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Abstract

Background: Recent paleogenomic studies have highlighted a very small set of proteins carrying modern human-
specific missense changes in comparison to our closest extinct relatives. Despite being frequently alluded to as
highly relevant, species-specific differences in regulatory regions remain understudied. Here, we integrate data from
paleogenomics, chromatin modification and physical interaction, and single-cell gene expression of neural
progenitor cells to identify derived regulatory changes in the modern human lineage in comparison to
Neanderthals/Denisovans. We report a set of genes whose enhancers and/or promoters harbor modern human
single nucleotide changes and are active at early stages of cortical development.

Results: We identified 212 genes controlled by regulatory regions harboring modern human changes where
Neanderthals/Denisovans carry the ancestral allele. These regulatory regions significantly overlap with putative
modern human positively-selected regions and schizophrenia-related genetic loci. Among the 212 genes, we
identified a substantial proportion of genes related to transcriptional regulation and, specifically, an enrichment for
the SETD1A histone methyltransferase complex, known to regulate WNT signaling for the generation and
proliferation of intermediate progenitor cells.

Conclusions: This study complements previous research focused on protein-coding changes distinguishing our
species from Neanderthals/Denisovans and highlights chromatin regulation as a functional category so far
overlooked in modern human evolution studies. We present a set of candidates that will help to illuminate the
investigation of modern human-specific ontogenetic trajectories.

Keywords: Modern humans, Neanderthals/Denisovans, Paleogenomics, Regulatory regions, Chromatin regulation,
SETD1A/histone methyltransferase complex

Background
Progress in the field of paleogenomics has allowed
researchers to study the genetic basis of modern human-
specific traits in comparison to our closest extinct rela-
tives, the Neanderthals and Denisovans [1]. One such
trait concerns the period of growth and maturation of
the brain, which is a major factor underlying the charac-
teristic ‘globular’ head shape of modern humans [2].
Comparative genomic analyses using high-quality
Neanderthal/Denisovan genomes [3–5] have revealed

missense changes in the modern human lineage affecting
proteins involved in the division of neural progenitor
cells, key for the proper generation of neurons in an or-
derly spatiotemporal manner [4, 6]. But the total number
of fixed missense changes in the modern human lineage
amounts to less than one hundred proteins [1, 6]. This
suggests that changes falling outside protein-coding re-
gions may be equally relevant to understand the genetic
basis of modern human-specific traits, as proposed more
than four decades ago [7]. In this context it is note-
worthy that human positively-selected genomic regions
were found to be enriched in regulatory regions [8], and
that signals of negative selection against Neanderthal
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DNA introgression were reported in promoters and con-
served genomic regions [9].
Here, we report a set of genes under the control of

regulatory regions that harbor modern human-lineage
genetic changes and are active at early stages of cortical
development (Fig. 1). We integrated data on chromatin
immunoprecipitation and open chromatin regions iden-
tifying enhancers and promoters active during human
cortical development, and the genes regulated by them
as revealed by chromatin physical interaction data, to-
gether with paleogenomic data of single-nucleotide
changes (SNC) distinguishing modern humans and
Neanderthal/Denisovan lineages. This allowed us to un-
cover those enhancer and promoters that harbor mod-
ern human SNC (thereafter, mSNC) at fixed or nearly
fixed frequency (as defined by [6]) in present-day human
populations and where the Neanderthals/Denisovans
carry the ancestral allele (Methods section). Next, we
analysed single-cell gene expression data and performed
co-expression network analysis to identify the genes
plausibly under human-specific regulation within genetic

networks in neural progenitor cells (Methods section).
Many of the genes controlled by regulatory regions satis-
fying the aforementioned criteria are involved in chro-
matin regulation, and prominently among these, the
SETD1A histone methyltransferase (SETD1A/HMT)
complex. This complex, which has not figured promin-
ently in the modern human evolution literature until
now, appears to have been targeted in modern human
evolution and specifically regulates the indirect mode of
neurogenesis through the control of WNT/β-CATENIN
signaling.

Results
Two hundred and twelve genes were found associated to
regulatory regions active in the developing human cortex
(from 5 to 20 post-conception weeks) that harbor
mSNCs and do not contain Neanderthal/Denisovan
changes (Suppl. Mat. Tables S1 & S2). Among these,
some well-studied disease-relevant genes are found:
HTT (Huntington disease) [11], FOXP2 (language im-
pairment) [12], CHD8 and CPEB4 (autism spectrum

Fig. 1 Regulatory regions characterized in this study. Active enhancers are typically located in regions of open chromatin and nucleosomes in
their vicinity are marked by histone modifications H3K27 acetylation and H3K4 mono-methylation. By contrast, H3K4 tri-methylation defines active
promoters [10]. We considered signals of active enhancers and promoters, as well as transposase (Tn5)-accessible chromatin regions, in the
developing human brain (from 5 to 20 post-conception weeks) that harbor modern human single-nucleotide changes filtering out those
regulatory regions that also contain Neanderthal/Denisovan changes. Chromosome conformation capture (Hi-C) data revealed the genes
controlled by these regulatory regions
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disorder) [13, 14], TCF4 (Pitt-Hopkins syndrome and
schizophrenia) [15, 16], GLI3 (macrocephaly and Greig
cephalopolysyndactyly syndrome) [17], PHC1 (primary,
autosomal recessive, microcephaly-11) [18], RCAN1
(Down syndrome) [19], and DYNC1H1 (cortical malfor-
mations and microcephaly) [20].
Twelve out of the 212 genes contain fixed mSNCs in

enhancers (NEUROD6, GRIN2B, LRRC23, RNF44,
KCNA3, TCF25, TMLHE, GLI4, DDX12P, PLP2, TFE3,
SPG7), with LRRC23 having three such changes, and
GRIN2B, DDX12P and TFE3, two each. Fourteen genes
have fixed mSNCs in their promoters (LRRC23,
SETD1A, FOXJ2, LIMCH1, ZFAT, SPOP, DLGAP4,
HS6ST2, UBE2A, FKBP1A, RPL6, LINC01159, RBM4B,
NFIB). Only one gene, LRRC23, exhibits fixed changes in
both its enhancer and promoter regions. To identify pu-
tatively mSNC-enriched regions, we ranked regulatory
regions by mutation density (Methods section). Top can-
didates enhancers (top 5% in hits-per-region length dis-
tribution) were associated with potassium channel
KCNQ5, actin-binding protein FSCN1, and neuronal
marker NEUROD6. Top candidate promoters were
linked to cytoplasmic dynein DYNC1H1, nuclear factor
NFIB, PHD and RING finger domains-containing
PHRF1, and kinesin light KLC1 (Suppl. Mat. Table S3 &
S4). Interestingly, most of these are known to be in-
volved in later stages of neurogenesis (differentiation
and migration steps).
Previous work has shown an enrichment of enhancer

and promoter regions within modern human putative
positively-selected regions [8]. For those regulatory re-
gions containing mSNC, a significant over-
representation was found for enhancers (permutation
test; p-value 0.01) and promoters (permutation test; p-
value 10-4) overlapping with modern human candidate
sweep regions [8] (Suppl. Fig. 1; Suppl. Mat. Table S5).
In addition, we found a significant enrichment for en-
hancers (permutation test; p-value 0.04; while for pro-
moter regions p-value 0.08) overlapping with genetic
loci associated to schizophrenia [21]. By contrast, no sig-
nificant overlap was found for enhancers/promoters and
autism spectrum disorder risk variants ([22], retrieved
from [23]) (Suppl. Fig. 1). Single-nucleotide variants can
have an impact on epigenetic signals and transcription
factor binding affinity in regulatory regions, and thus
can alter gene expression levels [24–26]. We also per-
formed motif enrichment analysis for our enhancer/pro-
moter region datasets (Methods section). We found a
motif enrichment in enhancer regions for transcriptional
regulators IRF8, PU.1, CTCF (Benjamini q-value 0.01)
and OCT4 (Benjamini q-value 0.02); while for promoter
regions a motif enrichment was detected for the zinc
finger-containing (and WNT signaling regulator)
ZBTB33 (Benjamini q-value 0.03).

Next, we evaluated relevant gene ontology and bio-
logical categories in our 212 gene list (Methods section).
We identified a substantial proportion of genes related
to β-catenin binding (GO:0008013; hypergeometric test
(h.t.): adj p-value 0.11) and transcriptional regulation
(GO:0044212; h.t.: adj p-value 0.17), and detected a sig-
nificant enrichment from the CORUM protein com-
plexes database for the SETD1A/HMT complex
(CORUM:2731; h.t.: adj p-value 0.01). Indeed, three
members of the SETD1A/HMT complex are present in
our 212 gene list: SETD1A (fixed mSNC in promoter),
ASH2L (mSNC in enhancer) and WDR82 (mSNC in en-
hancer). SETD1A associates to the core of an H3K4
methyltransferase complex (ASH2L, WDR5, RBBP5,
DPY30) and to WDR82, which recruits RNA polymerase
II, to promote transcription of target genes through his-
tone modification H3K4me3 [27]. Furthermore, the
SETD1A promoter and the WDR82 enhancer containing
the relevant changes fall within putative positively-
selected regions in the modern human lineage [8]
(Suppl. Mat. Table S5).
The abundance of transcriptional regulators and the

specific enrichment for the SETD1A/HMT complex led
us to examine the gene expression programs likely under
their influence in neural progenitor cells. From 5 to 20
post-conception weeks, different types of cells populate
the germinal zones of the developing cortex (Fig. 2). We
re-analyzed gene expression data at single-cell resolution
from a total of 762 cells from the developing human cor-
tex, controlling for cell-cycle heterogeneity as a con-
founding factor in the analysis of progenitor populations
(Methods section). We focused on two progenitor cell-
types—radial glial and intermediate progenitor cells
(RGCs and IPCs, respectively)—two of the main types of
progenitor cells that give rise, in an orderly manner, to
the neurons present in the adult brain (Fig. 2). Two clus-
ters of RGCs were identified (PAX6+ and EOMES- cells),
and three clusters of IPCs were detected (EOMES-ex-
pressing cells, with cells retaining PAX6 expression and
some expressing differentiation marker TUJ1), largely
replicating what has been reported in the original publi-
cation for this dataset (Suppl. Fig. 2). We next identified
genetic networks (based on highly-correlated gene ex-
pression levels) in the different cluster of progenitor cells
(except for IPC cluster 3, which was excluded due to the
low number of cells) (Methods section; Suppl. Figs. 3 &
4). This allowed us to identify genes present in the 212
gene list within modules of co-expressed genes whose
biological relevance was assessed through a functional
enrichment analysis using g:Profiler2 R package [29]
(hypergeometric test; see Methods).
An over-representation of genes related to the human

phenotype ontology term ‘Neurodevelopmental abnor-
mality’ was detected in the RGC-cluster 2 turquoise
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module (HP:0012759; h.t.: adj p-value 0.03, Suppl. Mat.
Table S6). Indeed, a considerable amount of genes were
found to be associated to phenotype terms ‘Neurodeve-
lopmental delay’ and ‘Skull size’ (HP:0012758 and HP:
0000240, respectively; h.t.: adj p-value 0.07 and 0.13, re-
spectively; Suppl. Mat. Table S7). These terms have ap-
peared prominently in the human evolution literature in
the context of neoteny and delay brain maturation, brain
growth and the craniofacial phenotype in between

species comparisons [6, 30–32]. Two chromatin regula-
tors with mSNC in regulatory regions are present in
these two ontology terms and are associated to neurode-
velopmental disorders: KDM6A (mSNC in promoter),
which associates to the H3K4 methyltransferase complex
[27], and is mutated in patients with Kabuki syndrome
[33]; and PHC1 (mSNC in promoter), a component of
the repressive complex PRC1 [27], found in patients
with primary microcephaly-11 [18]. Among the total

Fig. 2 Cell-type populations at early stages of cortical development. a Apical radial glial cells (RGCs) populate the ventricular zone and prolong
one process apically to the ventricular surface and another one to the basal lamina, which serves as a scaffold for neuronal migration. RGCs also
proliferate and differentiate to give rise to another RGC, a basal intermediate progenitor (indirect neurogenesis), or a neuron (direct neurogenesis)
[28]. Intermediate progenitor cells (IPCs) are basal progenitors lacking of apical-basal cell polarity. IPCs migrate to the subventricular zone and,
after a couple of self-renewal divisions, differentiate to give rise to two neurons [28]. b The tSNE plot shows twelve clusters detected analyzing a
total of 762 cells. c The violin plots show expression of two markers (PAX6, EOMES) across the different clusters,distinguishing between RGCs and
IPCs. d The miniature tSNE plots show the distribution across the clusters of a selection of genes discussed in the main text.IPC: Intermediate
progenitor cells; NascentN: Nascent neurons; ExN: Excitatory neurons; Astro:Astrocytes; RGC: Radial glial cells; InN: Interneurons; Oligodendrocyte
progenitor cells: OPC;Oligo: Oligodendrocytes; Cl12: Cluster 12 (unidentified cells)
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genes related to the ‘Skull size’ term (n = 109), we found
an over-representation of genes (CDON, GLI3, KIF7,
GAS1) related to the hedgehog signaling pathway
(KEGG:04340; h.t.: adj p-value 0.05). Of these, GLI3
(mSNC in promoter) is perhaps the most salient mem-
ber, highlighted in previous work as a gene harbouring
an excess of mSNC [6]. GLI3 is a gene linked to macro-
cephaly and the craniofacial phenotype [17, 34] and
under putative modern human positive selection [8].
Considering that hedgehog signaling plays a critical role
in basal progenitor expansion [35], we note the presence
in this turquoise module of the outer radial glia-specific
genes IL6ST and STAT3 [36]. The forkhead-box tran-
scription factor FOXP2 is also present in RGC-cluster 2
turquoise module and associated to the ‘Neurodevelop-
mental delay’ ontology term. Its promoter harbors an al-
most fixed (>99%) mSNC. FOXP2 is a highly conserved
protein involved in language-related disorders whose
evolutionary changes are particularly relevant for under-
standing human cognitive traits [37]. This mSNC (7:
113727420) in the FOXP2 promoter adds new evidence
for a putative modern human-specific regulation of
FOXP2 together with the nearly fixed intronic SNC that
affects a transcription factor-binding site [37].
While we did not detect a specific enrichment in the

modules containing SETD1A/HMT complex compo-
nents ASH2L or WDR82 genes, the IPC-cluster 2 mid-
nightblue module, which contains SETD1A, shows an
enrichment for a β-CATENIN-containing complex
(SETD7-YAP-AXIN1-β-CATENIN complex; CORUM:
6343; h.t.: adj p-value 0.05; Suppl. Mat. Table S8) and in-
deed contains WNT-effector TCF3, which harbors
nearly fixed missense mutations in modern humans [6].
SETD1A is known to interact with β-CATENIN [38, 39]
and increase its expression to promote neural progenitor
proliferation [40].

Discussion
By integrating data from paleogenomics and chromatin
interaction and modification, we identified a set of genes
controlled by regulatory regions that are active during
early cortical development and contain single nucleotide
changes that appeared in the modern human lineage
after the split from the Neanderthal/Denisovan lineage.
The regulatory regions reported here significantly over-
lap with putative modern human positively-selected re-
gions and schizophrenia genomic loci, and control a set
of genes among which we find a high number related to
chromatin regulation, and most specifically the
SETD1A/HMT complex. Regulators of chromatin dy-
namics are known to play key roles during cell-fate deci-
sions through the control of specific transcriptional
programs [41–43]. Both SETD1A and ASH2L, core
components of the HMT complex, regulate WNT/β-

CATENIN signaling [38–40, 44], which influences cell-
fate decisions by promoting either self-maintenance or
differentiation depending on the stage of progenitor dif-
ferentiation (Fig. 3).
SETD1A (fixed mSNC in promoter), implicated in

schizophrenia and developmental language impairment
[49, 50], acts in collaboration with a histone chaperone
to promote proliferation of neural progenitor cells
through H3K4 trimethylation at the promoter of β-
CATENIN, while its knockdown causes reduction in
proliferative neural progenitor cells and an increase in
cells at the cortical plate [40]. In addition, one of
SETD1A direct targets is the WNT-effector TCF4 [51],
whose promoter also harbors a mSNC. Similarly, ASH2L
specifically regulates WNT signaling: Conditional knock-
out of ASH2L significantly compromises the proliferative
capacity of RGCs and IPCs by the time of generation of
upper-layer neurons, with these progenitor cells showing
a marked reduction in H3K4me3 levels and downregula-
tion of WNT/β-CATENIN signaling-related genes
(defects that can be rescued by over-expression of β-
CATENIN) [44]. Taken together, depletion of compo-
nents of the SETD1A/HMT complex impairs the
proliferative capacity of progenitor cells, altering the in-
direct mode of neurogenesis, with a specific regulation
of the conserved WNT signaling. Interestingly, in
addition to the aforementioned properties of the regula-
tory regions of the SETD1A complex components found
in modern humans (overlap with modern human posi-
tively-selected regions and containing mSNCs), a re-
cent work studying species-specific differences in
chromatin accessibility using brain organoids reported
that regulatory regions associated to SETD1A and
WDR82 were found in differentially-accessible regions
in human organoids in comparison to chimpanzee
organoids, with the SETD1A region overlapping with
a human-gained histone modification signal when
compared to macaques [52].
The dysfunction of chromatin regulators is among the

most salient features behind causative mutations in neu-
rodevelopmental disorders [53]. Our data highlights
chromatin modifiers and remodelers that play prominent
roles in neurodevelopmental disorders affecting brain
growth and facial features. Along with the aforemen-
tioned chromatin regulators PHC1 (microcephaly) and
KDM6A (Kabuki syndrome), another paradigmatic ex-
ample is the ATP-dependent chromatin remodeler
CHD8 (mSNC in enhancer), which controls neural pro-
genitor cell proliferation through WNT-signaling related
genes [54, 55]. CHD8 is a high-risk factor for autism
spectrum disorder and patients with CHD8 mutations
characteristically present macrocephaly and distinctive
facial features [13]. Intriguingly, another ATP-dependent
chromatin remodeler, CHD2 (mSNC in enhancer),
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presents a motif in the SETD1A promoter region con-
taining the fixed mSNC (16:30969654; UCSC Genome
Browser).
We have focused on the early stages of cortical devel-

opment. While single-cell gene expression data of neural
progenitor cells still remains limited, future integration
of these data with other datasets covering different neo-
cortical regions [56] will shed further light on modern
human changes and cortical areas-specific progenitor
cells. We acknowledge, in addition, that the genetic
changes distinguishing modern humans and Neander-
thals/Denisovans may be relevant at other stages of neu-
rodevelopment, including the adult human brain.
Progress in single-cell multi-omic technologies applied
to brain organoid research will be critical to assess the
impact of such changes in the diverse neural and non-
neural cell-types through different developmental stages.
Moreover, we excluded the examination of regulatory
regions harboring Neanderthal/Denisovan changes due
to the low number of high-quality genomes from
Neanderthal/Denisovan individuals, which makes the de-
termination of allele frequency in these species unreli-
able. We hope that the availability of a higher number of
high-quality genomes for these species in the future will
make such examination feasible.

Conclusions
This study complements previous research focused on
protein-coding changes [4, 6] and helps extend the in-
vestigation of species-specific differences in cortical de-
velopment that has so far relied on detailed comparisons
between humans and non-human primates [52, 57–60].

We provide a list of new candidate genes for the study
of human species-specific differences during the early
stages of cortical development. The study of modern hu-
man evolutionary changes affecting chromatin regulators
integrated with the examination of neurodevelopmental
disorders could be a valuable entry point to understand
modern human-specific brain ontogenetic trajectories.

Methods
Data processing
Integration and processing of data from different sources
was performed using IPython v5.7.0. We used publicly
available data from [6] of SNC in the modern human
lineage (at fixed or above 90% frequency in present-day
human populations) and Neanderthal/Denisovan
changes. [6] analyzed high-coverage genotypes from one
Denisovan and two Neanderthal individuals to report a
catalog of SNC that appeared in the modern human
lineage after their split from Neanderthals/Denisovans.
Similarly, [6] also reported a list of SNC present in the
Neanderthal/Denisovan lineages where modern humans
carry the inferred ancestral allele.
For enhancer–promoter linkages, we used publicly

available data from [61], based on transposase-accessible
chromatin coupled to sequencing and integrated with
chromatin capture via Hi-C data, from 15 to 17 post-
conception weeks of the developing human cortex. A
total of 92 promoters and 113 enhancers were selected
as harboring mSNC and being depleted of Neanderthal/
Denisovan SNC (from a total of 2574 enhancers and
1553 promoters present in the original dataset).
Additionally, we completed the previous dataset filtering

Fig. 3 Progenitor cell-fate decisions shaped by WNT/β-CATENIN signaling. Based on studies in mice, it is hypothesized that early during
neurodevelopment, WNT/β-CATENIN signaling promotes neural stem and progenitor cell self-renewal whereas its depletion causes premature
neuronal differentiation [45–47]; later on, its down-regulation is required for generation of intermediate progenitor cells from radial glial cells [47,
48]. Lastly, WNT/β-CATENIN signaling promotes differentiation of intermediate progenitors to produce neurons [46]
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annotated enhancer-gene linkages via Hi-C from the
adult prefrontal cortex [62] (PsychENCODE resource
portal: http://resource.psychencode.org/). In this case,
enhancers (n = 32,803) were selected for further analyses
if their coordinates completely overlapped with signals
of active enhancers (H3K27ac) (that do not overlap with
promoter signals (H3K4me3)) from the developing human
cortex between 7 to 12 post-conception weeks [63]. A
total of 43 enhancers, containing mSNC but free of Nean-
derthal/Denisovan SNC, passed this filtering. As a whole,
the final integrated dataset covered regulatory regions ac-
tive at early stages of human prenatal cortical develop-
ment and linked to 212 genes. The coordinates (hg19
version) of the regulatory regions containing mSNC are
available in the Supplementary Material Tables S1 & S2.
Human positively-selected regions coordinates were

retrieved from [8].

Single-cell RNA-seq analysis
The single-cell transcriptomic analysis was performed
using the Seurat package v2.4 [64] in RStudio v1.1.463
(server mode).
Single-cell gene expression data was retrieved from

[63] from PsychENCODE portal (http://development.
psychencode.org/#). We used raw gene counts thresh-
olding for cells with a minimum of 500 genes detected
and for genes present at least in 10% of the total cells
(n = 762). Data was normalized using “LogNormalize”
method with a scale factor of 1,000,000. We regressed
out cell-to-cell variation due to mitochondrial and cell-
cycle genes (ScaleData function). For the latter, we used
a list of genes [65] that assigns scores genes to either
G1/S or G2/M phase (function CellCycleScoring),
allowing us to reduce heterogeneity due to differences in
cell-cycle phases. We further filtered cells (FilterCells
function) setting a low threshold of 2000 and a high
threshold of 9000 gene counts per cell, and a high
threshold of 5% of the total gene counts for mitochon-
drial genes.
We assigned the label ‘highly variable’ to genes whose

average expression value was between 0.5 and 8, and
variance-to-mean expression level ratio between 0.5 and
5 (FindVariableGenes function). We obtained a total of
4261 genes for this category. Next, we performed a prin-
cipal component analysis on highly variable genes and
determined significance by a jackStraw analysis (Jack-
Straw function). We used the first most significant prin-
cipal components (n = 13) for clustering analysis
(FindClusters function; resolution = 3). Data was repre-
sented in two dimensions using t-distributed stochastic
neighbor embedding (RunTSNE function). The resulting
twelve clusters were plotted using tSNEplot function.
Cell-type assignment was based on the metadata from
the original publication [63].

Weighted gene co-expression network analysis
For the gene co-expression network analysis we used the
WGCNA R package [66, 67]. For each cluster of pro-
genitor cells (RGC-1, 34 cells (15,017 genes); RGC-2, 30
cells (14,747 genes); IPC-1, 52 cells (15,790 genes); IPC-
2, 41 cells (15,721 genes); IPC-3 was excluded due to
low number of cells), log-transformed values of gene ex-
pression data were used as input for weighted gene co-
expression network analysis. A soft threshold power was
chosen (12, 12, 14, 12 for RGC-1, RGC-2, IPC-1, IPC-2
clusters, with R2: 0.962, 0.817, 0.961, 0.918, respectively)
and a bi-weight mid-correlation applied to compute a
signed weighted adjacency matrix, transformed later into
a topological overlap matrix. Module detection (mini-
mum size 200 genes) was performed using function
cutreeDynamic (method = ‘hybrid’, deepSplit = 2), getting
a total of 32, 26, 9, 23 modules for RGC-1, RGC-2, IPC-
1, IPC-2, respectively (Suppl. Figs. 3 & 4).

Enrichment analysis
We ranked regulatory regions by mutation density calcu-
lating number of single nucleotide changes per regula-
tory region length (for those regions spanning at least
1000 base pairs). Top candidates were those ranking in
the distribution within the 5% out of the total number of
enhancers or promoters (Suppl. Mat Tables S3 & S4).
The g:Profiler2 R package [29] was used to perform en-
richment analyses (hypergeometric test; correction
method ‘gSCS’; background genes: ‘only annotated
genes’, Homo sapiens) for gene/phenotype ontology cat-
egories, biological pathways (KEGG, Reactome) and pro-
tein databases (CORUM, Human Protein Atlas) for the
gene lists generated in this study. Permutation tests (10,
000 permutations) were performed to evaluate enrich-
ment of enhancers/promoters regions in different gen-
omic regions datasets using the R package regioneR [68].
The Hypergeometric Optimization of Motif EnRichment
(HOMER) software v4.10 [69] was employed for motif
discovery analysis, selecting best matches (Benjamini q-
value < 0.05) of known motifs (n = 428; ChIP-seq-based)
in our promoter and enhancer datasets.
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