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Abstract

Background: The emergence of high throughput technologies that produce vast amounts of genomic data, such
as next-generation sequencing (NGS) is transforming biological research. The dramatic increase in the volume of
data, the variety and continuous change of data processing tools, algorithms and databases make analysis the main
bottleneck for scientific discovery. The processing of high throughput datasets typically involves many different
computational programs, each of which performs a specific step in a pipeline. Given the wide range of applications
and organizational infrastructures, there is a great need for highly parallel, flexible, portable, and reproducible data
processing frameworks.
Several platforms currently exist for the design and execution of complex pipelines. Unfortunately, current platforms
lack the necessary combination of parallelism, portability, flexibility and/or reproducibility that are required by the
current research environment. To address these shortcomings, workflow frameworks that provide a platform to
develop and share portable pipelines have recently arisen. We complement these new platforms by providing a
graphical user interface to create, maintain, and execute complex pipelines. Such a platform will simplify robust and
reproducible workflow creation for non-technical users as well as provide a robust platform to maintain pipelines
for large organizations.

Results: To simplify development, maintenance, and execution of complex pipelines we created DolphinNext.
DolphinNext facilitates building and deployment of complex pipelines using a modular approach implemented in a
graphical interface that relies on the powerful Nextflow workflow framework by providing 1. A drag and drop user
interface that visualizes pipelines and allows users to create pipelines without familiarity in underlying programming
languages. 2. Modules to execute and monitor pipelines in distributed computing environments such as high-
performance clusters and/or cloud 3. Reproducible pipelines with version tracking and stand-alone versions that
can be run independently. 4. Modular process design with process revisioning support to increase reusability and
pipeline development efficiency. 5. Pipeline sharing with GitHub and automated testing 6. Extensive reports with R-
markdown and shiny support for interactive data visualization and analysis.

Conclusion: DolphinNext is a flexible, intuitive, web-based data processing and analysis platform that enables
creating, deploying, sharing, and executing complex Nextflow pipelines with extensive revisioning and interactive
reporting to enhance reproducible results.
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Background
Analysis of high-throughput data is now widely regarded
as the major bottleneck in modern biology [1]. In re-
sponse, resource allocation has dramatically skewed to-
wards computational power, with significant impacts on
budgetary decisions [2]. One of the complexities of high-
throughput sequencing data analysis is that a large num-
ber of different steps are often implemented with a het-
erogeneous set of programs with vastly different user
interfaces. As a result, even the simplest sequencing ana-
lysis requires the integration of different programs and
familiarity with scripting languages. Programming was
identified early on as a critical impediment to genomics
workflows. Indeed, microarray analysis became widely
accessible only with the availability of several public and
commercial platforms, such as GenePattern [3] and
Affymetrix [4], that provided a user interface to simplify
the application of a diverse set of methods to process
and analyze raw microarray data.
A similar approach to sequencing analysis was later

implemented by Galaxy [5], GenomicScape [6], Terra
(https://terra.bio) and other platforms [3, 7–14]. Each of
these platforms has a similar paradigm: Users upload
data to a central server and apply a diverse, heteroge-
neous set of programs through a standardized user inter-
face. As with microarray data, these platforms allow
users without any programming experience to perform
sophisticated analyses on sequencing data obtained from
different protocols such as RNA Sequencing (RNA-Seq)
and Chromatin Immunoprecipitation followed by Se-
quencing (ChIP-Seq) and carry out sophisticated ana-
lysis. Users are able to align sequencing reads to the
genome, assess differential expression, and perform gene
ontology analysis through a unified point and click user
interface.
While current platforms are a powerful way to inte-

grate existing programs into pipelines that carry end-to-
end data processing, they are limited in their flexibility.
Installing new programs is usually only done by adminis-
trators or advanced users. This limits the ability of less
skilled users to test new programs or simply add add-
itional steps into existing pipelines. This development
flexibility is becoming ever more necessary as genome-
wide assays are becoming more prevalent and data ana-
lysis pipelines becoming increasingly creative [15].
Similarly, computing environments have also grown

increasingly complex. Institutions rely on a diverse set of
computing options ranging from large servers, higher
performance computing clusters, to cloud computing.
Data processing platforms need to be easily portable to
be used in different environments that best suit the
computational needs and budgetary constraints of the
project. Further, with the increased complexity of ana-
lyses, it is important to ensure reproducible analyses by

making analysis pipelines easily portable and less
dependent on the computing environment where they
were developed [16]. Lastly, it is necessary to have a flex-
ible and scalable pipeline platform that can be used both
by individuals with smaller sample sizes as well as by
medium and large laboratories that need to analyze hun-
dreds of samples a month, or centralized informatics
cores that analyze data produced by multiple
laboratories.
Nextflow is a recently developed workflow engine built

to address many of these needs [17]. The Nextflow en-
gine can be configured to use a variety of executors (e.g.
SGE, SLURM, LSF, Ignite) in a variety of computing
environments. A pipeline that leverages the specific
multi-core architecture of a server can be written on a
workstation and easily re-used on a high-performance
cluster environment (e.g. Amazon and Google cloud)
whenever the need for higher parallelization arises. Fur-
ther, Nextflow allows in-line process definition that sim-
plifies the incorporation of small processes that
implement new functionality. Not surprisingly, Nextflow
has quickly gained popularity, as reflected by several ef-
forts to provide curated and revisioned Nextflow-based
pipelines such as nf-core [18], Pipeliner [19] and CHI-
PER [20], which are available from a public repository.
In spite of its simplicity, Nextflow can get unwieldy

when pipelines become complex, and maintaining
them becomes taxing. Here we present DolphinNext,
a user-friendly, highly scalable, and portable platform
that is specifically designed to address current chal-
lenges in large data processing and analysis. Dolphin-
Next builds on Nextflow as shown in Fig. 1. To
simplify pipeline design and maintenance, Dolphin-
Next provides a graphical user interface to create
pipelines. The graphical design of workflows is critical
when dealing with large and complex workflows. Both
advanced Nextflow users as well as users with no
prior experience benefit from the ability to visualize
dependencies, branch points, and parallel processing
opportunities. DolphinNext goes beyond providing a
Nextflow graphical design environment and addresses
many of the needs of high-throughput data process-
ing: First, DolphinNext helps with reproducibility en-
abling the easy distribution and running of pipelines.
In fact, reproducible data analysis requires making
both the code and the parameters used in the analysis
accessible to researchers [21–24]. DolphinNext allows
users to package pipelines into portable containers
[25, 26] that can be run as stand-alone applications
because they include the exact versions of all software
dependencies that were tested and used. The auto-
matic inclusion of all software dependencies vastly
simplifies the effort needed to share, run and repro-
duce the exact results obtained by a pipeline.
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Second, DolphinNext goes beyond existing data pro-
cessing frameworks: Rather than requiring data to be
uploaded to an external server for processing, Dolphin-
Next is easily run across multiple architectures, either
locally or in the cloud. As such it is designed to process
data where the data resides rather than requiring users
to upload data into the application. Further, Dolphin-
Next is designed to work on large datasets, without
needing customization. It can thus support the needs of
large sequencing centers and projects that generate a
vast amount of sequencing data such as ENCODE [27],
GTex [28], and TCGA (The Cancer Genome Atlas) Re-
search Network (https://www.cancer.gov/tcga) that have
had the need to develop custom applications to support
their needs. DolphinNext can also readily support
smaller laboratories that generate large sequencing
datasets.
Third, as with Nextflow, DolphinNext is imple-

mented as a generic workflow design and execution
environment. However, in this report, we showcase its
power by implementing sequencing analysis pipelines
that incorporate best practices derived from our ex-
perience in genomics research. This focus is driven
by our current use of DolphinNext, but its architec-
ture is designed to support any workflow that can be
supported by Nextflow.
In conclusion, DolphinNext provides an intuitive

interface for weaving together processes each of which
have dependent inputs and outputs into complex work-
flows. DolphinNext also allows users to easily reuse

existing components or even full workflows as compo-
nents in new workflows; in this way, it enhances port-
ability and helps to create more reproducible and easily
customizable workflows. Users can monitor job status
and, upon identifying errors, correct parameters or data
files and restart pipelines at the point of failure. These
features save time and decrease costs, especially when
processing large data sets that require the use of cloud-
based services.
The key features of DolphinNext include:

� Simple pipeline design interface
� Powerful job monitoring interface
� User-specific queueing by job submissions tied to

user accounts
� Easy re-execution of pipelines for new sets of sam-

ples by copying previous runs
� Simplified sharing of pipelines using the GitHub

repository hosting system (github.com)
� Portability across computational environments such

as workstations, computing clusters, or cloud-based
servers

� Built-in pipeline and process revision control
� Full access to application run logs
� Parallel execution of non-dependent processes
� Integrated data analysis and reporting interface with

R markdown support
� Launching cloud clusters on Amazon (AWS) and

Google (GCP) with backup options to S3 and google
buckets

Fig. 1 DolphinNext builds on Nextflow and simplifies creating complex workflows
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Implementation
The DolphinNext workflow system, with its intuitive
web interface, was designed for a wide variety of users,
from bench biologists to expert bioinformaticians. Dol-
phinNext is meant to aid in the analysis and manage-
ment of large datasets on High Performance Computing
(HPC) environments (e.g LSF, SGE, Slurm Apache Ig-
nite), cloud services, or personal workstations.
DolphinNext is implemented with PHP, MySQL and

Javascript technologies. At its core, it provides a drag-
and-drop user interface for creating and modifying
Nextflow pipelines. Nextflow [17] is a language to create
scalable and reproducible scientific workflows. In creat-
ing DolphinNext, we aim to simplify Nextflow pipeline
building by shifting the focus from software engineering
to bioinformatics processes using a graphical interface
that requires no programming experience. DolphinNext
supports a wide variety of scripting languages (e.g. Bash,
Perl, Python, Groovy) to create processes. Processes can
be used in multiple pipelines, which increases the reus-
ability of the process and simplifies code sharing. To
that end, DolphinNext supports user and group level
permissions so that processes can be shared among a
small set of users or all users in the system. Users can
repurpose existing processes used in any other pipelines,
which eliminates the need to create the same process
multiple times. These design features allow users to
focus on only their unique needs rather than be con-
cerned with implementation details.
To facilitate the reproducibility of data processing and

the execution of pipelines in any computing environ-
ment, DolphinNext leverages Nextflow’s support for Sin-
gularity and Docker container technologies [25, 26].
This allows the execution of a pipeline created by Dol-
phinNext to require only Nextflow and a container soft-
ware (Singularity or Docker) to be installed in the host
machine. Containerization simplifies complex library,
software and module installation, packaging, distribution
and execution of the pipelines by including all depend-
encies. When distributed with a container, DolphinNext
pipelines can be readily executed in remote machines or
clusters without the need to manually install third-party
software programs. Alternatively, DolphinNext pipelines
can be exported as Nextflow code and distributed in
publications. Exported pipelines can be executed from
the command line upon ensuring that all dependencies
are available in the executing host. Moreover, multiple
executors, clusters, or remote machines can easily be de-
fined in DolphinNext in order to perform computations
in any available Linux-based cluster or workstation.
User errors can cause premature failure of pipelines,

while also consuming large amounts of resources. Add-
itionally, users may want to explore the impact of differ-
ent parameters on the resulting data. To facilitate re-

running of a pipeline, DolphinNext builds on Nextflow’s
ability to record a pipeline execution state, enabling the
ability to re-execute or resume a pipeline from any of its
steps, even after correcting parameters or correcting a
process. Pipelines can also be used as templates to
process new datasets by modifying only the dataset-
specific parameters.
In general, pipelines often require many different pa-

rameters, including the parameters for each individual
program in the pipeline, system parameters (e.g. paths,
commands), memory requirements, and the number of
processors to run each step. To reduce the tedious set-
up of complex pipelines, DolphinNext makes use of ex-
tensive pre-filling options to provide sensible defaults.
For example, physical paths of genomes, their index files,
or any third-party software programs can be defined for
each environment by the administrator. When a pipeline
uses these paths, the form loads pre-filled with these
variables, making it unnecessary to fill them manually.
The users still can change selected parameters as
needed, but the pre-filling of default parameters speeds
up the initialization of a new pipeline. For example, in
an RNA-Seq pipeline, if RefSeq annotations [29] are de-
fined as a default option, the user can change it to
Ensembl annotations [30] both of which may be located
at predefined locations. Alternatively, the user may spe-
cify a custom annotation by supplying a path to the de-
sired annotation file.
Finally, when local computing resources are not suffi-

cient, DolphinNext can also be integrated into cloud-
based environments. DolphinNext readily integrates with
Amazon AWS and Google GCP where, a new, dedicated
computer cluster can easily be set up within Dolphin-
Next with Nextflow’s Amazon and Google cloud sup-
port. On AWS, necessary input files can be entered from
a shared file storage EFS, EBS, or s3, and output files can
also be written on s3 or other mounted drives [31–33].
On GCP, the input files can be selected from a Google
bucket and the output files are exported to another Goo-
gle bucket.

General implementation and structure
DolphinNext has four modules: The profile module is
specifically designed to support a multi-user environ-
ment and allows an administrator to define the specifics
of their institutional computing environment. A pipeline
builder is to create reusable processes and pipelines. A
pipeline executor is created to run pipelines, and lastly
the reports section is to monitor the results.

Profile module
Users may have access to a wide range of different com-
puting environments: A workstation, Cloud Computing,
or a high-performance computing cluster where jobs are

Yukselen et al. BMC Genomics          (2020) 21:310 Page 4 of 16



submitted through a job scheduler such as IBM’s LSF,
SLURM or Apache Ignite. DolphinNext relies on Next-
flow [17] to encapsulate computing environment settings
and allows administrators to rely on a single configur-
ation file that enables users to run the pipelines on di-
verse environments with minimal impact on user
experience. Further, cloud computing and higher per-
formance computing systems keep track of individual
user usage to allocate resources and determine job
scheduling priorities. DolphinNext supports individual
user profiles and can transparently handle user authenti-
cation. As a result, DolphinNext can rely on the under-
lying computing environment to enforce proper
resource allocation and fair sharing policies. By encapsu-
lating the underlying computing platform and user au-
thentication, administrators can provide access to
different computing architectures, and users with limited
computing knowledge can transparently access a vast

range of different computing environments through a
single interface.

Pipeline builder
While Nextflow provides a powerful platform to build
pipelines, it requires advanced programming skills to de-
fine pipelines as it requires users to use a programming
language to specify processes, dependencies, and the
execution order. Even for advanced users, when pipe-
lines are becoming complex, pipeline maintenance can
be a daunting task.
DolphinNext facilitates pipeline building, maintenance,

and execution by providing a graphical user interface to
create and modify Nextflow pipelines. Users choose
from a menu of available processes (Fig. 2a) and use
drag and drop functionality to create new pipelines by
connecting processes through their input and output pa-
rameters (Fig. 2b). Two processes can only be connected

Fig. 2 a A process for building index files b Input and output parameters attached to a process c The STAR alignment module connected
through input/output with matching parameter types. d The RNA-Seq pipeline can be designed using two nested pipelines: the STAR pipeline
and the BAM analysis pipeline
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when the output data type of one is compatible with the
input data type of the second (Fig. 2c). Upon connecting
two compatible processes DolphinNext creates all neces-
sary execution dependencies. Users can readily create
new processes using the process design module (see
below). Processes created in the design module are im-
mediately available to the pipeline designer without any
installation in DolphinNext.
The UI supports auto-saving to avoid loss of work if

users forget to save their work. Once a pipeline is cre-
ated, users can track revisions, edit, delete and share ei-
ther as a stand-alone container Nextflow program, or in
PDF format for documentation purposes.
The components of the pipeline builder are the

process definition module, the pipeline designer user
interface, and the revisioning system:

Process design module
Processes are the core units in a pipeline, they perform
self-contained and well-defined operations. DolphinNext
users designing a pipeline can define processes using a
wide variety of scripting languages (e.g. Shell scripting,
Groovy, Perl, Python, Ruby, R). Once a process is de-
fined, it is available to any pipeline designer. A pipeline
is built from individual processes by connecting outputs
with inputs. Whenever two processes are connected, a
dependency is implicitly defined whereby a process that
consumes the output of another only runs once this out-
put is generated. Since each process may require specific
parameters, DolphinNext provides several features to
simplify the maintenance of processes and input forms
that allow the user to select parameters to run them.
Automated input form generation. Running all pro-

cesses within a pipeline requires users to specify many
different parameters ranging from specifying the input
(e.g. input reads in fastq format, path to reference files)
to process specific parameters (e.g. alignment maximum
mismatches, minimum base quality to keep). To gather
this information, users fill out a form or set of forms to
provide the pipeline with all the necessary information
to run. A large number of parameters makes designing
and maintaining the user interfaces that gather this in-
formation time consuming and error-prone. Dolphin-
Next includes a meta-language that converts defined
input parameters to web controls. These input parame-
ters are declared in the header of a process script with
the help of additional directives. Form autofill support.
The vast majority of users work with default parameters
and only need to specify a small fraction of all the pa-
rameters used by the pipeline. To simplify pipeline
usage, we designed an autofill option to provide sensible
process defaults and compute environment information.
Autofill is meant to provide sensible defaults; however,

users can override them as needed. The descriptions of

parameters and tooltips are also supported in these di-
rectives. Figure 3 shows the description of a defined par-
ameter in RSEM settings.

Revisioning, reusability and permissions system
DolphinNext implements a revisioning system to track
all changes in a pipeline or a process. In this way, all ver-
sions of a process or pipeline are accessible and can be
used to reproduce old results or to evaluate the impact
of new changes. In addition, DolphinNext provides safe-
guards to prevent the loss of previous pipeline versions.
If a pipeline is shared (publicly or within a group), it is
not possible to make changes on its current revision. In-
stead, users must create a new version to make changes.
Hence, we keep pipelines safe from modifications
yet allowing for improvements to be available in new re-
visions. Unlike nf-core or other Nextflow based pipeline
repositories [18–20], DolphinNext keeps track of revi-
sions for each of the processes within a pipeline rather
than keeping revisions for each pipeline. In this way, the
right combination of process revisions in a pipeline can
be used to reproduce previously generated results. Dol-
phinNext uses a local database to assign and store a
unique identifier (UID) to every process and pipeline
created and every revision made. A central server may
be configured to assign UIDs across different Dolphin-
Next installations so that pipelines can be identified
from the UID, regardless of where they were created.
Pipeline designers and users can select any version of a
pipeline for execution or editing. In addition to database
support, DolphinNext integrates with a GitHub reposi-
tory so that pipelines can be more broadly shared. Dol-
phinNext can seamlessly push pipelines to a specified
repository or branch. In addition to storing the pipeline
code, DolphinNext updates its own pipeline or revision
database record with the GitHub commit id to keep the
revisions that have been synced with a GitHub reposi-
tory. To support tests and continuous integration of
pipelines, we have integrated Travis-ci (travis-ci.org), the
standard for automated testing. Pipeline designers can
define the Travis-ci test description document within
the DolphinNext pipeline builder. When a pipeline is
updated and pushed to GitHub, it automatically triggers
the Travis-ci tests. To enable Travis-ci automation, pipe-
line designers specify a container [25, 26] within the
pipeline builder.
User permissions and pipeline reusability. To increase

reusability, DolphinNext supports pipeline sharing. Dol-
phinNext relies on a permissions system similar to that
used by the UNIX operating systems. There are three
levels of permissions: user, group and world. By default,
a new pipeline is owned and only visible to the user who
created it. The user can change this default by creating a
group of users and designating pipelines as visible to
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users within that group. Alternatively, the user can make
a pipeline available to all users. DolphinNext further
supports a refereed workflow by which pipelines can
only be made public after authorization by an adminis-
trator, this is useful for organizations that desire to
maintain strict control of broadly available pipelines.
Although integration with GitHub makes sharing and

executing possible, pipelines can also be downloaded in
Nextflow format for documentation, distribution and
execution outside of DolphinNext. To allow users and
administrators to make pipelines available across instal-
lations, DolphinNext supports pipeline import and
export.

Nested pipelines
Many pipelines share not just processes, but subcompo-
nents involving several processes. For instance, BAM
quality assurance is common to most sequence process-
ing pipelines (Fig. 2d). It relies on RSeQC [34] and Pic-
ard (http://broadinstitute.github.io/picard) to create read
quality control reports. To minimize redundancy, these
modules can be encapsulated as pipelines and re-used as
if they were processes. The pipeline designer module
supports drag and drop of whole pipelines and in a simi-
lar way as it supports individual processes. Multiple
pipelines such as RNA-Seq, ATAC-Seq, and ChIP-Seq
can, therefore, have the same read quality assurance
logic (Figure S4). Reusing complex logic by

encapsulating it in a pipeline greatly simplifies and stan-
dardizes the maintenance of data processing pipelines.

Pipeline executor
One of the most frustrating events in data processing is
an unexpected pipeline failure. Failures can be the result
of an error in the parameters supplied to the pipeline
(e.g. an output directory with no write permissions, or
incompatible alignment parameters) or because of com-
puter system malfunctions. Restarting a process from
the beginning when an error occurred at the very end of
the pipeline can result in days of lost computing time.
DolphinNext provides a user interface to monitor

pipeline execution in real-time. If an error occurs the
pipeline is stopped; the user, however, can restart the
pipeline from the place where it stopped after changing
the parameters that caused the error (Fig. 3). Users can
also assign pipeline runs to projects so that all pipelines
associated with a project can be monitored together.
In addition to providing default values for options that

are pipeline specific, administrators can provide default
values for options common to all pipelines, such as re-
source allocation (e.g., memory, CPU, and time), and ac-
cess level of pipeline results.
Specific features of pipeline running are:

1. Run status page: DolphinNext provides a “Run
Status” page for monitoring the status of all running
jobs that belong to the user or the groups to which

Fig. 3 Resuming RNA-Seq pipeline after changing RSEM parameters
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the user belongs. This searchable table includes the
name of the run, working directory, description,
and status. Users can also access the run page of a
specific run to make a change, terminate, resume,
copy, delete, or re-execute.

2. Accessibility to all run logs: To monitor run
specific details and troubleshoot failed runs,
DolphinNext provides access to all application logs.
Further, it also gives access to Nextflow’s execution
reports, which include the execution time, resource
utilization (e.g. CPU or memory for each process),
process duration time (both clock and CPU time)
and memory utilization. In this way, users can
optimize their computational resources by reducing
unnecessary overhead based on the data available
from past executions.

Reports
Most processes in a pipeline produce interim data that is
used by downstream processes. For example, in an
RNA-Seq analysis pipeline, subtracting ribosomal reads
prior to genomic alignment reduces processing time.
This is done by aligning directly to the ribosomal RNA
genes, and keeping reads with no matches for alignment
to the genome or transcriptome [35]. In addition to re-
ducing compute time, the fraction of reads that align to
ribosomal genes is an important metric to assess the
technical efficiency of library preparation, specifically to
measure how well ribosomal depletion worked. Dolphin-
Next allows users to access and visualize interim pipe-
line results, such as intermediate alignments like
alignment to the ribosomal RNAs, that are not part of
the final result. Process designers can define any number
of secondary outputs, which the DolphinNext report
module can process and present in a user-friendly for-
mat. While there is an integrated table viewer for tabular
data, this data can also be seamlessly loaded and ana-
lyzed using an embedded DEBrowser, an interactive
visualization tool for count data [36]. PDF and HTML
files can be visualized within DolphinNext or down-
loaded for offline analysis (Fig. 4).
For more flexible reports, DolphinNext supports an R-

markdown defined output. Process designers can include
a custom R markdown script specifically designed to
handle and visualize the process output. Pipeline de-
signers can make this report available to users for inter-
active analysis of the process results (Fig. 5).

Results
Sequence analysis requires an iterative approach that
consists of two main tasks: data processing and data ana-
lysis [38] (Fig. 6). Data processing involves taking raw se-
quencing data to produce a count matrix in which
features (genes, peaks or any genomic annotation) are

scored across samples. Data analysis uses this count
matrix to perform comparisons across conditions (differ-
ential analysis), unbiased analysis (clustering, principal
component analysis), or supervised analysis (data model-
ing, classifier building) [36]. An informative count
matrix requires systematic data processing steps that are
consistent across samples and even projects. As opposed
to data analysis, which involves more ad-hoc, and data-
driven decisions, data processing can be standardized
into a workflow or pipeline that, once established, needs
very few changes. In general, data processing requires
great computing power and storage needs relative to
data analysis.
A typical data processing pipeline can be broken down

into three steps: pre-processing, processing, and post-
processing. Pre-processing: includes eliminating low-
quality reads or low-quality bases through filtering, read
trimming and adapter removal. These steps are critical
to improve alignment and assembly operations, which
make up the central processing step. In general, process-
ing of sequencing reads involves alignment to a genome
or reference annotations (e.g. a transcriptome) or an as-
sembly process. Post-processing involves evaluating the
quality of mapping or assembly before creating a count
table, quality checks of alignment and/or assembly steps,
and outputs the quantification of genomic features as
consolidated count tables. To enable post-processing
and data quality assessment, DolphinNext automatically
creates genome browser loadable files such as Tile Data
Files (TDF) for the Integrative Genome Viewer [39] and
Wiggle Track Format (WIG, or BigWIG) for the UCSC
genome browser [40, 41]. In addition, DolphinNext pro-
duces alignment reports that summarize read coverage
of genomic annotations (e.g. exonic, intergenic, UTR, in-
tronic) in order to help assess whether the library cap-
tured expected genomic regions.
Here, we highlight the flexibility of DolphinNext’s

pipeline builder by providing a detailed description of
end-to-end RNA-Seq and ChIP-Seq/ATAC-Seq process-
ing pipelines. Each of these pipelines provides unique
features not found in other publicly available workflows
such as: 1. Extensive support for pre-processing (read
trimming by quality or adapter sequence, iterative re-
moval of specific RNA or DNA species, such as rRNA
and repetitive sequences), 2. Support for different
aligners and quantification methods in the processing
steps, and 3. An extensive reports and quality control
checks in the post-processing steps.

RNA-Seq pipeline (Figure S1)
All sequence processing pipelines take one or several
fastq input files. This pipeline, like all other high-
throughput sequencing processing pipelines (see below
for other examples), first performs data preparation, a
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step that consists of basic read quality control and filter-
ing actions (Figure S2): read quality reports, read quality
filtering, read quality trimming, adapter removal. After
these quality control steps, the RNA-Seq pipeline offers
the user the option to align, filter out, and/or estimate
the abundance of both standard and predefined sets of
genomic loci (e.g. rRNAs, miRNAs, tRNAs, piRNAs,
snoRNAs, ERCC [42], mobile elements). Before any such
alignment, reads may be trimmed to the desired length

for optimal alignment, especially if quality issues in the
3′ or 5′ ends of the reads are suspected (e.g. to align
miRNA or tRNA sequences). Once the data preparation
phase of the pipeline is complete, the pipeline produces
quality reports including FastQC reports [43] and infor-
mation about the fraction of reads aligned to each of the
genomic loci selected by the user. In its current imple-
mentation, data preparation relies on FastQC [44],
adapter removal using cutadapt [45], 5′ and 3′

Fig. 4 a RSEM module which involves Count_Table to summarize sample counts into a consolidated count table. This process reports the results
with a table or upload the count table to embedded DEBrowser [36], b Count table report c. MultiQC [37] report to summarize numerous
bioinformatics tool results, and d Embedded DEBrowser [36] module for interactive differential expression analysis
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trimming, quality removal using trimmomatic [46], and
Bowtie2 [47] for alignments against selected regions or
transcripts (Figure S3).
Only reads that pass all filters in the data preparation

stage are kept for later steps. To estimate expression
levels, the RNA-Seq pipeline uses RSEM [48] which aligns
reads to a predefined set of transcripts. The user can use
available transcript sets (i.e Ensemble [49], GENCODE
[50, 51], RefSeq [52]) or upload their own. The RNA-Seq
pipeline also allows the user to align reads against the gen-
ome using splicing aware alignment algorithms and gener-
ate a genome browser viewable file to visually assess
genomic contamination and library quality. To do so, the

user may choose between any or all of the most com-
monly used aligners: STAR [53], Hisat2 [54] and Tophat2
[55]. Resulting alignments are then processed to generate
genome browser-friendly formats: bigwig (for UCSC gen-
ome browser [40] or TDF (for the integrative genome
viewer (IGV, [39]).
If the user opted to perform genomic alignments, the

pipeline reports overall quality metrics such as coverage
and the number of mapped reads to different genomic
and transcriptomic regions (Figure S4). These reports
rely on Picard’s CollectRNASeqMetrics program (http://
broadinstitute.github.io/picard) and the RSeQC [34]
program.

Fig. 5 R markdown report for RNA-Seq analysis. Users can adapt this template according to their needs

Fig. 6 DolphinNext allows for implementation of a complete sequencing analysis cycle
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Finally, the RNA-Seq pipeline returns a quantification
matrix that includes the estimated counts and tran-
scripts per million (TPM) based on RSEM [48] or by
simply counting reads using featureCounts [56] for each
gene and/or for each annotated isoform. These matrices
are used as inputs for differential gene expression ana-
lysis and can be uploaded directly to an embedded in-
stance of our DEBrowser [36] software, which allows
interactive exploration of the resulting data.

ATAC-Seq and ChIP-Seq pipeline (Figure S4-S5)
DolphinNext offers pipelines to process libraries for the
analysis of ChIP-Seq and ATAC-Seq data. These two
pipelines share most processes and only differ at a few
very specific points. They also share all initial data prep-
aration steps with the RNA-Seq pipeline, such that both
rely on the very same processes for read filtering, read
quality reporting and alignment to desired genomic loca-
tions to quantify and filter out the reads mapped to re-
peat regions or any other loci of interest. Filtering out
reads mapping to a predefined set of loci can dramatic-
ally speed up the genome-wide alignment that follows.
After data processing, reads are aligned to the genome

using a short read aligner such as Bowtie2 [47]. For large
data files, such as those typically obtained from ATAC-
Seq, alignments can be sped up by splitting the files into
smaller chunks that are aligned in parallel. The choice to
split and the chunk sizes should be determined by the
user based on the specific computing environment. By
default, the pipeline creates smaller files that each have 5
million reads. After alignments of each read chunk, the
results are automatically merged with the samtools [57]
merge function. The pipeline then allows users to esti-
mate and remove PCR duplicates using the Picard’s
mark duplicates (http://broadinstitute.github.io/picard)
function.
For ATAC-Seq, the pipeline calls accessible chromatin

regions by estimating the Tn5 transposase cut sites
through a read extension process that has been shown
to more accurately reflect the exact position that was ac-
cessible to transposase [35, 58]. Once each read has been
shortened, peaks are called identically in both the ChIP-
Seq and ATAC-Seq using MACS 2 [59].
When processing several samples together, the ATAC-

Seq and ChIP-Seq pipelines provide consensus peak calls
by merging all peaks individually called in each sample
using Bedtools [60]. The number of reads in each peak
location are then quantified using Bedtools [60] coverage
function. As a result, ATAC-Seq and ChIP-Seq pipelines
also generate a matrix that has the count values for each
peak region and samples. This matrix can be uploaded
directly to the embedded version of DEBrowser [36] to
perform differential analysis or downloaded to perform
other analysis. Finally, to determine motifs under the

peaks in ChIP-Seq pipeline, there is also a motif discov-
ery support using HOMER (http://homer.salk.edu/
homer/index.html).

Example use cases and comparisons
There are several features of DolphinNext that make
pipeline creation, maintenance and portability much
simpler than in other platforms. Here, we compared
DolphinNext with one of the most popular processing
platforms, Galaxy, to point out the main differences of
DolphinNext. Specifically:

Distributed pipeline execution with containerization
Large enterprises or universities support many different
execution environments: from High Performance Com-
puting Cluster (HPCC) to large workstations and cloud
platforms (AWS, GCP, Azure). Galaxy requires an in-
stance to be deployed and launched for each cloud clus-
ter. To make cloud computing available to users, a
Galaxy server needs to be continuously running on the
cloud or independent instances would need to be spun
for each cloud user. While the first solution can signifi-
cantly increase the cost of cloud computing, the latter
requires an administrator to continuously assist users.
On the other hand, using Nextflow’s cloud support

and containerization, DolphinNext supports all these en-
vironments through configurations stored within Dol-
phinNext. Each environment is configured once and
made available to all users or desired user groups. Fur-
ther, users can add other environments to which they
have exclusive access. For example, an investigator with
dual affiliation who has access to two HPCCs can have
both environments configured within DolphinNext. At
runtime, the investigator, or any members in his or her
group can decide which system to use depending on the
specific needs of their processes or the availability of the
systems. Similarly, investigators can decide on whether
to use their cost-free but busy local HPCC for routine
work without tight deadlines or instead use cloud-based
computing which is more expensive but ensures timely
processing. In fact, once a Google or Amazon cloud au-
thentication is defined in DolphinNext, users can launch
a temporary cluster that can dynamically scale depend-
ing on load with a couple of clicks.

Agile pipeline design
The evolving nature of research constantly requires new
ways in which to process data. As such pipelines are
constantly evolving and constant changes require the
ability to test different parameters and combinations of
existing programs and custom scripts. To adapt a pipe-
line, new parameters may be required or custom scripts
that pre-process data may be included. In Galaxy, the
forms to execute a tool are defined in static XML files in
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a tool wrapper. Any change in these files requires an up-
date by the tool developer and reinstallation of the tool
by the admin and a full system restart. Only a user with
administrator rights can install a new tool so that it is
available to all users. As a result, users cannot rapidly
test pipelines without administrator intervention.
DolphinNext simplifies pipeline/process creation for

regular users as well as administrators. For example, a
user needs to update an RNA-Seq pipeline with add-
itional programs and parameters to support newly avail-
able algorithms to add splicing variant discovery (e.g.
Using StringTie [61]). To do this, the user would navi-
gate to the pipeline builder module where all processes
in the pipeline can be updated or new ones can be
added. In Galaxy, the user depends on the tool developer
to improve the wrapper so that new parameters are ex-
posed, or the new program becomes ready for Galaxy
use. Instead, in DolphinNext, StringTie can be added
directly by the user to a private pipeline version and
used right away. The user can define the new input pa-
rameters to run StringTie as the form elements in the
process design module (see above). The defined input el-
ements (drop box, check box, input box etc.) are then
added to the run page automatically even while the pipe-
line is running. The only thing required is for the soft-
ware (e.g. StringTie) to be installed on a server or
container accessible to DolphinNext. An administrator
may be involved later if the user wants to make their
custom pipeline available to all DolphinNext users with
these changes.

Pipeline sharing
In Galaxy, the investigator can export the pipeline. How-
ever, in order for another investigator to run the pipe-
line, they would need a Galaxy instance installed and
configured with all the pipeline dependencies most likely
requiring administrative assistance.
When investigators use DolphinNext to process their

data, the platform’s pipeline sharing functionality is use-
ful for the reproducibility of the results and valuable for
writing the methods section of the publication. Once
pipelines are finalized, the user can share a link for the
pipeline or utilize GitHub integration. When a link is
shared, other investigators can easily execute the pipe-
line in their instance by just defining their profile. If a
pipeline is shared through GitHub, investigators can also
directly execute the pipeline from the command line
using Nextflow without a DolphinNext instance in-
stalled. Automatic report generator: Galaxy is designed
to chain the executed tools to create pipelines, and this
platform keeps all the uploaded files, defined collections,
and executed tools in its history. This type of history
structure that includes all executed pieces of the pipeline
makes it harder to create a built-in report. Even though

a history file in Galaxy can be shared with collaborators,
it requires extra effort to consolidate the results and
convert them to a report.
In DolphinNext, when users need to add a new report

or customize an existing report section, they can use the
pipeline builder module to simply select an existing out-
put or drag and drop a new output parameter to the
builder and attach it to the process (Fig. 2a) and select
the report type (Fig. 4a) (e.g. Html, table, pdf, R mark-
down, etc.). When executing the pipeline, only outputs
that are set to ‘publish’ are added as a section into the
report page. In this way, users can organize the run re-
sults of a large sequencing project involving hundreds of
samples and tools (see RNA-Seq example above) in a
single report page and easily compare the results of hun-
dred samples using the consolidated tables and plots.
Another advantage of customizing the reports page is
that the same pipeline can be used to assess a different
set of input parameters (e. g. using a new genome as-
sembly or a new transcript annotation set that has im-
proved 3′ UTRs or additional noncoding RNAs).
Rerunning the same pipeline with the new set of param-
eters and comparing the new and previous results are
usually not a trivial task without the automatic report
generator designed for the pipeline. However, it is an
easy task in DolphinNext, once input parameters are
changed and the run resumed, Nextflow only executes
the affected processes with this change to produce the
new reports. The previous reports can still be accessible
with a click on the same page that allows for easy com-
parison. Lastly, the report section in DolphinNext makes
sharing all the published results with collaborators in a
single page easier. In addition to that, embedded shiny
and R-markdown applications in these reports make ef-
fortless interactive data visualization and exploration
possible.
Overall, DolphinNext’s main advantage is to simplify

creating, deploying, sharing and executing pipelines
without administrator rights to democratize the data
processing and analysis for all users.
DolphinNext has been deployed in several institutions

and companies. A typical application of DolphinNext
was showcased in a recent report that identified and
characterized artery- and vein-specific endothelial en-
hancers in Zebrafish [62]. DolphinNext was used to
process single cell RNA-Seq and bulk RNA-Seq data in
this study. Bioinformatics core scientists from these in-
stitutions have particularly benefited from DolphinNext
as it allows them to rapidly customize and test pipelines
to support ever changing needs. DolphinNext also re-
duces the burden of supporting concurrent data process-
ing jobs as core scientists can allow users to monitor
pipeline execution and re-running of similar pipelines
while they focus on designing and testing new solutions.
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DolphinNext helps with pipeline development and main-
tenance by enabling rapid troubleshooting and simpler
workflow definitions.
A comparison between widely used platforms is shown

in Table 1.

Current limitations and future plans
DolphinNext currently relies on Nextflow. Although
Nextflow is a very successful and widely used pipeline
engine, supporting other platforms like SnakeMake [64]
and WDL based execution engines [65] would increase
the usage of DolphinNext.

Currently, all of our processes and modules are inter-
changeable which allows reusing existing components.
This approach required more structured syntax, which
limits the ability to import publicly available Nextflow
pipelines such as those available from nf-core [18], Pipe-
liner [19] or CHIPER [20]. However, in the near future,
we plan to support pipeline executions created in other
standards.
Managing large datasets that have hundreds of librar-

ies and samples is challenging. Hence a system that
stores sample data (metadata) and then relies on meta-
data to help navigate this complexity and automate data

Table 1 Comparison of related applications

DolphinNext Galaxy [5] Sequanix [10] Taverna [9] Arvados [63]

Platforma JS/PHP Python Python Java Go

Workflow management system Nextflow Galaxy Snakemake Taverna Arvados

Native task supportb Yes (any) No Yes (bash only) Yes (bash only) Yes

Common workflow languagec No Yes No No Yes

Streaming processingd Yes No No No Yes

Code sharing integratione Yes No No No Yes (GitHub)

Workflow modulesf Yes Yes Yes Yes Yes

Workflow versioningg Yes Yes No No No

Automatic error failoverh Yes Yes No No Yes

Nested workflows Yes Yes No Yes No

Used syntax/ semantics own/own XML/own Python/own own/own Python/own

Web-based Yes Yes No No No

Web-based process developmenti Yes No No No No

Distributed pipeline executionj Yes No No No No

Container Support

Docker support Yes Yes Yes No Yes

Singularity support Yes Yes Yes No No

Built-in batch schedulers

LSF Yes (Native) Yes (DRMAA) Yes (Native) No No

SGE Yes (Native) Yes (DRMAA) Yes (Native) Yes (Native) No

SLURM Yes (Native) Yes (DRMAA) Yes (Native) No Yes (Native)

IGNITE Yes (Native) No No No No

Built-in cloud

AWS (Amazon Web Services) Yes Yes No Yes Yes

GCP (Google Cloud Platform) Yes Yes (Partial)k No No Yes

Autoscaling Yes Yes No No Yes
aThe technology and the programming language in which each framework is implemented
bThe ability of the framework to support the execution of native commands and scripts without re-implementation of the original processes
cSupport for the CWL specification
dAbility to process tasks inputs/outputs as a stream of data
eSupport for code management and sharing platforms, such as GitHub
fSupport for modules, sub-workflows or workflow compositions
gAbility to track pipeline changes and to execute different versions at any point in time
hSupport for automatic error handling and resume execution mechanism
iAbility to add new processes in an embedded web editor without a wrapper or any installation of the wrapper
jSupport for executing the same pipeline without any change in multiple computing environments to process the data within a single interface (e.g. hpc clusters,
a workstation and cloud)
kA Galaxy instance can be launched in Google cloud but for one-time use. When it is shut down, they are permanently deleted
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processing is critical. There is currently growing support
for metadata definitions in FAIR standards [66]. Integra-
tion of metadata tracking system into DolphinNext in
FAIR standards will increase data portability and enable
a simpler interface for users to integrate and compare
across diverse datasets.
Lastly, another technical limitation of DolphinNext is

related to containerization for advanced users. Even Dol-
phinNext has a GitHub integration that users can push
their pipelines to GitHub and test them using Travis-ci
(travis-ci.org) for any change in the pipeline with defined
Docker containers. Docker Hub is a repository special-
ized in hosting ready to execute images. Integration with
Docker Hub will allow users to deposit, build and test
Docker containers directly from Docker Hub. Currently,
in order to enable automated builds, users need to use
Docker Hub website to create a new repository in
Docker Hub from their GitHub repository of a pipeline.
With Docker Hub integration, we will reduce the com-
plexity of pipeline containerization one more level in the
future.

Conclusion
DolphinNext is a powerful workflow design, execution,
and monitoring platform. It builds on top of recent
technological advances such as software containerization
and the Nextflow engine to address current data pro-
cessing needs in high-throughput biological data ana-
lysis. Its ability to run anywhere, leverage the computing
infrastructure of the institution, and provide an intuitive
user interface makes it suitable for both small, large, and
complex projects.
Reproducing third party analyses that involve many

different programs, each with custom parameters, is a
tremendous challenge. We have put special emphasis on
the reproducibility of pipelines. To enable this, Dolphin-
Next investigators can distribute their processing pipe-
lines as containers that can run as stand-alone
applications including the proper versions of all software
dependencies. Further, DolphinNext supports pipeline
versioning where users can create and tag a pipeline ver-
sion with a unique identifier (UID) that includes the
general pipeline “graphical representation”, the execut-
able Nextflow script, as well as the exact software ver-
sions and parameters used when run on a specific
dataset.
Users with different computational skills can use Dol-

phinNext to increase productivity. Casual users can rely
on previously defined and tested pipelines to process
their datasets. Investigators can easily distribute their
processing pipeline along with the data for others to re-
produce their analyses. Investigators with access to par-
allel computing systems but without a strong
computational background can use DolphinNext to

optimally utilize their computing environment. For ex-
ample, DolphinNext pipelines can automatically split
large sequence data files into smaller “chunks” that can
be aligned in parallel across hundreds of cluster nodes if
such infrastructure is available. Finally, bioinformaticians
can easily create new processes and integrate them into
custom robust and reproducible pipelines.
DolphinNext offers a highly modular platform.

Though this manuscript only focuses on the power of
DolphinNext for data processing, we have also
integrated two different downstream analysis tools
(DEBrowser [36] and Rmarkdown) that take the count
matrices output from the data processing steps directly
into analysis and data exploration steps. Furthermore,
DolphinNext’s modular architecture allows for easy inte-
gration of any custom data analysis and visualization
tool. As such DolphinNext is meant to provide a basic
platform to standardize processing and analysis across
institutions.

Availability and requirements
Project name: DolphinNext.
Project home page: https://github.com/UMMS-Bio-

core/dolphinnext
Documentation: https://dolphinnext.readthedocs.org
Web server: https://dolphinnext.umassmed.edu
Example pipelines: https://github.com/dolphinnext
Operation systems: Platform independent.
Other requirements: Nextflow and Java 8 or higher,

docker or singularity for containerization.
Programming language: PHP, Javascript.
License: GPL-v3.
Restrictions to use by non-academics: None.
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