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Abstract

Background: Enrichment or over-representation analysis is a common method used in bioinformatics studies of

transcriptomics, metabolomics, and microbiome datasets. The key idea behind enrichment analysis is: given a set of
significantly expressed genes (or metabolites), use that set to infer a smaller set of perturbed biological pathways or
processes, in which those genes (or metabolites) play a role. Enrichment computations rely on collections of defined
biological pathways and/or processes, which are usually drawn from pathway databases. Although practitioners of
enrichment analysis take great care to employ statistical corrections (e.g., for multiple testing), they appear unaware
that enrichment results are quite sensitive to the pathway definitions that the calculation uses.

Results: We show that alternative pathway definitions can alter enrichment p-values by up to nine orders of
magnitude, whereas statistical corrections typically alter enrichment p-values by only two orders of magnitude. We
present multiple examples where the smaller pathway definitions used in the EcoCyc database produces stronger
enrichment p-values than the much larger pathway definitions used in the KEGG database; we demonstrate that to
attain a given enrichment p-value, KEGG-based enrichment analyses require 1.3-2.0 times as many significantly
expressed genes as does EcoCyc-based enrichment analyses. The large pathways in KEGG are problematic for another
reason: they blur together multiple (as many as 21) biological processes. When such a KEGG pathway receives a high

EcoCyc, KEGG

enrichment p-value, which of its component processes is perturbed is unclear, and thus the biological conclusions
drawn from enrichment of large pathways are also in question.

Conclusions: The choice of pathway database used in enrichment analyses can have a much stronger effect on the
enrichment results than the statistical corrections used in these analyses.
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Background

Pathway analysis has become a popular way to analyze
gene expression data. This family of analysis methods
seeks to find which biological processes have changed
their activity levels most significantly across two differ-
ent biological states [1]. Pathway analysis is also used for
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interpreting metabolomics data, where again researchers
use pathways to map alterations in the levels of individual
metabolites to changes in biological processes. Pathway
analysis has also become popular in analysis of micro-
biome datasets: researchers calculate the abundances of
different pathways across different microbiome samples
to seek correlations between the presence of different
biological processes with phenotypic differences such as
diseased versus normal populations.
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Researchers have explored a number of mathemati-
cal methods for calculating pathway activity levels and
pathway abundances, but all of these methods ultimately
depend on a collection of pathways within pathway
databases (DBs) such as BioCyc [2], KEGG [3], and Reac-
tome [4] (some methods also use the biological processes
defined in Gene Ontology [5]). BioCyc is a collection
of 18,000 pathway databases including the EcoCyc [6]
database for Escherichia coli. Although this article uses
example pathways from EcoCyc, the BioCyc databases
for other organisms contain pathways of similar size and
hence we would expect similar results to apply when
comparing them to KEGG.

It has been noted previously that pathway DBs differ
significantly in their content, both in how they concep-
tualize pathways and in the genes and reactions present
in specific pathways [7, 8]. The first question we ask in
this article is: to what degree does the choice of pathway
database affect the results returned by a pathway-analysis
method?

The second question we investigate is: If a given path-
way has a high enrichment score (or abundance score, for
the microbiome), what does this result tell us biologically?
That is, what have we learned about the biological sys-
tem under study? For example, does the pathway clearly
correspond to one biological process, or does the pathway
integrate so many biological processes that the biological
significance of identifying that pathway as enriched is of
little meaning? We show that the answers to Questions 1
and 2 depend on the pathway database being used.

For Question 1, we investigate the differences between
EcoCyc and KEGG using one of the oldest and most
popular pathway-analysis methods, enrichment analysis
of gene-expression data using the hypergeometric distri-
bution (also called over-representation analysis) [1]. The
main input to the enrichment-analysis method is a set
of those genes from a gene-expression experiment that
are significantly differentially regulated over some thresh-
old across two experimental conditions of interest. The
output of enrichment analysis is a set of enriched path-
ways, and an enrichment score (p-value) for each. The
degree to which a pathway P is considered to be enriched
depends on two factors: (1) how many genes in P are
present in the input list of significantly differentially regu-
lated genes, and (2) how many total genes does P contain?
After all, if 3 genes from P were present in the significant-
genes set, we would consider that much more signifi-
cant if P contained 4 total genes than if P contained 15
total genes. The enrichment p-value for a pathway indi-
cates the probability that the set of significantly expressed
genes of a given size would have occurred by chance. In
over-representation analysis, unlike in the gene set enrich-
ment analysis, the set by itself is irrelevant, only its size
matters.
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Several approaches are used to calculate enrichment
scores [9], but all of them compare two ratios in one
way or another. For the case of pathway enrichment, the
first ratio is the number of significantly expressed genes
in a particular pathway to the total number of genes in
the pathway. The second ratio is the total number of sig-
nificantly expressed genes to the total number of genes
assigned to any pathway.

For a given set of observed genes, assuming equivalent
pathways in each database cover the same subset of the
observed genes, the enrichment score will still depend on
the number of genes in the pathway (the denominator of
the first ratio) as well as the total number of genes that are
assigned to pathways in the database (the denominator of
the second ratio).

Although methods based on binomial distributions or
chi-squared tests have been used, tests based on the
hypergeometric distribution are the most popular. As the
hypergeometric is a discrete distribution, a one-tailed
statistic is the sum of probability mass functions calcu-
lated at a set of values equal to or more extreme than the
value of interest. The probability mass function is:

(o) i)
(o)

Where K is the total number of significantly expressed
genes, k is the number of significantly expressed genes in
the pathway of interest, # is the total number of genes
in the pathway, and N is the total number of (pathway
associated) genes in the database.

For enrichment, the statistic of interest is the probability
of observing k or more significantly expressed genes in the
pathway by chance. This is the sum of the mass functions

for each gene count that is greater than or equal to the
number of genes observed:

P(k) =

P(xzk):zx:w
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To address Question 1 we perform an enrichment anal-
ysis on corresponding EcoCyc and KEGG pathways using
the same set of input genes and study how different the
results are. We consider series of examples where we com-
pute enrichment scores for the same sets of genes across
corresponding EcoCyc and KEGG pathways. A second
way we address the question is through a mathematical
analysis in which we demonstrate the effect of pathway
size on p-values when other factors in the calculation
are fixed. We show that the p-value computed by one
over-representation analysis method can vary by up to
nine orders of magnitude depending on the size of the
corresponding EcoCyc and KEGG pathways — EcoCyc
and KEGG pathways differ significantly in their aver-
age size. This finding is much larger than variations due
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Table 1 Pairs of pathways selected as examples

Pathway Size
EcoCyc Pathway KEGG Pathway
EcoCyc KEGG Table

L-cysteine Cysteine and 3 34 2
biosynthesis Methionine
CYSTSYN-PWY metabolism

map00270
Arginine biosynthesis  Arginine biosynthesis 12 18 3
ARGSYN-PWY map00220
L-selenocysteine Selenocompound 4 17 4
biosynthesis | metabolism
PWY0-901 map00450
L-valine biosynthesis Valine, leucine, and 9 16 5
VALSYN-PWY isoleucine

biosynthesis

map00290
Guanosine deoxyri- Purine Metabolism 10 78 6
bosenucleotides de map00230
novo biosynthesis Il
PWY-7222
Pyrimidine Pyrimidine 13 51 7
deoxyribonucleotides  Metabolism
de novo biosynthesis ~ map00240

PWY-7184

The first four pairs are amino acid synthesis pathways. The remaining pairs are two
large KEGG pathways covering purine and pyrimidine metabolism and one of
several EcoCyc pathways that correspond to a part of the pathway. Each row
contains corresponding EcoCyc and KEGG pathways identified by their name and
EcoCyc or KEGG pathway identifier, and the pathway size expressed as number of
associated genes

to multiple-comparison corrections, which are viewed as
essential refinements to the statistical methods.

To address Question 2 we analyze several examples
where one KEGG pathway contains multiple EcoCyc path-
ways.

Results

Question 1: analytic approach

As detailed in the Appendix in the Additional file 1, for
a fixed number of significantly expressed genes, if two
pathways are enriched for the same number of genes, the
smaller pathway will have a smaller enrichment p-value
(and thus more significant). Specifically, by expanding the
expression for probability mass function, we found that
the probability mass function will always have a smaller
value for the smaller pathway. Because the final one-tailed

Page 3 of 11

p-value is a sum of probability mass values for a range of
counts of genes, the relative advantage of the smaller path-
way increases as the number of significantly expressed
genes increases.

Question 1: comparing enrichment scores across example
pathways

We selected six pairings of EcoCyc and KEGG pathways,
listed in Table 1. Four of these are pairings of amino acid
synthesis pathways and two are purine and pyrimidine
metabolism pathways and indicates the number of genes
associated with each pathway.

Tables 2, 3, 4 and 5 compare enrichment calculations
for corresponding pairs of EcoCyc and KEGG pathways.
In each table we vary the number of genes present for
the enrichment calculation (that is, the number of genes
whose expression changed significantly in a hypothetical
gene-expression experiment), and compute an enrich-
ment score for the EcoCyc pathway and for the KEGG
pathway. For example, in Table 2 we compare an Eco-
Cyc pathway containing 3 genes (L-cysteine biosynthesis)
to a KEGG pathway containing 34 genes (Cysteine and
Methionine Biosynthesis). That KEGG pathway is the
closest biological equivalent to the EcoCyc pathway, and
contains the EcoCyc pathway as a component. This size
difference between EcoCyc and KEGG pathways is quite
common — in each case we compared the closest bio-
logical pathways. Each table considers from 1 to N genes
where N is the number of genes in the smaller pathway
(which is always the EcoCyc pathway).

Tables 6 and 7 are similar, but illustrate more extreme
differences in pathway size. KEGG has large pathways
that correspond to purine (map00230) and pyramidine
(map00240) metabolism. These pathways overlap several
EcoCyc pathways of a range of sizes. The results displayed
are for the largest EcoCyc pathways overlapped, which
ironically shows the largest difference in p-values.

Recall that the enrichment score depends in part on
the total number of genes assigned to pathways within
the database. These total numbers differ significantly for
EcoCyc and KEGG: EcoCyc assigns 1096 genes to path-
ways, whereas KEGG reports 1686 E. coli genes assigned
to pathways (as of August 14, 2019). In Tables 2, 3,4 and 5
we provide two different p-values for the KEGG pathway:

Table 2 Comparing p-values for EcoCyc CYSTSYN-PWY and KEGG map00270

Count of Significantly
Expressed Genes

EcoCyc p-value

Corrected for Multiple
Comparisons

Native KEGG p-value Corrected for Multiple

Comparisons

3 46 x 1079 16 x 1076
2 50 x 107° 18 x 1073
1 27 x 1073 9.7 x 107!

75 % 107° 89 x 1074
39x 1074 47 x 1072
20 %1072 10

Each row starts with the number of significantly expressed genes in a data set. Corrected p-values to the right of each p-value column use Bonferroni as a “worst case”

correction as discussed in the text
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Table 3 Comparing p-values for EcoCyc ARGSYN-PWY and KEGG map00220

Count of Significantly EcoCyc p-value Corrected for Multiple Native KEGG p-value Corrected for Multiple
Expressed Genes Comparisons Comparisons
12 1.7 x 10728 6.0 x 10726 18 x 10720 2.1 x 107
11 18 x 1072 6.5 x 1073 42 x 107 50 x 1072
10 10 x 1072 35 x 10720 88 x 1072 10 x1071°
9 36 x 10720 13 x 107V 16 x1071° 19 x 107"
8 98 x 10718 35x 1071 27 x 107V 33x 1071
7 21 %1071 76 x 10713 42 x1071° 50x 1071
6 39 x 10713 14 % 10710 59 x 10713 70 x 1071
5 6.1 x 1071 21 x 1078 76 x 1071 9.0 x 107°
4 83 x 107 29 x 1078 9.1 x 1077 1.1 % 1078

3 10x 1070 36 x 1074 10 x 107° 12 % 1074
2 11 x 107 39 x 1072 11 x 1074 13 x 1072

1 11 %1072 10 1.1 x 1072 10

Corrected p-values to the right of each p-value column use Bonferroni as a “worst case” correction as discussed in the text

Table 4 Comparing p-values for EcoCyc PWY0-901 and KEGG map00450

Count of Significantly EcoCyc p-value Corrected for Multiple Native KEGG p-value Corrected for Multiple
Expressed Genes Comparisons Comparisons

4 1.7 x 107" 59 % 1077 72 %1077 85x 107/

3 18x 1078 6.5 x 1076 85x 107/ 1.0 % 1074

2 10x 107 35x 1073 96 x 107° 1.1 %x 1072

1 36 x 1073 10 10 x 1072 1.0

Corrected p-values to the right of each p-value column use Bonferroni as a “worst case” correction as discussed in the text

Table 5 Comparing p-values for EcoCyc VALSYN-PWY and KEGG map00290

Count of Significantly EcoCyc p-value Corrected for Multiple Native KEGG p-value Corrected for Multiple
Expressed Genes Comparisons Comparisons
9 16 x 1072 58 x 10720 39x 1072 46 x 10718
8 18 x 10717 6.3 x 1077 81x 1078 96 x 10716
7 9.7 x 107" 34 x 10714 15%1071° 18x 10713
6 35 x 10714 13x 107" 25x 10713 30 x 1071
5 96 x 10712 34 x107° 39 x 1071 46 % 107°
4 21 %107 75 %1077 54 x107° 6.5x 1077

3 38 x 1077 14 x 1074 70 x 107/ 84 x 1072

2 60 x 107> 2.1 x 1072 84 x 107 10 x 1072

1 82 x 1073 1.0 94 x 1073 1.0

Corrected p-values use Bonferroni as a ‘worst case’ correction as discussed in the text
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Table 6 Comparing p-values for EcoCyc Guanosine deoxyribonucleotides de novo biosynthesis Il (PWY-7222) and KEGG map00230

Count of Significantly EcoCyc p-value Corrected for Multiple Native KEGG p-value Corrected for Multiple
Expressed Genes Comparisons Comparisons
10 151 x 10724 535 x 10722 253 x 107 301 x 10712
9 164 x 10721 582 x 1071° 6.14 x 10713 731 x 1071
8 894 x 1071° 316 x 10716 147 x 107" 1.75 x 107°
7 325 x 10716 115 x 10713 348 x 10710 414 x 1078
6 884 x 10714 313 x 107" 812 x 107° 967 x 1077
5 193 x 1071 6.83 x 107° 187 x 1077 223 x 107
4 351 x 107° 124 % 1076 425 % 107° 506 x 1074
3 548 x 107/ 194 x 107% 9.54 x 107> 114 x 1072
2 7.50 x 107> 265 x 1072 211 x 1073 252 x 107!
1 912 x 1073 1.0 463 x 1072 1.00

Corrected p-values use Bonferroni as a ‘worst case’ correction as discussed in the text

column 3 is computed using the actual KEGG total of 1686
genes, whereas to provide an apples-to-apples compari-
son, column 4 is computed for KEGG using the EcoCyc
total of 1096 genes. Why does KEGG assign so many more
genes to pathways than does EcoCyc? Most of the dif-
ferences are due to the fact that one very large KEGG
pathway (map02010) is not a pathway at all, it is an enu-
meration of 134 ABC transporters involving 179 E. coli
genes. Further, KEGG assigns a number of enzymes to
pathways that EcoCyc does not assign to any pathway,
usually because EcoCyc considers these enzymes to define
connections among pathways rather than defining their
own pathway.

In the analysis in this section, we chose to adjust for
multiple comparisons using Bonferroni corrections rather
than the more common Benjamini-Hochberg method

[10]. This approach allowed us to avoid the question of
which gene was removed from the starting set at each suc-
cessive line in the table. The Benjamini-Hochberg method
will always penalize the result with the lowest p-value by a
factor equal to the number of pathways considered, which
is equivalent to the adjustment made for all p-values by the
Bonferroni test. In some cases, a particular subset of genes
will actually favor a different pathway with a lower p-value;
in those instances, using the Bonferroni correction is con-
servative, but analytically more tractable than considering
all possible subsets of genes in these examples.

We used a count of 119 for the number of pathways of
E. coli in KEGG, and 354 as the number of pathways in
EcoCyc. Note that this number is smaller than the number
(1080) used in the Bonferroni and Benjamini-Hochberg
corrections in the EcoCyc SmartTables and Dashboard.

Table 7 Comparing p-values for EcoCyc pyrimidine deoxyribonucleotides de novo biosynthesis | (PWY-7184) and KEGG map00240

Count of Significantly EcoCyc p-value Corrected for Multiple Native KEGG p-value Corrected for Multiple
Expressed Genes Comparisons Comparisons
13 2.03 x 10730 719 x 10728 349 x 1072 416 x 1071
12 220 x 1077/ 7.79 x 1072 150 x 10719 178 x 10°V
11 1.19 x 10724 423 x 1072 628 x 10718 747 x 10710
10 432 x 10722 153 %1071 2.57 x 10710 305 x 10714
9 118 x 10719 416 x 107" 102 x 10714 122 x 10712
8 2.56 x 10717 905 x 1071° 400 x 10713 476 x 1071
7 464 x 1071 164 x 10712 153 x 107" 182 x 1077
6 723 x 10713 2.56 x 10710 570 x 10710 6.78 x 1078
5 9.86 x 107" 349 x 1078 208 x 1078 248 x 1070
4 120x 1078 423 x 1076 745 x 1077/ 886 x 107
3 131 %107 463 x 1074 261 x 1072 311 x 1073
2 130 x 107* 460 x 1072 898 x 104 107 x 107!
1 119 x 1072 1.00 302 x 1072 1.00

Corrected p-values use Bonferroni as a 'worst case’ correction as discussed in the text
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This later value includes all pathway types in the EcoCyc
class hierarchy. Since no class hierarchy exists among the
KEGG pathways (apart from a small shallow hierarchy in
BRITE), we adjusted using the simple count of pathways.

Additional file 5 provides more evidence that KEGG
pathways tend to be much larger than BioCyc pathways.
For six additional KEGG pathways, we list the Meta-
Cyc pathways that these KEGG pathways contain. Meta-
Cyc [11] contains many non-E. coli pathways and is the
multi-organism reference pathway database from which
pathways are computationally projected when predicting
pathways in other BioCyc databases. These six KEGG
pathways contain the following number of MetaCyc path-
ways: 31, 17, 12, 12, 25, 26. We note that MetaCyc path-
ways whose names differ in the roman numerals they
contain are usually pathway variants, meaning the path-
ways accomplish a similar biological function, and often
share some reactions, but they will contain some different
reactions.

Question 2: biological inference from enriched pathways
Imagine that a pathway-enrichment calculation or a
pathway-abundance calculation has identified a EcoCyc
pathway or a KEGG pathway as highly enriched or as
highly abundant in a given biological situation. What does
that result tell us biologically?

For a EcoCyc pathway, the result is straightforward: we
have learned that the expression of the biological pro-
cess corresponding to that pathway is perturbed in the
situation under study. For example, if the EcoCyc path-
way for L-cysteine biosynthesis is highly enriched, then
the cellular process of L-cysteine biosynthesis is highly
perturbed. If the arginine biosynthesis pathway is highly
enriched, then arginine biosynthesis is highly perturbed.
The interpretation is so obvious because the vast major-
ity of EcoCyc pathways correspond to a single biological
process, one that is often regulated as a unit, and often
evolved as a unit. Of course, due to post-transcriptional
effects, changes in pathway expression may not yield cor-
responding changes in pathway activity.

The result is much less straightforward to infer for
KEGG pathways, in particular, for KEGG maps. For
example, imagine that KEGG map00260, “glycine, serine,
and threonine metabolism,” is highly enriched. Have we
learned that glycine metabolism is highly perturbed in this
biological situation, or that serine metabolism is highly
perturbed, or that threonine metabolism is highly per-
turbed? Or should we conclude that some combination of
these three processes are highly perturbed? But it is more
complicated than this: the term “serine metabolism” could
mean either serine degradation or serine biosynthesis (and
in fact both processes are present in map00260) — so
now there are six biological processes that might be per-
turbed: either the biosynthesis or degradation of glycine,
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serine, and threonine. Figure 1 shows that the situa-
tion is even more complicated. KEGG map00260 actually
includes the 21 different biological processes listed in the
right side of this figure. These processes were manually
identified within the KEGG map by reference to the Meta-
Cyc database [11]. Any combination of those 21 different
processes could be perturbed to yield an elevated enrich-
ment or abundance score for the pathway. Worse yet,
the map could receive a high enrichment or abundance
score if enough single genes from each of those individ-
ual processes were highly perturbed, even if none of the
individual processes were themselves highly perturbed.

A similar pattern is present for the six KEGG pathways
in Additional file 5, which contain the following number
of MetaCyc pathways: 31, 17, 12, 12, 25, 26.

Thus, because of the large mosaic nature of KEGG
maps, it is not at all clear what to conclude if a KEGG map
shows a high enrichment score. Any one, or any combina-
tion, of multiple biological processes might be perturbed.
The mosaic quality of KEGG maps can be useful for some
applications, such as for understanding the connectivity
between multiple metabolic pathways. But for enrichment
analysis, their mosaic-ism is a strong liability.

But KEGG contains a different type of pathway called
a module. Modules correspond much more closely to
EcoCyc pathways and therefore to individual biological
processes. Thus, KEGG modules do not suffer from the
confusion just illustrated for KEGG maps (although many
publications do in fact use KEGG maps for enrichment
analysis.) But KEGG modules suffer from a different lim-
itation: they are quite incomplete. KEGG contains only
348 metabolic modules (December 12, 2019) compared to
the 2801 pathways in MetaCyc version 24.0 (December 12,
2019). Thus, many biological processes are not covered by
KEGG modules, so perturbations to those processes can-
not be detected if KEGG modules are used for enrichment
analysis.

Comparing effect of gene set size at fixed p-value

Here we determined how differences in the number of
significantly expressed genes affects the sensitivity of
high-throughput analysis and representation of annotated
pathways in high-throughput samples, which is an inverse
problem to inferring over-representation on the basis of a
p-value threshold.

The lower the p-values calculated from X genes drawn
from a pathway of size Y, the more unlikely it is that at
least X genes from a set of size Y could be drawn in a
sample of size N by chance. However, the p-value, which
is a random variable associated with the null distribution,
is not a quantitative indicator of the enrichment itself,
which is an alternative to the random draw hypothesis.
To obtain a quantitative measure of enrichment which
could be used in direct comparison between different
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Fig. 1 KEGG map00260. The biological processes present in this map are listed along the right. Each process name is color coded, and those colors
identify that process within the map. Each colored square is positioned next to a reaction within that process. KEGG diagram from [21], downloaded

yet significant outcomes, we fixed a p-value at a signifi-
cant threshold and determined the minimum number of
genes from a pathway that would have to be found in a
biological sample in order for that pathway to be consid-
ered enriched. We called this quantity a critical subset
size or a minimally required number of successes. We
compared the effects of pathways sizes on the sizes of crit-
ical subsets. To that end we enumerated critical subsets
for every pathway in EcoCyc and KEGG for sample sizes
between 50-500 genes and a typical result is shown for
a 100-gene sample (Figure S1 in Additional file 1). The
distribution of critical subset sizes for EcoCyc pathways
is shifted toward smaller values compared to KEGG. Our
results indicate that on average a collection of genes of
interest would need to contain two times fewer EcoCyc
genes than KEGG genes in order for it to be biologically
interpretable. Another characteristic of the EcoCyc dis-
tribution is high relative frequency of critical subsets of
the same size. This implies that the higher granularity
of EcoCyc pathways results in an advantageous statistical
property of the annotation — relatively high homogene-
ity of set sizes (Figure S1 in Additional file 1). That in turn

should reduce the effect of set size variation on the rate
of false negatives in over-representation analysis, thereby
enabling more robust inference.

Although on average EcoCyc pathways and the corre-
sponding critical subsets are smaller than KEGG pathways
[7], the truly functionally analogous pathways may possi-
bly be much closer in size (despite the preceding section’s
specific examples already providing anecdotal evidence
against it) and thus would not have a large effect on the
enrichment analysis. To avoid any bias, we defined analo-
gous pathways as unique, highly significantly overlapping,
sets of KEGG and EcoCyc genes (Additional file 4), i.e.,
if several EcoCyc pathway sets could be matched at a
comparable p-value and identical overlap with one KEGG
pathway or vice-versa, we chose the pair of sets with the
smallest combined number of genes. We also imposed an
additional constraint of at least three genes per EcoCyc
pathway. We identified 69 pairs of analogous pathways
that satisfied those criteria (Additional file 4). A pair-
wise comparison of analogous pathways revealed that
KEGG sets are on average about 3.5 times larger than
the corresponding EcoCyc sets (Figure S2 in Additional
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file 1). To examine the effect of pathway size differences
among the 69 pairs on the size of critical subsets, we cal-
culated the respective ratios of critical subset sizes for
every pair of the pathways for sample sizes between 50—
500. For an absolute majority of analogous pathways (46
out of 69, 66%), the median size of the critical subset is
higher for KEGG than for EcoCyc annotation (Figure S3 in
Additional file 1). To illustrate how the critical subset ratio
may vary as a function of sample size, we plotted the
ratio for a pair of analogous pathways, “EcoCyc: super-
pathway of S-adenosyl-L-methionine biosynthesis” and
“KEGG: ec000270: Cysteine and methionine metabolism,’
with a typical median ratio of 2. With the exception of
only three sample sizes, for which minimum significant
gene-set sizes were the same for both annotations, EcoCyc
annotations required fewer genes to meet the p-value cut-
off (Figure S4 in Additional file 1). Further, we observed
that statistically significant over-representation is consis-
tently achieved by a greater proportion of genes in the
pathway when using EcoCyc pathways (Figure S5 in Addi-
tional file 1). Both advantages could be attributed to a
more refined annotation of individual pathways in the
EcoCyc database.

Discussion

Omics assays capture snapshots of the state of the respec-
tive transcriptome, proteome, or metabolome. A typical
snapshot can be viewed as a point in a geometric space
whose dimensionality is defined by the number of measur-
able components of an ome, such as transcripts, proteins,
or metabolites. This dimensionality can be very high,
especially relative to the number of snapshots recorded
in a given biological experiment. Since most omics assays
are performed to gain insight into system physiology, the
high dimensionality of the omics observations often com-
plicates interpretation of the findings. However, focusing
only on the over-represented subsets in the outcomes of
omics experiments can substantially reduce dimension-
atlity. As a result, the components making up the subset
can be used directly to interpret the omics experiment.
This approach, which is known as over-representation, or
enrichment analysis, was originally used to interpret tran-
scriptome data [12] and has become one of the standard
tools for interpreting high-throughput omics observations
[1]. Subsets are derived from pathway and process anno-
tations. Here we present the first examination of how the
properties of these annotations may affect the identifi-
cation of over-represented subsets, and hence, biological
interpretation of the results.

The KEGG and EcoCyc annotations of metabolic path-
ways differ substantially in their granularity [7]. This
difference results in size differences between analogous
pathways/gene-sets, which in turn affects the outcome of
enrichment analyses and ultimately the interpretability of

Page 8 of 11

an omics model. Since annotated EcoCyc pathways are
smaller than their KEGG counterparts across the board,
EcoCyc (and BioCyc) pathway definitions are more likely
to result in identification of enriched pathways — mean-
ing pathways that exceed a p-value threshold — than
are KEGG pathways. We showed this analytically in the
Appendix in Additional file 1.

We provide multiple examples of this situation Tables 2,
3,4, 5, 6 and 7 as can be seen by comparing the multiple-
comparison-corrected p-values for EcoCyc and KEGG
(columns 3 and 5 respectively). The largest differences
occur in Tables 6 and 7. For example, the fourth row in
Table 7 shows the p-values that would result from the
presence of ten significantly expressed genes in EcoCyc
pathway PWY-7184 versus KEGG pathway map00240: the
p-values differ by a factor of over five orders of magni-
tude, even after correction for multiple comparisons: 1.5 x
10~ for EcoCyc vs 3.1 x 1014 for KEGG. The first row of
the same table shows an uncorrected difference (columns
2 and 4) for 13 significantly expressed genes of nine orders
of magnitude (EcoCyc 2.0 x 1073, versus KEGG 3.5 x
10721). Such large differences could easily influence the
biological findings by results in a pathway being called as
significantly enriched or not. The higher a fraction of the
genes in a pathway are significantly expressed, the more
this difference in p-values is amplified.

Put another way, we showed that for KEGG and Eco-
Cyc pathways to attain the same enrichment p-value, the
KEGG pathway would need to have from 1.3-2.0 times
as many significantly expressed genes observed as would
the EcoCyc pathway (Figures S1, S3, and S4 in Additional
file 1).

Further, the statistically significant enrichment is
achieved with fewer genes but at a higher representation
rate, which makes the resulting reduction in dimension-
ality more biologically meaningful and conclusive. For
example, two subsets, one represented by 10% of all genes
in the set and another by more than 50%, may both
be statistically significantly enriched, but the latter path-
way is represented much more fully, making the omics
observation more interpretable.

For many of the rows in Tables 2, 3, 4 and 5, both the
KEGG and the EcoCyc pathways have a p-value less than
.05. One might therefore argue that our findings have no
practical consequences, because given a p-value cutoff of
.05, there will be no difference in the selected pathways.
We disagree with that sentiment for several reasons. First,
some investigators may use a cutoff different from .05.
Second, for other pathways not shown here, there may be
cases where EcoCyc is below the cutoff and KEGG is not.
Third, users of enrichment analysis do not simply consider
whether a pathway passes the cutoff, they also consider
the magnitude of the p-value as an indication of the sig-
nificance of that pathway to the biological effect being
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studied. When p-values differ by nine orders of magni-
tude, the effect on the user’s perception of the pathway
will be profound. Put another way, researchers perform
statistical corrections to obtain more accurate p-values,
and their analyses would be considered delinquent if such
corrections were omitted.

As just discussed, the main purpose of enrichment anal-
ysis is dimensionality reduction: to winnow the large set
of genes or metabolites observed in an omics experiment
down to a much smaller set of biological pathways or pro-
cesses that are perturbed in that experiment. Yet, as shown
in Figure 1, very large pathway definitions are a direct
impediment to that goal. KEGG map00260 contains 21
different biological processes, ranging from serine degra-
dation to photorespiration to ectoine biosynthesis. If an
enrichment analysis resulted in a favorable p-value for this
pathway, we would not know whether to infer that one
of the 21 processes was perturbed, or if some combina-
tion of the 21 processes were perturbed, or whether the
enrichment score is not meaningful because it resulted
from individual genes from many of those pathways when
in fact none of the pathways was significantly perturbed
on its own. Note that the misleading name of the path-
way (“glycine, serine, and threonine metabolism” may lead
investigators to incorrectly conclude that 3 of the 21
processes are perturbed.

In related work, Mubeen et al. [13] compared the
enrichment results from a set of pathway databases
across three different enrichment methods including
over-representation. For over-representation, they com-
pared three primary databases (KEGG, Reactome [4],
and WikiPathways [14]) and a merged pathway database
(MPath) that they generated from the three primary
databases. They reported differences in the enrichment
(over-representation) analyses for four cancer datasets
from The Cancer Genome Atlas (TCGA) [15]. Differences
in significance levels were found in each paired com-
parison of databases, but the differences were not in a
consistent direction favoring one database over another.
Our results show a consistent difference between EcoCyc
and KEGG.

Marco-Ramell et al. [16] compared a collection of tools
for enrichment analysis and a collection of databases. The
focus in their comparison of databases was number of
metabolites included as well as whether the databases
were being updated. They did not discuss the effect of size
of the pathways in the databases.

Conclusions

We conclude that pathway size can have a significant
impact on the results of enrichment-analysis calculations.
We provided several types of evidence to support this
conclusion: (1) We showed that direct comparisons of
enrichment calculations for sets of significantly expressed
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genes where only the pathway database was allowed to
vary demonstrated that the choice of EcoCyc (or BioCyc
for other organisms) versus KEGG could affect the enrich-
ment p-value by as many as nine orders of magnitude. (2)
We showed that, when holding the enrichment p-value
constant, 1.3-2.0 times as many significantly expressed
genes would be needed to attain that p-value for KEGG
as for EcoCyc. (3) We showed analytically how p-value
depends on pathway size. Thus, smaller, more precise
pathway definitions can lead to more sensitive enrichment
analyses.

We further conclude that pathway size can have a large
impact on the interpretability of enrichment calculations.
When a large pathway is composed of many individual
biological processes, and that pathway receives a strong
p-value, inferring which biological process is perturbed in
the experimental condition of interest, or if any biologi-
cal process is significantly perturbed, is very difficult —
the strong p-value may result from the perturbation of
genes from multiple biological processes where no single
process is strongly perturbed.

Methods

In a usual pathway enrichment analysis, several consider-
ations must be made, such as how to adjust for multiple
comparisons, and whether to consider just enrichment (a
one-tailed statistical test) or both enrichment and deple-
tion (a two-tailed test). Although the hypergeometric test
provides an “exact” p-value, it is commonly considered
statistically conservative and adjustments such as a mid-
range p-value [9] are used instead. Because this study’s
object is comparing results across databases, the simplest,
most analytically tractable test (one-tailed without adjust-
ments for being conservative or multiple comparison) will
be presented.

Comparing enrichment scores across example pathways

We selected four E. coli pathways related to amino acid
synthesis to serve as examples. The pathways, their cor-
responding EcoCyc and KEGG entries, and the sizes of
each are listed in Table 1. The data is taken from EcoCyc
version 23.0 and from KEGG (release 91.0) data down-
loaded on August 14, 2019. Gene counts for EcoCyc were
calculated using the genes-of-pathway lisp function. Gene
counts for KEGG were obtained from each KEGG path-
way’s web info page. All calculations in this section were
performed using EcoCyc’s implementation of the Fisher
Exact test (using the lisp function fisher-exact-pvalue).

Biological inference from enriched pathways

We also conducted an analysis using a fixed p-value
cut-off and determined the minimum number of sig-
nificantly expressed genes required to reach that level
of significance. The p-value significance cutoff for
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over-representation was calculated from the cumulative
hypergeometric distribution and adjusted for the multi-
plicity of pathways in each of the two annotations (EcoCyc
and KEGG). The Benjamini-Hochberg method was used
in this analysis to adjust for multiple comparisons. [10].
The critical subset size was determined by lookup using
R 4.0.3 and tydiverse (Additional file 2). The KEGG anno-
tation for the comparative analysis of critical subset sizes
was obtained from the “gage” Bioconductor package [17].

To obtain a quantitative measure of enrichment which
could be used in direct comparison between different yet
significant outcomes, we fixed a p-value at a significant
threshold and determined the minimum number of genes
from a pathway that would have to be found in a bio-
logical sample in order for that pathway to be considered
enriched. We called this quantity a critical subset size. We
compared the effects of pathways sizes on critical subset
sizes. To that end we enumerated critical subsets for every
pathway in EcoCyc and KEGG.
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