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Abstract

Background: The feed conversion ratio (FCR) is an important productive trait that greatly affects profits in the pig
industry. Elucidating the genetic mechanisms underpinning FCR may promote more efficient improvement of FCR
through artificial selection. In this study, we integrated a genome-wide association study (GWAS) with transcriptome
analyses of different tissues in Yorkshire pigs (YY) with the aim of identifying key genes and signalling pathways
associated with FCR.

Results: A total of 61 significant single nucleotide polymorphisms (SNPs) were detected by GWAS in YY. All of these
SNPs were located on porcine chromosome (SSC) 5, and the covered region was considered a quantitative trait locus
(QTL) region for FCR. Some genes distributed around these significant SNPs were considered as candidates for
regulating FCR, including TPH2, FAR2, IRAK3, YARS2, GRIP1, FRS2, CNOT2 and TRHDE. According to transcriptome analyses
in the hypothalamus, TPH2 exhibits the potential to regulate intestinal motility through serotonergic synapse and
oxytocin signalling pathways. In addition, GRIP1 may be involved in glutamatergic and GABAergic signalling pathways,
which regulate FCR by affecting appetite in pigs. Moreover, GRIP1, FRS2, CNOT2, and TRHDE may regulate metabolism
in various tissues through a thyroid hormone signalling pathway.

Conclusions: Based on the results from GWAS and transcriptome analyses, the TPH2, GRIP1, FRS2, TRHDE, and CNOT2
genes were considered candidate genes for regulating FCR in Yorkshire pigs. These findings improve the
understanding of the genetic mechanisms of FCR and may help optimize the design of breeding schemes.
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Improving the feed conversion ratio (FCR) has become
an imperative for the pig industry [1, 2]. FCR is influ-
enced by many factors, such as metabolism, body com-
position and physical activity. Genetic effects must also
be considered in improving FCR [1, 3, 4]. Artificial selec-
tion can effectively improve FCR, but this progress is
time-consuming and expensive [5]. Therefore, elucidat-
ing the genetic mechanisms underpinning FCR and
identifying genes that are significantly associated with
FCR could enhance the efficiency of FCR improvement.
Genome-wide association analysis (GWAS) has previ-

ously been demonstrated as an effective method for de-
tecting genetic variants and candidate genes associated
with FCR [6–8]. Overall, a large number of single-
nucleotide polymorphisms (SNPs) located on SSC 1, SSC
4, SSC 6, SSC 7 and SSC X have been identified as signifi-
cantly associated with FCR. Additionally, some QTL re-
gions and candidate genes have been reported to be
associated with FCR through GWAS [9–12]. The marker
WU_10.2_7_18377044 on SSC 7 has been reported to ex-
plain approximately 2.37% of phenotypic variance in re-
sidual feed intake (RFI), and DRGA0001676 on SSC 1
explained 3.22 and 5.46% of phenotypic variance in FCR
and RFI, respectively [6]. Furthermore, QTL regions for
RFI were detected on SSCs 1, 8, 9, 13 and 18 [8]. In
addition, MC4R, XIRP2, TTC29, SOGA1, GRK5, PROX1,
NMBR, KCTD16, ASGR1, PRKCQ, PITRM1 and TIAM1
have been reported as candidate genes for FCR in pigs by
GWAS [9–12].
Transcriptome sequencing has also been comprehen-

sively used to identify candidate genes and to elucidate
the molecular mechanisms of FCR. The pathways of
hormonal regulation, Notch signalling, and Wnt signal-
ling in pituitary tissue have been reported to regulate
FCR in pigs [13]. Additionally, VA metabolism, which
can regulate fatty acid and steroid hormone metabolism
in the liver tissue of pigs, has been found to be associ-
ated with FCR [14]. Moreover, in skeletal muscle tissue,
genes involved in mitochondrial energy metabolism were
downregulated, and genes involved in skeletal muscle
differentiation and proliferation were upregulated, in the
skeletal muscle tissues of pigs with low FCR [15]. Gradi-
ent boosting machine learning applied to muscle tran-
scriptomes indicated that FKBP5, MUM1, AKAP12,
FYN, TMED3, PHKB, TGF, SOCS6, ILR4, and FRAS1
were related to FCR in pigs [16]. Transcriptomes in cae-
cal and colonic mucosal tissues indicated that energy
and lipid metabolism can affected FCR and that
GUCA2A, GUCA2B, HSP70.2, NOS2, PCK1, SLCs, and
CYPs were negatively associated with FCR in pigs [17].
Although these studies have successfully identified some
important signalling pathways and candidate genes in
FCR, much remains to be clarified about the molecular
mechanisms of FCR.

To our knowledge, few studies have integrated the results
of GWAS and transcriptome analyses to identify the major
genes and crucial signalling pathways of FCR in pigs. Thus,
the objectives of our study were to identify QTLs and to
unravel the genetic architecture of FCR in Yorkshire pigs
by performing both GWAS and transcriptome analyses in
pig tissues that are related to the progress of FCR. This in-
tegrated analysis may help to enhance the power and effi-
ciency of identifying candidate genes and key signalling
pathways of FCR in Yorkshire pigs.

Results
Genome-wide association analyses for FCR
In total, 61 SNPs reached the significance threshold of
5.796, which was calculated as the cut-off after Bonfer-
roni correction (= − log10(0.05/31326)) (Fig. 1) [18]. All
the significantly associated SNPs (61 SNPs) were located
on SSC5. Among these SNPs, most (54 SNPs) are lo-
cated within the region of 36.1–44.3Mb on SSC5, while
5 SNPs are located within the region of 47.1–47.8Mb
and 2 SNPs are located within the region of 33.4 ~ 34.5
Mb.

LD block, associated region analysis and candidate genes
identified for FCR
Several linkage disequilibrium (LD) blocks were detected
in the regions where the 61 significantly associated SNPs
were located: 3 LD blocks were detected in the region of
33.4–34.5Mb on SSC5; 3 LD blocks were detected in
the region of 36.1–44.3Mb on SSC5, and 1 LD block
was detected in the region of 47.1–47.8Mb on SSC5
(Fig. 2). The 33.4–34.5Mb, 36.1–44.3Mb, and 47.1–
47.8Mb regions on SSC5 maps in the Sscrofa 10.2 gen-
ome assembly were realigned to 30.2–31.3Mb, 33.6–
41.08Mb, 43.8–44.5Mb on SSC5 in the Sscrofa 11.1
genome assembly by NCBI Remap. Then, PigQTLdb
[19] was used to identify QTLs in these regions, and the
results showed that these regions contained QTLs regu-
lating the traits of days to 110 kg, feed intake, average
daily gain, body weight, loin percentage, intramuscular
fat content, average backfat thickness, etc. (Table S1).
Feed intake and growth traits are tightly related to the
performance FCR. Thus, these regions were also consid-
ered crucial QTL regions associated with FCR.
All detailed information on the significantly associated

SNPs identified by GWAS and the putative candidate
genes in this QTL region is shown in Table S2. Among
the 61 identified significantly associated SNPs, 26 SNPs
were located within different genes. These significant
SNPs, together with their corresponding genes, are
shown in Table 1. Several other genes located in the 0.5
Mb genome region flanking the significantly associated
SNPs were also considered candidate genes, including
fibroblast growth factor receptor substrate 2 (FRS2),
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tryptophan hydroxylase 2 (TPH2), thyrotropin releasing
hormone degrading enzyme (TRHDE), GLI pathogenesis
related 1 (GLIPR1) and fatty acyl-CoA reductase 2
(FAR2). The ISwine platform [20] was also used to iden-
tify candidate genes for FCR in pigs. All the candidate
genes identified by the ISwine platform are shown in
Table S3. Based on the results from ISwine, the TRHDE,
TPH2, FAR2, FRS2, and GLIPR1 genes were confirmed
as candidate genes for regulating FCR in Yorkshire pigs.

Integration of GWAS and transcriptome analyses
To clarify the genetic mechanisms involved in the regu-
lation of FCR in pigs, we integrated the GWAS results
with previously published FCR transcriptome data by
using DAVID [21]. The discovered signalling pathways
and possible major genes are shown in Fig. 3. A muta-
tion in the TPH2 gene may influence the expression of
the neurotransmitter serotonin (5-HT), which mediates
colonic motility by the secretion of hypothalamic oxyto-
cin (Fig. 3a, Table 2). In addition, a mutation in the
GRIP1 gene may influence the aggregation of GABA and
glutamate, which mediates appetite in pigs (Fig. 3cc,

Table 2). Notably, several genes involved in the regula-
tion of thyroid hormone signalling, namely, GRIP1,
FRS2, CNOT2, and TRHDE, were significantly differen-
tially expressed in pigs with high or low FCR. The thy-
roid hormone signalling pathway participates in the
regulation of metabolism in various tissues (Fig. 3b,
Table 2). All detailed information on the differentially
expressed genes identified by RNA-seq in different tis-
sues is shown in Table S5, S6, S7 and S8.

Discussion
QTLs, LD blocks and candidate genes for FCR
Feed efficiency (FE) is an important economic trait that
greatly affects the economic profit of the breeding indus-
try. The identification of major genes regulating FE may
help to enhance the efficiency of improving FE through
molecular breeding technology. However, only a few
candidate genes have been identified due to the difficulty
of analysing ratio traits and to sample size limitation. In
the current study, we implemented a genome-wide asso-
ciation analysis for FCR in a large Yorkshire population.
Our analyses identified a series of novel significant SNPs

Fig. 1 Manhattan plot of genome-wide associated analysis studies for FCR. The solid line indicates a Bonferroni corrected p-value = 5.796

Fig. 2 Linkage disequilibrium block on chromosome 5. Markers in the block are shown in bold. a Linkage disequilibrium block detected in the
regions from 33.4 to 34.5 Mb on SSC5, b Linkage disequilibrium block detected in the regions from 36.1 to 44.3 Mb on SSC5, c Linkage
disequilibrium block detected in the regions from 47.1 to 47.8 Mb on SSC5. SNPs in red boxes are significantly associated with FCR
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located in the 33.4–34.5Mb, 36.1–44.3Mb, and 47.1–
47.8Mb regions on SSC5. LD analysis showed that these
regions are highly linked, and many QTLs related to feed
intake and growth traits are located in these regions.
Logically, these regions were considered candidate QTL
regions for FCR. Genes located within 1Mb of the signifi-
cantly associated SNPs, including fatty acyl CoA reductase
2 (FAR2), interleukin-1 receptor-associated kinase-3
(IRAK3), and tyrosyl-tRNA synthetase 2 (YARS2), were in-
ferred as candidate genes regulating FCR in our study.
The FAR2 gene spans 44.38Mb to 44.55Mb on SSC5. It

is a key gene for fatty acid β-oxidation, acetyl-CoA trans-
location, peroxisome biogenesis, and the glyoxylate cycle
[22]. Moreover, FAR2 was associated with insulin resist-
ance [23]. Previous studies reported that lipid metabolism
can explain the variation in FCR [14, 24, 25]. Therefore,
the FAR2 gene might be a candidate gene for FCR.
IRAK3 belongs to the serine-threonine kinases family

and is negatively correlated with the mitochondrial oxida-
tive stress marker SOD2. It has been reported that high
IRAK3 and low SOD2 cause weight loss [26, 27]. Previous
studies reported that decreased IRAK3 was associated with
increased mitochondrial reactive oxygen species (ROS)
[28], and other studies have reported that ROS can de-
crease muscle mass by regulating mitochondrial biogen-
esis and the expression of antioxidant genes [29, 30].
Mitochondrial energy metabolism is a factor potentially
affecting the feed conversion ratio in pigs [15]. Therefore,
IRAK3 is worthy of further functional investigation.
YARS2 is a key factor that binds tyrosine to its corre-

sponding mt-tRNA for the synthesis of mitochondrial
proteins. Mutations in YARS2 can lead to mitochondrial
respiratory chain complex deficiencies and are related to
mitochondrial myopathy [31, 32]. YARS2 has not been
functionally characterized in pigs. However, since its

Table 1 Summary of within-gene significant SNPs for FCR trait

SNP ID bp (SSC10.2) bp (SSC11.1) Pvalue Genes

rs80841312 36,496,185 33,897,913 4.39E-07 CCT2

rs80786392 36,510,853 33,912,700 4.51E-07 BEST3 CCT2

rs80837106 36,589,679 33,991,092 4.51E-07 CCT2

rs80845463 36,621,274 34,022,700 4.51E-07 CCT2

rs81383707 36,721,314 34,122,773 4.54E-07 MYRFL

rs80964888 36,532,511 33,934,311 4.72E-07 BEST3 CCT2

rs332237334 36,353,885 33,842,149 4.79E-07 FRS2

rs81344478 36,357,722 33,838,344 4.79E-07 FRS2

rs80850598 37,318,776 34,747,588 4.93E-07 PTPRB

rs81287625 36,826,851 34,177,721 5.25E-07 MYRFL

rs345043801 36,469,745 33,871,482 6.03E-07 CCT2

rs80785563 36,544,839 33,946,621 6.03E-07 BEST3 CCT2

rs80989707 36,568,996 33,970,407 6.35E-07 CCT2

rs339913443 38,629,120 35,929,672 6.61E-07 TPH2

rs80835055 36,838,800 34,189,654 7.00E-07 MYRFL

rs81000718 37,249,647 34,677,764 7.01E-07 PTPRB

rs80892229 37,369,531 34,769,398 7.44E-07 PTPRB

rs323754097 39,138,147 36,346,640 9.75E-07 TRHDE

rs81383732 38,337,110 35,634,440 1.01E-06 ZFC3H1

rs80811321 34,095,144 30,820,701 1.26E-06 GRIP1

rs81323542 47,441,081 44,096,325 1.37E-06 TMTC1

rs81212454 42,358,084 38,794,710 1.46E-06 GLIPR1 KRR1

rs81383891 42,378,400 38,815,027 1.46E-06 GLIPR1 KRR1

rs81331039 47,398,882 44,127,767 1.49E-06 TMTC1

rs81331835 47,404,818 44,121,830 1.49E-06 TMTC1

rs81383984 47,782,626 44,464,360 1.58E-06 FAR2

Fig. 3 Theoretical models of the functional actions of candidate genes in modulating the feed conversion ratio. a TPH2 regulates intestinal
motility by serotonergic synapses and the oxytocin signalling pathway in the hypothalamus. TPH2 produces 5-HT, and 5-HT transmits signals to
oxytocin neurons through serotonergic synapses and subsequently regulates intestinal peristalsis under the action of the oxytocin signalling
pathway. b GRIP1, FRS2, CNOT2, and TRHDE genes regulate metabolism in various tissues by the thyroid hormone signalling pathway. First, GRIP1,
FRS2, CNOT2 and TRHDE regulate the thyroid signalling pathway in the hypothalamus, and subsequently, the thyroid signalling pathway
participates in regulating the metabolism in skeletal muscle, liver and fat. c GRIP1 regulates appetite by glutamatergic and GABAergic signalling
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function involves mitochondrial protein synthesis and
mitochondrial respiration, it might be an important can-
didate gene for FCR in pigs.

GRIP1 controls appetite through glutamatergic and
GABAergic signalling
In this study, we integrated GWAS results with tran-
scriptome analyses, aiming at identify candidate genes
and biological pathways associated with FCR in pigs.
Feed intake is a major physiological process associated
with variations in FCR [33–35]. GABA (γ-amino-butyric
acid) and glutamate, which are expressed in hypothal-
amic neurons, can promote feeding and weight gain,
while GRIP1 can interact with the C termini of AMPA
receptors and cluster at both glutamatergic and
GABAergic synapses [36–38]. In addition, genes associ-
ated with GABAergic synapse (GNG13, ADCY1, ADCY7,
ADCY8, GABRB2, GABRD, GABRA5, GABRE, GABRQ,
GABBR2, GAD2, HAP1, PRKCG) and glutamatergic syn-
apse (DLGAP1, SHANK3, ADCY1, ADCY7,ADCY8,
GNG13, GRM4, HOMER2, KCNJ3, PRKCG, SLC17A6,
SLC17A7) were differentially expressed in hypothalamic
tissue in pigs with high or low FCR performance [39].
Therefore, GRIP1 may control appetite through gluta-
matergic (Fig. 4a) and GABAergic signalling pathways
(Fig. 4b). Moreover, two informative SNPs in GRIP1
were identified to be significantly associated with backfat
thickness in pigs [40]. Therefore, GRIP1 may be an im-
portant candidate gene for FCR in pigs.

TPH2 may affect 5-HT secretion, thereby mediating
intestinal motility through the hypothalamic oxytocin
signalling pathway
Brain-gut interactions may be an important factor in
FCR in pigs [41]. The central neurotransmitter serotonin
(5-hydroxytryptamine, 5-HT), produced by tryptophan
hydroxylase 2 (Tph2), mediates colonic motility by

regulating oxytocin (OT) synthesis in the hypothalamus
[42, 43]. In addition, knockout of TPH2 in mice resulted
in depletion of 5-HT in the brain, and the mice showed
increased food consumption [44]. Therefore, TPH2 can
regulate appetite and intestinal motility by affecting the
secretion of 5-HT. In our results, a significant SNP
(rs339913443) was found to be located in the TPH2
gene. Moreover, transcriptome sequencing in the hypo-
thalamus of pigs with extremely high or low feed effi-
ciency revealed that genes related to serotonergic
synapse (GNG13, ALOX5, GABRB2, KCNN2, KCND2,
KCNJ3, PTGS1, PRKCG) (Fig. 5a) and the oxytocin sig-
nalling pathway (ADCY1, ADCY7, ADCY8, CACNG5,
CAMK4, CDKN1A, CACNB4, CAMKK2, NPR1, OXT,
KCNJ3, PRKCG) (Fig. 5b) were differentially expressed
[39]. RNA-seq in the caecal and colonic mucosa revealed
that NOS2, which is related to gastrointestinal peristalsis,
was a candidate gene for FCR [17]. Therefore, the SNPs
within TPH2 may change the expression of this gene,
thereby affecting the secretion of 5-HT. Sequentially, 5-
HT regulates intestinal motility through the oxytocin
signalling pathway in the hypothalamus.

GRIP1, FRS2, CNOT2, TRHDE may affect metabolic
processes
Thyroid hormone (TH), which is regulated by thyrotropin
releasing hormone (TRH) and thyroid stimulating hor-
mone (TSH), is in turn involved in regulating many meta-
bolic processes essential for growth and development,
including basal metabolic rate, facultative thermogenesis,
skeletal muscle growth, regulation of body weight, and lipid
metabolism [45–47]. Thyroid hormone receptors (TRs)
mediate the biological effects of thyroid hormone (T3)
[48]. In our study, many candidate genes participated in
regulating TH signalling, including GRIP1, FRS2, CNOT2,
and TRHDE. Among them, GRIP1 acts as a coactivator for
TR, strengthening the combination of TR and TH [49, 50].

Table 2 Summary of identified pathways, DEGs and genes with significant SNPs

SNP ID Candidate
Gene

Pathway Differentially expressed genes

Pathway name P-Value FDR

rs80811321 GRIP1 GABAergic synapse 1.1E-6 2.4E-5 GNG13,ADCY1,GABRB2, ADCY8, ADCY7,GABRD,GABRE,GABRQ,GABBR2,
GAD2,HAP1,PRKCG

Glutamatergic synapse 4.0E-7 1.3E-5 GNG13,DLGAP1,SHANK3,
ADCY1,ADCY8,ADCY7,GRM4,
HOMER2,KCNJ3,PRKCG,SLC17A6,SLC17A7

rs339913443 TPH2 Serotonergic synapse 1.6E-3 1.2E-2 ALOX5,GABRB2,KCNN2,KCND2,KCNJ3,PTGS1,PRKCG

Oxytocin signaling pathway 1.2E-4 1.6E-3 ADCY1,ADCY8,ADCY7,CACNG5,CAMK4,CAMKK2,CDKN1A,NPR1,OXT,
KCNJ3,PRKCG,CACNB4,

rs80811321
rs332237334
rs81344478
rs323754097

GRIP1
FRS2
FRS2
TRHDE
CNOT2

Thyroid hormone synthesis 1.8E-2 8.0E-2 ADCY1,ADCY8,ADCY7,GPX3,PRKCG,TSHR,

Thyroid hormone signaling
pathway

3.4E-1 6.7E-1 TRH,PIK3CG,PLCD4,PRKCG,

Autoimmune thyroid disease 8.1E-1 8.2E-1 SLA-DMB,SLA-DMA

*CNOT2: There were no significant SNP located within the gene, but there were significant SNPs located in the upstream and downstream of the gene
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FRS2 is involved in FGF21-AMPK signalling and can be in-
duced to accelerate energy metabolism through thyroid
hormone [51]. CNOT2 is an important regulator of energy
metabolism, cellular stress and fatty acid metabolism in
skeletal muscles. The heterozygous intragenic deletion of
CNOT2 displayed disordered phenotypes including learn-
ing disabilities, developmental delays, and hypothyroidism
[52, 53]. TRHDE is an extracellular peptidase that specific-
ally degrades TRH to regulate appetite and metabolism

[54, 55]. SNP association analysis in a new Ujumqin Sheep
population showed that the TRHDE gene was significantly
associated with body weight [56]. Moreover, transcriptome
sequencing in the hypothalamus of pigs with high or low
FCR revealed that genes involved in the thyroid hormone
signalling pathway (TRH, PIK3CG, PLCD4, PRKCG), thy-
roid hormone synthesis (ADCY1, ADCY7, ADCY8, GPX3,
PRKCG, TSHR) and autoimmune thyroid disease (SLA-
DMB, SLA-DMA) were differentially expressed [39].

Fig. 4 GRIP1 regulates appetite through glutamatergic synapses (a) and GABAergic synapses (b)
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Therefore, differences of FCR in pigs were mediated by the
thyroid signalling pathway in the hypothalamus, leading to
different phenotypes and differential gene expression in
muscle, fat, liver and others tissues.
Overall, this study used GWAS to discover SNPs signifi-

cantly associated with FCR. None of the significant sites
changed the corresponding protein coding, but this study
found that the downstream genes in the pathway were sig-
nificantly differentially expressed in the high-FE and low-

FE groups. These results indicate that the SNPs found in
this study may play a regulatory role. However, this possi-
bility needs to be verified with other omics data in the fu-
ture. To further confirm the causal genes, integration
analyses of GWAS and eQTLs should be implemented.

Conclusions
The present study detected a novel QTL region on SSC5
that is significantly associated with FCR in Yorkshire

Fig. 5 5-HT, produced by TPH2, regulates the serotonergic synapse pathway (a) and oxytocin signalling pathway (b) in the hypothalamus
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pigs. An integrative analysis of the GWAS results and
transcriptome results in different tissues has been used
to identify candidate genes and signalling pathways that
play a decisive role in this trait. GRIP1, TPH2, FRS2,
CNOT2, and TRHDE were suggested to be the most
likely candidate genes for FCR. These findings offer a
better understanding of the molecular mechanisms regu-
lating FCR in pigs.

Materials and methods
Phenotype recordings
In this study, all FCRs (feed intake/weight gain) were
measured at intervals of 30 to 100 kg in Yorkshire pigs
by a pig performance testing system in a national pig nu-
cleus herd. In total, FCR recordings were collected from
14,401 pigs. All of the phenotypic recordings were mea-
sured between 2017 and 2020. Pedigrees can be traced
back for ten generations. In total, 19,811 pigs are in-
cluded in the pedigree. Genomic selection was started
later in 2018, and since then ear tissues were collected
following a criteria that at least 2 males and 2 females in
each litter should be collected. As a result, 3672 YY pigs
contained both FCR recordings and ear tissue samples.
All experimental protocols were approved by the Ethics
Committee of Huazhong Agricultural University
(HZAUMU2013–0005).

Genotypes
The SNP markers were genotyped in 3672 YY pigs by
using an Illumina PorcineSNP60 Genotyping BeadChip.
SNPs were mapped to pig chromosomes using Sscrofa
genome build 10.2 [57]. Quality controls were applied as
follows: Samples with call rates lower than 90% were re-
moved, SNPs with call rates smaller than 90% were re-
moved, and SNPs with minor allele frequencies smaller
than 0.05 were filtered out; SNPs that deviated strongly
from Hardy-Weinberg equilibrium within breeds (p <
10− 7) were also excluded. After quality control, 3672 YY
pigs and 31,236 SNPs distributed over the 18 porcine
autosomes were used for genome-wide association
analysis.

Statistical model for the prediction of genomic breeding
values
The single-step GBLUP (ssGBLUP) method was used to
predict genomic breeding values (GEBVs) [58, 59]:

y ¼ Xbþ Zuþ e ð1Þ

where y contained phenotypic recordings for FCR; Xb
indicated the fixed effects, including unit-year-month ef-
fect, sex effect and covariate for the starting weight; u
was random additive effect and Z was the incidence
matrix to relate the additive effects to the phenotypic

recordings; and e was a vector of residual effects. It was
assumed that the random additive effects followed a nor-
mal distribution, as follows: u � Nð0;Hσ2uÞ; where H
was the combined pedigree and genomic information re-
lationship matrix [58].
To remove the contribution of information from rela-

tives, de-regressed estimated breeding values (DEBVs)
were used as the response variable in GWAS analysis
[60], which can be calculated by weighting EBVs [61].
The weighting factor (wi) for animal i can be calculated
as follows:

wi ¼ 1−h2

cþ 1−r2i
� �

= r2i
� �� �� �

h2
ð2Þ

where h2 is the heritability of the trait, r2i is the reliability
of EBV of the ith animal, and c is the proportion of gen-
etic variation that could not be explained by the genetic
information. In this study, c was assumed to be constant
at 0.5 [62].

Genome-wide association studies
The genome-wide association study was performed on
3672 genotyped pigs by using the MLMA (mixed linear
model-based association analysis) option in GCTA soft-
ware [63]. All SNPs were used for the association ana-
lysis. The mixed linear model was:

y ¼ 1μþ xbþ wgþ e ð3Þ
where y was the vector of DEBVs for FCR in the geno-
typed Yorkshire pigs; μ was the overall mean and 1 was
a vector of ones; x was a vector of SNP genotypes, with
entries 0, 1, 2 for genotypes AA, AB and BB, respect-
ively; b was the fixed additive genetic effect of analyzed
SNP; and g was a vector of random polygenic effects
and w was the incidence matrix relating the DEBVs to
the corresponding random polygenic effects; It was as-
sumed that g followed a normal distribution with mean
of 0 and variance of Aσ2

g , where A was the pedigree-
based additive relationship matrix. e is a vector of re-
sidual effects, following a normal distribution as e � N ð
0;Dσ2eÞ , where D is a diagonal matrix with elements dii

¼ ð1−r2DEBV Þ=r2DEBV and r2DEBV is the reliability of the
DEBVs. A significant test of SNP effects was imple-
mented by a two-sided t-test. Bonferroni corrections
were set for the genome-wide significance threshold
(−log10[0.05/number of SNPs] = 5.796).

Detection of LD block and QTL analysis
Significant SNPs located within 1Mb from each other
were considered to belong to the same QTL region. De-
tection of LD blocks was performed in the chromosomal
regions containing the identified significantly associated
SNPs by Haploview software [64]. NCBI Remap was
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used to transfer the significant regions on SSC5 aligned
to the Sscrofa 10.2 genome assembly to those aligned to
the Sscrofa 11.1 genome assembly, since the original
genomic information was mapped to SusScrofa 10.2 ref-
erence genome by the gene-sequenceing company.
Then, QTLs located in these significant regions were
identified by searching a pig QTL database (pigQTLdb,
https://www.animalgenome.org/cgi-bin/QTLdb/SS/
index).

Candidate gene search and integrated analysis with
transcriptome data
Genes that are located in the identified QTL region and
the 0.5Mb flanking these loci were considered candidate
genes for regulating FCR [8, 65]. Then we used an omics
knowledgebase, ISwine (http://iswine.iomics.pro), to
search for candidate genes based on genome, transcrip-
tome, quantitative traits and annotation information
[20]. Transcriptome analyses in different tissues (muscle,
liver, fat, hypothalamus) collected among 238 Yorkshire
boars that with high or low FCR performances. These
Yorkshire boars were castrated and fed in the fattening
farms grown from 30 to 90 kg and the sample collection
were performed in previous studies in our laboratory
[14, 24, 39, 66]. Three high-FE pigs and three low-FE
pigs that significantly differed were selected (p < 0.05) for
RNA-seq. The detail information about the pigs used in
RNA-seq was shown in Table S4. Total RNA was ex-
tracted from frozen muscle, fat, liver and hypothalamic
tissues by using TRIzol reagent (Invitrogen, USA) and
sent to Genergy Biotechnology (Shanghai, China) for li-
brary construction. Six RNA-seq libraries of muscle, fat,
and liver tissues were constructed and applied for RNA-
seq. However, one of the high-FE samples failed to con-
struct a library in hypothalamic tissues, and five RNA-
seq libraries (two high-FE libraries and three low-FE li-
braries) in hypothalamic tissues were used for RNA-seq.
Salmon (version 1.4.0) was used to align sequencing
reads to the pig reference genome Sscrofa 11.1 and for
wicked-fast transcript quantification [67]. The negative
binomial generalized liner models of DEseq2 was used
to identify differentially expressed genes according to
|log2FoldChange| (|log2FC|) ≥ 1 and p-value < 0.05. Sub-
sequently, the genes identified by ISwine and GWAS
were integrated and analysed with the transcriptome re-
sults. Database for Annotation, Visualization and Inte-
grated Discovery (DAVID) software (https://david.
ncifcrf.gov/) was used for functional classification and
pathway analysis for all the identified genes [68]. The
differentially expressed genes identified by RNA-seq and
the genes located in the QTL region associated with
FCR were input into the DAVID software to found the
genes located in the same signaling pathway.
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