranker) iteratively trains the discrimination func-
tion and adds only one PSM sample into the training
process at each iteration. The PSM sample is randomly
selected to prevent the solution of (3) from trapping at
a local minimum and its effectiveness has been observed
in approaches such as stochastic gradient descent [34].
In order to reduce the cost of memory and computation,
OLCS-Ranker maintains an active set which keeps only
indices of PSMs that determine the discriminant function
in model training, and the PSMs that do not affect the
discriminant function are discarded.

Online algorithm for solving CS-Ranker
The implementation of OLCS-Ranker is depicted in Algo-
rithm 1. Particularly, given a chosen PSM sample (Line 3),
OLCS-Ranker updates bounds Aj, Bj, for all j ∈ �+ ∩ S
(Line 4 – Line 7), and calls subroutines PROCESS and
REPROCESS to solve dual programming (7) with train-
ing samples in active set S (Line 8–Line 12). Iteratively,
the algorithm calls subroutine CLEAN to remove part of
redundant PSMs from the active set (Line 13). The iter-
ation terminates when all the training PSMs have been
chosen for training.

Subroutines
Subroutine PROCESS ensures that all the coordinates of
αj satisfy the bound constraint conditions in CS-Ranker
model (7). It initializes αi0 with 0, where i0 is the index of
the chosen PSM, and updates the coordinates αj if bound
Aj or Bj has changed (Line 1-2). Then, it updates gradient
vector gj, j ∈ S (Line 3), where g is defined by

gi
�= ∂G(α)

∂αi
= yi −

∑

j∈S
αjk(xi, xj). (8)

Subroutine REPROCESS aims to find a better solution
of model (7). It selects the instances with the maximal gra-
dient in active set S (Line 1 – Line 12). Once an instance
is selected, it computes a stepsize (Line 13 – Line 17)

Algorithm 1 Online CS-Ranker algorithm for solving
model (3)
Input: PSM samples {xi, yi}ni=1.
Output: solution α ∈ Rn.

Parameters:
M: minimum number of PSMs in the active set S;

1: Set η ← 0, α ← 0, S ← ∅.
2: for i0 ∈ {1, 2, . . . , n} do
3: Randomly select a training PSM sample (xi0 , yi0).
4: Update bounds Aj, Bj, ∀j ∈ �+ ∩ S:
5: S ← S ∪ {i0};
6: Set ηj =

{
1, ifyjf̂ (xj) < s and|S| > M,
0, otherwise , , j ∈ �+∩S,

f̂ (xj) = ∑
s∈S αsk(xs, xj);

7: Update bounds Aj = min(0,C2yj) − C2η
k
j yj, Bj =

max(0,C2yj) − C2η
k
j yj, j ∈ �+ ∩ S.

8: Call PROCESS().
9: exitFlag ← 0;

10: while (exitFlag == 0) do
11: exitFlag ← REPRECESS()
12: end while
13: Periodically call CLEAN().
14: end for

and performs a direction search (Line 18 – Line 19). The
derivation of these iteration formulae could be found in
Additional file 1.

Subroutine CLEAN removes PSMs that are not effective
to the discriminant function from the active set S to min-
imize the requirement of memory and computation. The
subroutine selects non-support vectors and keeps them in
set V (Line 1 – Line 4), then selects at most m PSMs of V
with the largest gradients, and finally removes them from
S (Line 5 – Line 9).
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Calculate PSM scores
After discriminant function f̂ : f̂ (x) = ∑

j∈S αjk(xj, x),
where k(·) is the selected kernel function, is trained, we
calculate the scores of all PSMs on both training and test
sets. The score of PSM (xi, yi) is defined in [14]:

score(i) = 2
π
arctan(f̂ (xi)).

The larger the score value is, the more likely a PSM is
correct. The PSMs are ordered according to their scores,
and a certain number of PSMs are reported according to a
pre-selected FDR.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12864-020-6693-y.

Additional file 1: Additional results. The derivation of iteration formulae
of OLCS-Ranker and some additional results.

Additional file 2: Cross validation results. Details of the Cross validation
results (Excel file).
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