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Abstract

Background: The key-ancestor approach has been frequently applied to prioritize individuals for whole-genome
sequencing based on their marginal genetic contribution to current populations. Using this approach, we selected
70 key ancestors from two lines of the Swiss Large White breed that have been selected divergently for fertility and
fattening traits and sequenced their genomes with short paired-end reads.

Results: Using pedigree records, we estimated the effective population size of the dam and sire line to 72 and 44,
respectively. In order to assess sequence variation in both lines, we sequenced the genomes of 70 boars at an
average coverage of 16.69-fold. The boars explained 87.95 and 95.35% of the genetic diversity of the breeding
populations of the dam and sire line, respectively. Reference-guided variant discovery using the GATK revealed 26,
862,369 polymorphic sites. Principal component, admixture and fixation index (Fst) analyses indicated considerable
genetic differentiation between the lines. Genomic inbreeding quantified using runs of homozygosity was higher in
the sire than dam line (0.28 vs 0.26). Using two complementary approaches, we detected 51 signatures of selection.
However, only six signatures of selection overlapped between both lines. We used the sequenced haplotypes of
the 70 key ancestors as a reference panel to call 22,618,811 genotypes in 175 pigs that had been sequenced at very
low coverage (1.11-fold) using the GLIMPSE software. The genotype concordance, non-reference sensitivity and
non-reference discrepancy between thus inferred and lllumina PorcineSNP60 BeadChip-called genotypes was 97.60,
98.73 and 3.24%, respectively. The low-pass sequencing-derived genomic relationship coefficients were highly
correlated (r>0.99) with those obtained from microarray genotyping.

Conclusions: We assessed genetic diversity within and between two lines of the Swiss Large White pig breed. Our
analyses revealed considerable differentiation, even though the split into two populations occurred only few
generations ago. The sequenced haplotypes of the key ancestor animals enabled us to implement genotyping by
low-pass sequencing which offers an intriguing cost-effective approach to increase the variant density over current
array-based genotyping by more than 350-fold.

Keywords: Swiss large white, Genetic diversity, Low-pass sequencing, Genotyping by sequencing, Key ancestor
animals

* Correspondence: adela.noskova@usys.ethz.ch
' Animal Genomics, ETH Ziirich, Eschikon 27, 8315 Lindau, Switzerland
Full list of author information is available at the end of the article

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-021-07610-5&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:adela.noskova@usys.ethz.ch

Noskova et al. BMC Genomics (2021) 22:290

Background

Swine production follows the classical breeding pyramid.
Genetic gain is generated in nucleus herds and transmit-
ted via the multiplier to the production unit. Swiss pig
production relies on maternal and paternal Swiss Large
White (SLW) lines at the top level of the breeding pyra-
mid. For decades, the SLW breed has been maintained
as a universal breed, selected for production and fertility
traits. In 2002, the population was divided into sire and
dam lines that have been divergently selected for fatten-
ing and reproduction since then. Approximately 32.5
and 30% of the genes of 2.5 million fattening pigs
slaughtered in 2020 in Switzerland originate from the
dam and sire line, respectively [1]. Both lines are main-
tained in purebred nucleus herds. However, little is
known about the genetic diversity within the lines.

The SLW breeding boars are selected based on
genome-based breeding values that are predicted using
genotypes obtained with a customized version of the
[llumina PorcineSNP60 BeadChip. Apart from a small
number of putatively causal variants that are included in
the custom part, the content of the currently used
microarray was designed in a way that it is useful for
mainstream breeds [2]. However, the genetic constitu-
tion of the SLW breed beyond the microarray-derived
SNP remains largely unknown. The sequencing of key
ancestor animals has been proposed as a cost-efficient
way to assess sequence variation within a population.
The genomes of key ancestor individuals maximally rep-
resent the genetic diversity of the target population [3,
4]. Due to the use of individual boars in artificial insem-
ination and intense selection in nucleus herds, the effect-
ive population size of most pig breeding populations is
low. Thus, most common polymorphic sites segregating
in the population can be traced back to the genomes of
important contributors to the current population [5, 6].
The key ancestor approach was frequently applied to
identify the most important contributors to current cat-
tle breeding populations [6]. Recently it was also used to
prioritize animals for sequencing in commercial pig
breeding lines [7].

The availability of sequence variant genotypes from
key ancestor animals enables imputing sequence-level
genotypes for animals that had been genotyped at lower
density [8-10]. In livestock populations that are rou-
tinely genotyped using 60 K genotyping arrays, sequence
variant genotypes are typically imputed using stepwise
imputation [11]. In a first step, 60 K genotypes are im-
puted to higher density (e.g., 700 K) using animals that
have been genotyped with high-density genotyping ar-
rays. In a second step, the partially imputed high-density
genotypes are imputed to the sequence level based on a
sequenced reference panel. The accuracy of imputing 60
K genotypes directly to the sequence level is low,
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particularly for rare variants, rendering most of them
uninformative for downstream analyses such as genomic
prediction and association testing [12, 13]. Reference-
guided variant phasing and imputation from low-pass se-
quencing data offers an intriguing alternative approach
to the two-step imputation approach in pedigreed popu-
lations [14]. This approach utilises a sequenced haplo-
type reference panel that represents the diversity of the
target population. Sequence variant genotypes of animals
sequenced at very shallow coverage are then inferred
conditional on the observed haplotypes of the reference
panel. This method is particularly useful in species for
which dense microarray-derived genotypes are not avail-
able. Recent investigations [8, 15, 16] suggest that a se-
quencing coverage less than 1-fold is sufficient to
accurately infer genotypes at known loci - provided an
informative haplotype reference panel is available.

Here we obtain whole-genome sequencing data from
key ancestor animals to characterize genetic diversity,
population structure, and signatures of selection in two
divergently selected commercial pig breeds. Using the
haplotypes of the key ancestor animals as a reference
panel, we accurately genotype more than 22 million vari-
ants in animals that have been sequenced at low
coverage.

Results

Using pedigree records, the average inbreeding coeffi-
cients of the active breeding animals of the sire and dam
line were 0.06 + 0.02 and 0.05 £ 0.01, respectively. Based
on these values and the inbreeding coefficients of the
parents, we estimated the effective population size of the
sire and dam line of the Swiss Large White (SLW) breed
to 44 and 72, respectively. In order to assess sequence
variation within the two lines, we prioritized 70 boars
for whole-genome sequencing based on their marginal
genetic contributions to the active breeding populations
with a key ancestor approach. Of the 70 boars, 38 and
32 represent the sire and dam line, respectively, explain-
ing 95.35 and 87.95% of the genetic diversity of the ac-
tive breeding populations.

Following quality control (removal of adapter se-
quences, reads and bases of low sequencing quality), be-
tween 81.15 and 377.01 million read pairs (2 x 150 bp)
per sample (mean: 165.55+ 60.32 million read pairs)
were aligned to the SSC11.1 assembly of the porcine
genome. Using reads with high mapping quality (reads
with mapping quality <10 and SAM bitwise flag 1796
were not considered), the average sequencing coverage
of the 70 boars was 16.69 +5.93-fold across all auto-
somes. Raw sequence read data of 70 pigs have been de-
posited at the European Nucleotide Archive (ENA) of
the EMBL at BioProject PRJEB38156 and PRJEB39374.
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A reference-guided multi-sample variant discovery and
genotyping approach yielded genotypes at 28,407,060
sites (22,191,375 biallelic SNP, 4,379,470 biallelic INDE
L, and 1,836,215 others, Table 1). We applied GATK’s
VariantFiltration module for site-level hard filtration
using parameters recommended in the best practice
guidelines [17]. Subsequently, we applied Beagle (version
4.1 [18];) phasing and imputation to improve the geno-
type calls from GATK and to impute sporadically miss-
ing genotypes. Following the imputation, we retained 26,
862,369 variants including 21,592,583 SNP and 5,269,
786 INDEL. The number of polymorphic sites that were
seen in the heterozygous (singletons) and homozygous
(doubletons) state only once was 2,026,088 (7.54%) and
72,100 (0.27%), respectively. To prevent bias resulting
from flawed genotypes in repetitive regions, we excluded
1,710,337 variants for which an excess of sequencing
coverage was evident for downstream analyses. The tran-
sition/transversion (Ti/Tv)-ratio estimated from filtered
and imputed variants was 2.28.

The resulting data were separated into two datasets
containing 23,774,053 and 23,531,919 autosomal variants
detected in 32 and 38 boars from the dam and sire line,
respectively. Of the variants, 1,049,689 and 1,594,775
were fixed for the alternate allele in the dam and sire
line, respectively. On average, we detected 11,119,760 +
176,113 biallelic variants per animal (Fig. 1a), of which 6,
258,456 + 280,127 and 4,861,304 + 135,524 were hetero-
zygous and homozygous for the reference allele, respect-
ively. The average nucleotide diversity (i) across 452,444
overlapping windows (10kb in size with 5kb steps),
spanning 22,840,217 and 22,529,446 biallelic variants, re-
spectively, was 2.81 x 10”2 in the dam and 2.72 x 10~ 2 in
the sire line.
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Comparison between array-called and sequence-called
genotypes

Sixty-eight boars (32 and 36 from the dam and sire line,
respectively) that had average sequencing coverage be-
tween 8.72 and 36.85-fold (average: 16.79-fold) also had
lumina PorcineSNP60 BeadChip-called genotypes.
Using the array-called genotypes at 54,600 autosomal
SNP for which we were able to determine reference and
alternate alleles as a truth set, we calculated genotype
concordance, non-reference sensitivity and non-
reference  discrepancy between array-called and
sequence-called genotypes as proposed by DePristo et al.
[19]. Of the 54,600 SNP, 6376 and 1029 were fixed for
the reference and alternate allele, respectively, and 47,
195 were polymorphic in the array-called genotypes of
the 68 pigs.

Of the 48,224 SNP that were either polymorphic or
fixed for the alternate allele in the array-called geno-
types, 46,009 (95.41%) and 45,951 (95.29%) were also
present in the raw and filtered sequence variants, re-
spectively. 1232 SNP of the Illumina PorcineSNP60
BeadChip complement were missing in the sequenced
set because they were either genotyped as INDEL or
multiallelic sites using GATK and thus excluded from
the comparison due to incompatible alleles. 983 and
1041 SNP were not among the raw and filtered sequence
variants, respectively, although the frequency of the
minor allele was >5% in the array-called genotypes for
most (>80%) of them. It is likely that these variants
could not be matched with the sequence set due to ei-
ther incompatible or ambiguous map coordinates.

Non-reference sensitivity was greater than 99% and
non-reference discrepancy around 1% for the raw geno-
types called by the GATK, suggesting that the high

Table 1 Variants detected in 70 sequenced key ancestor animals

Raw Filtered & imputed Dam line Sire line

Number of animals 70 70 32 38
Sequence coverage1 16.69 (8.72-36.85) 16.69 (8.72-36.85) 18.02 (9.31-36.85) 15.57 (8.72-27.73)
Number of variants

All 28,407,060 26,862,369 24,358,047 24,093,052

Biallelic SNP 22,191,375 21,209,725 19,456,000 19,232,692

Biallelic INDEL 4,379,470 4,339,947 3,960,976 3,928,684

Others? 1,836,215 1,312,697 941,071 931,676
Autosomal variants

All 27,582,843 26,198,587 23,774,053 23,531,919

Biallelic SNP 21,553,323 20,715354 19,015,058 18,808,294

Biallelic INDEL 4,248,742 4,211,012 3,846,008 3,817,622

Others? 1,780,778 1,272,221 912,987 906,003

! estimated from the autosomes
2 this category contains multi-allelic SNP, multi-allelic INDEL, as well as sites that may contain both SNP and INDEL



Noskova et al. BMC Genomics (2021) 22:290

Page 4 of 14

A

3 s

5 1.4 0 e o ® °

£ 112 y ME R

s p—

s 27 ¢ .3‘&«»’0 KR A

£ 11.0 4 & > % “ S .~ 0 oS @

> * %%

S 10.8

Q P’ .

S 10.6 @ Sire

= 104 ¢ Dam

= T T T T T T

10 15 20 25 30 35
Coverage
B

A — ¢

5 oa ’

2 .

é 0.3 - oo

;o2 ’

& o.o "’ ‘&‘

g . e TR 9°

c

£ 1 e ‘ ® <

& 0.1 0‘ 0 o <o

I I I I I I I
-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15
Principal component 1

Fig. 1 Sequencing of key ancestor animals from two pig lines. a Number of polymorphic sites detected in the 70 boars as a function of depth of
coverage based on imputed and filtered non-imputed data (transparency). b Plot of the first two principal components showing the separation
of animals by breed and the relationship between both lines. Blue and orange symbols indicate 38 and 32 boars from the sire and dam
line, respectively

sequencing coverage facilitated accurate variant discov-
ery (Table 2). The concordance between sequence- and
array-called genotypes improved slightly after applying
site-level hard filtration. Beagle phasing and imputation
further increased the concordance and non-reference
sensitivity as well as decreased the non-reference dis-
crepancy of the filtered sequence variant genotypes.

Population structure and genetic diversity

To investigate the population structure, ancestry and
genetic diversity among the 70 sequenced pigs, we per-
formed principal component, admixture and fixation

index (Fgr) analyses. The principal components were ex-
tracted from a genomic relationship matrix constructed
from 23,691,198 autosomal sequence variants that had
minor allele frequency greater than 0.01.

The first principal component of the genomic relation-
ship matrix explained 8.61% of the variation and sepa-
rated the animals by lines (Fig. 1b). The second principal
component explaining 2.68% of the variation revealed
variability within the sire line. Five outlier animals along
the second axis of variation descended from imported
Large White boars.

We performed an admixture analysis using 1,207,189
independent biallelic SNP to assess gene flow between

Table 2 Comparison between sequence- and array-called genotypes at corresponding positions

Dataset Genotype concordance (%) Non-reference sensitivity (%) Non-reference discrepancy (%)
Raw 99.18 99.75 1.1
Filtered 99.19 99.77 1.09
Filtered & imputed 99.82 99.95 0.24
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both lines. As expected, K=2 was the most plausible
number of genetically distinct clusters (Supplementary
Fig. S1). The cross-validation error for K=1, K=2 and
K =3 was 0.561, 0.546 and 0.564, respectively.

In order to investigate if pronounced allele frequency
differences exist between both lines, we performed a
SNP-based genetic differentiation analysis. We observed
multiple 10 kb sliding windows scattered throughout the
genome with Fgt values greater than 0.25, indicating
genetic divergence of both lines (Supplementary Fig. S2).
The average weighted Fsr value across all windows was
0.07.

We estimated runs of homozygosity (ROH) for 19,146,
365 biallelic SNP to investigate genomic inbreeding in
both lines. In total 111,201 ROH with an average length
of 391.28 kb (ranging from 50kb to 11.1 Mb) were de-
tected (Phred-scaled likelihood >70). The ROH con-
tained an average number of 3176 SNP (ranging from 29
to 87,699). The boars from the dam and sire line had
1604 + 133 and 1575+ 91 ROH with an average size of
377,928 and 402,731 bp, respectively. The genomic in-
breeding (Fron, ie., the fraction of the autosomal gen-
ome covered by ROH), was 0.26 + 0.03 and 0.28 + 0.03
for the dam and sire line, respectively. We classified the
ROH into short (50-100kb), medium (100kb - 2 Mb)
and long ROH (above 2Mb) (Fig. 2). Most ROH
belonged to the medium length class. The average Froy
was similar in both lines for small and medium ROH.
However, Froy was higher for long ROH in the sire line.

Variant annotation

In 32 boars from the dam line, we annotated 23,774,053
(19,087,807 SNP; 4,038,170 INDEL) variants, including
2,567,754 variants that were not detected in the sire line.
In 38 boars of the sire line, we annotated 23,531,919 (18,
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881,067 SNP; 4,009,043 INDEL) variants, including 2,
325,620 that were not detected in the dam line. When
compared to 63,832,658 germline variants listed for Sus
scrofa in the Ensembl database (release 101), 5,745,790
(24.17%, dam line) and 5,693,068 (24.19%, sire line) vari-
ants were novel, of which the majority were INDEL and
14.66 and 14.64% were biallelic SNP.

We used the Ensembl Variant Effect Predictor soft-
ware (VEP, release 98 [20];) to predict functional conse-
quences for the sequence variants (Table 3). In total,
2.96% (dam line) and 2.94% (sire line) of the variants
were in exons. Putative impacts of missense variants on
protein function were predicted using the SIFT (sorting
intolerant from tolerant) scoring algorithm [21] as im-
plemented in the VEP software. The scoring algorithm
classified 12,024 and 11,958 amino acid substitutions in
the dam and sire line, respectively, as “deleterious” (SIFT
score < 0.05).

Known trait-associated variants

The catalogue of Mendelian traits in Sus scrofa curated
in the OMIA database (https://omia.org/home/, [22])
contained records of 47 likely causal variants (as of Sep-
tember 2020). However, the genomic coordinates were
available for only 33 likely causal variants. Using func-
tional annotations and sequence coverage analyses, we
detected OMIA-listed variants affecting the KIT, MCIR
and FUT1 genes in the sequenced key ancestor animals
that occurred at alternate allele frequencies between
0.013 and 1 (Supplementary Table S3).

A duplication of the KIT gene and a splice site variant
in intron 17 of the KIT gene are associated with the
dominant white phenotype [23, 24]. Because the geno-
typing of larger structural and copy number variants
from short-read sequencing data is notoriously difficult,

(50 kb = 100 kb), medium (100 kb — 2 Mb) and long (> 2 Mb)

Small Medium Long
50 kb — 100 kb 100 kb — 2 Mb >2 Mb
0.26
0.019 0.09
0.24
T 0.22
0.017
2 0.06
L
0.20 — 1
0.015
0.03
0.18
0.013 Dam Sire 0.16 Sire Dam Sire

Dam

Fig. 2 Genomic inbreeding in the two lines. Froy in dam and sire line, estimated for three groups of ROH classified based on their length: small
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Table 3 Predicted consequences of variants segregating in two
lines. The table shows only the most sever consequence for a
variant

Consequence type (most severe) Dam line Sire line
Splice donor variant 1396 1421
Splice acceptor variant 1126 1096
Stop gained 1615 1604
Frameshift variant 10,912 11,043
Stop lost 595 587
Start lost 423 421
Inframe insertion 990 987
Inframe deletion 1164 1186
Protein altering variant 62 62
Missense variant 70,758 69,983
Splice region variant 22,493 22,148
Incomplete terminal codon variant 12 11
Synonymous variant 76,977 75279
Stop retained variant 149 135
Start retained variant 4 4
Coding sequence variant 98 96
Mature miRNA variant 12 16

5"- UTR variant 168,000 164,866
3" - UTR variant 348,135 344514
Non-coding transcript exon variant 277,002 275,909
Intron variant 12,213,614 12,092,056
Non-coding transcript variant 11 10
Upstream gene variant 878,779 869,207
Downstream gene variant 757,364 750,548
Intergenic variant 8,942,362 8,848,730

we visually inspected the depth of sequencing coverage
at the SSC8 region encompassing KIT. An increase in
coverage between 41.22 and 41.78 Mb confirmed the
presence of a previously reported 560 kb duplication
(DUP1; Supplementary Fig. S3, [25, 26]. The duplication
also encompasses a copy of KIT that carries a splice
donor site variant (SSC8: 41486012G > A, rs345599765)
which manifests in a dominant white phenotype [23, 24].
The splice variant segregated at a frequency of 0.49 and
0.42 in the sire and dam line, respectively. Seven animals
that carried either one or two copies of DUP1 did not
carry the splice site variant and all others were heterozy-
gous carriers. Because this variant is located within the
560 kb duplication, we observed allelic imbalance in het-
erozygous animals.

We detected three OMIA-listed pigmentation-
associated variants in the MCIR gene in the sequenced
pigs. All boars were homozygous carriers of a 2-bp in-
sertion (SSC6: 182,120-182,121bp), that causes a
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frameshift and premature translation termination, which
is associated with recessive white color [27]. All animals
were also homozygous carriers of two missense variants
in the MCIR gene (SSC6: 181461 T>C, ENSS
SCP00000027395.1: p.Thr243Ala and SSC6: 181697A >
G, ENSSSCP00000027395.1: p.Vall64Ala), for which the
reference alleles had been associated with red color in
the Duroc breed [28].

A missense variant (SSC6: 54079560 T > C; ENSS
SCP00000062180.1: p.Thr102Ala; rs335979375) in the
FUT1 gene enables adhesion of enterotoxigenic Escheri-
chia coli F18 fimbriae (ETEC F18) to receptors at the
brush border membranes of the intestinal mucosa [29].
The allele that facilitates ETEC F18 adhesion causes
diarrhea in neonatal and recently weaned piglets. Since a
strong selection against the ETEC F18 susceptible allele
takes place in both SLW lines, we observed the disease-
associated allele only in one boar from the sire line in
the heterozygous state.

Signatures of selection

We detected signatures of past selection using the com-
posite likelihood ratio (CLR) test. Signatures of ongoing
selection were identified by the integrated haplotype
score (iHS) test. For both analyses, we used biallelic
autosomal SNP (Ngum, = 19,015,058, Ny = 18,808,294)
that were grouped into non-overlapping 100 kb win-
dows. For the CLR tests, we considered an empirical
0.5% significance threshold to identify putative signa-
tures of selection (Fig. 3a). The number and length of
candidate selection regions was higher in the dam than
the sire line (14 vs. 7; 38.1 Mb vs. 26.1 Mb). Two regions
on SSC3 (from 122.6 to 124.9 Mb) and SSC13 (from
140.0 to 146.1 Mb) showed evidence of selection in both
lines. For the iHS analyses, we used an empirical 0.1%
significance threshold to detect putative signatures of se-
lection (Fig. 3b). We detected 14 and 16 candidate re-
gions of selection in the dam and sire line, respectively,
encompassing 28.5Mb and 32.5Mb. Four regions on
SSC1 (from 51.1 to 53.7 Mb, from 142.7 to 146.2 Mb),
SSC6 (from 64.9 to 69.3 Mb) and SSC13 (from 148.0 to
150.6 Mb) were shared between both lines.

Considering both statistics, we detected more signa-
tures of selection in the dam than sire line (28 vs. 23).
Only 6 regions, detected by either CLR or iHS, over-
lapped between both lines. A strong signature of selec-
tion was detected in both lines with both methods on
SSC13 between 140 and 152.4 Mb. The candidate region
encompassed 125 genes (Supplementary Table S2), as
well as 63,480 and 55,835 polymorphic sites in the
dam and sire line, respectively, precluding to readily
prioritize candidate genes and variants responsible for
the sweep.
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Reference-based genotyping from low-coverage
sequencing data

In order to investigate if the 70 sequenced key ancestor
animals may serve as a reference panel for genotyping
by low-coverage sequencing, we sequenced the genomes
of 175 pigs (84 from the sire line and 91 from the dam
line) at low coverage using Gencove’s low-pass sequen-
cing solution. The pigs also had Illumina PorcineSNP60
BeadChip-called genotypes. A principal component
(Supplementary Fig. S4) analysis of a genomic relation-
ship matrix constructed from microarray-derived geno-
types showed that the 175 pigs cluster with the 70 key
ancestor animals.

Following quality control, we aligned a median num-
ber of 16,153,314 (between 5,950,534 and 21,168,683)
read pairs (2 x 150 bp) to the porcine reference genome,
achieving an average depth of coverage of 1.11-fold
(from 0.38 to 1.51). On average, 54% of the reference
nucleotides were covered with at least one read. Follow-
ing the reference-guided low-pass sequence variant
genotyping approach (GLIMPSE) proposed by Rubinacci
et al. [8], we utilized the haplotypes of the 70 sequenced
key ancestor animals as a reference panel to call geno-
types at 22,618,811 polymorphic sites in the 175 low-
pass sequenced samples.

We assessed the accuracy of genotyping by low-pass
sequencing based on Illumina PorcineSNP60 BeadChip-
called genotypes at 54,600 SNP, for which we were able
to determine reference and alternate alleles. Of the 54,
600 SNP, 6176 and 965 were fixed for the reference and
alternate allele, respectively, in the 175 pigs according to
the array-called genotypes. Of 48,424 SNP that were ei-
ther polymorphic or fixed for the alternate allele, 46,001
(94.99%) were also among the GLIMPSE-imputed geno-
types. 2423 SNP had microarray-derived genotypes but
were missing in the GLIMPSE-imputed genotypes be-
cause these SNP were missing in the haplotype reference
panel constructed from the key ancestor animals.

The genotype concordance, non-reference sensitivity
and non-reference discrepancy between GLIMPSE-im-
puted and array-called genotypes at 46,001 autosomal
SNP was 97.60, 98.73 and 3.24% in 175 low-pass se-
quenced pigs (Table 4, Fig. 4a). When the sequence vari-
ant calling of the 175 samples was performed together
with the 70 key ancestor animals using the multi-sample
approach implemented in the GATK, all concordance
metrics were considerably worse. Although, Beagle im-
putation improved the genotype calls of GATK for the
low-pass sequenced samples, the genotype concordance
and non-reference sensitivity was lower and non-
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Table 4 Accuracy of sequence variant genotyping in low-coverage (1.11-fold) sequencing data

Variant genotyping approach Genotype concordance

Non-reference sensitivity Non-reference discrepancy

GLIMPSE 97.60
GATK raw 7590
GATK filtered 75.89
GATK filtered & imputed 85.74

98.73 3.24

5235 30.20
5236 30.22
96.56 19.34

reference discrepancy higher using GATK than GLIM
PSE. Using the GLIMPSE approach improved the geno-
type concordance over GATK filtered & Beagle imputed
variants by 13.83% and this improvement is mostly due
to a lower non-reference discrepancy (Table 4).

We constructed genomic relationship matrices
(GRM) from the microarray-derived and GLIMPSE-
imputed genotypes of the 175 sequenced pigs based
on a subset of 44,268 SNP that were detected at
minor allele frequency greater than 0.01 in both data-
sets. Both the off-diagonal and the diagonal elements
of the GRM constructed from array-derived genotypes
had greater variance (sziag =337 x 1073, 0%, =9.34 x
1073 than corresponding elements of the GRM

constructed from low-pass sequencing data (sziag:
3.30 x 1073, 0%, =9.15x 10" %). While the correlation
of the off-diagonal (r=0.99) and diagonal (r=0.96) el-
ements was high between both GRMs, the values of
the diagonal elements were higher for all samples
using the GLIMPSE-imputed than microarray-derived
genotypes (Fig. 4b and c). The average value of the
diagonal elements of the GRM was 1.01+0.06 and
1.05+0.06 for the microarray- and low-pass
sequencing-derived genotypes, respectively. On aver-
age, the 175 boars were homozygous for 65.58 +
1.39% and 67.27 + 1.49% of the 44,268 SNP when the
genotypes were called from the microarray and low-
pass sequencing data, respectively.
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Discussion

We applied a key ancestor animal approach to prioritize
38 and 32 boars that accounted for 95.35 and 87.95% of
the genetic diversity of the SLW sire and dam line, re-
spectively. The contributions of the SLW key ancestor
animals to the current populations are considerably
higher than reported for other populations. For instance,
43 key ancestor animals explained 69% of the genetic di-
versity of the Fleckvieh cattle population [5]. Neu-
ditschko et al. [30] selected 41 and 55 key contributors,
respectively, that explained 78 and 75% of the genetic re-
lationship structure of the Swiss Franches-Montagnes
horse and Australian Holstein-Friesian cattle population.
The effective population size of the SLW sire and dam
line is 44 and 72, respectively, which is less than half the
effective population size of the Fleckvieh cattle and Swiss
Franches-Montagnes horse population [31, 32]. Thus, a
few animals that are selected based on their marginal
genetic contribution to the active breeding population,
account for a large fraction of the population’s haplotype
diversity. It is worth mentioning that approaches other
than the key ancestor animal approach may increase the
haplotype diversity among the sequenced animals [33].
Nevertheless, the catalogue of 26.86 million polymorphic
sites detected from the 70 sequenced boars of our study
contains most alleles that segregate in the SLW popula-
tions, particularly those that occur at not too low fre-
quency. A Ti/Tv-ratio of 2.28 indicates that the variants
were of high quality [34]. In spite of the low effective
population size, the nucleotide diversity (i) was high in
both lines (Tgam = 2.24 x 10™%; migpe = 2.23 x 10™ %), which
agrees well with estimates obtained in other European
pig populations [35-37]. The nucleotide diversity in the
SLW populations is higher than in cattle (1.77 x 10™% —
1.90 x 10™ %) and human (0.98 x 10”3 — 1.41 x 10~ ®) pop-
ulations that have considerably larger current effective
population sizes [38].

Although our sequencing cohort contained more ani-
mals from the sire line, we detected somewhat more
autosomal variants in the dam line (N =23,531,919;
Ngam = 23,774,053). While the average number of het-
erozygous variants detected per animal was higher in the
dam line (N = 6,180,048; Nyarm = 6,351,565), the num-
ber of variants homozygous for the alternate allele was
higher in the sire line (Ngje =4,873,994; Ngam = 4,646,
236). Because the average depth of sequencing was simi-
lar in the sire and dam line, these differences are un-
likely to be due to uneven coverage between the lines.
These differences are likely attributable to a smaller ef-
fective population size and higher genomic inbreeding in
the sire line. The presence of many long ROH (> 2 Mb)
suggests that recent inbreeding is higher in the sire than
the dam line. Small effective population size and increas-
ing inbreeding make both lines susceptible to the
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phenotypic manifestation of recessive alleles. For in-
stance, a recessive sperm defect has recently been dis-
covered in the sire line [39]. The management of an
ever-increasing number of recessive traits is a challenge
to domestic animal breeding populations [40-42]. Effi-
cient and sustainable strategies are required to prevent
the frequent manifestation of recessive diseases in popu-
lations with low effective population size.

Surprisingly, Cai et al. [43] detected fewer variants (be-
tween 20.68 and 22.11 million variants) in a considerably
larger cohort of pigs (between 61 and 89) from three
commercial Danish lines. Considering that Cai et al. also
sequenced key ancestor animals, this difference to our
study suggests higher genetic diversity in SLW. How-
ever, the depth of coverage, sequencing strategy, se-
quence variant genotyping and filtration approaches
have major impacts on detecting polymorphic sites [44,
45]. While the effective depth of coverage realized by
Cai et al. [43] is unknown to us, our samples were se-
quenced at an average depth of coverage greater than
16-fold. This depth of coverage enabled us to accurately
detect both homozygous and heterozygous sites as evi-
denced by high non-reference sensitivity and genotype
concordance at low non-reference discrepancy.

The principal components of a genomic relationship
matrix constructed from whole-genome sequence vari-
ants revealed a separation of the animals by line. While
the differentiation between the two populations might
be less evident if diverse samples or an outgroup were
considered in the analysis [7, 37, 46, 47], an average Fst
value of 0.07 corroborated that both lines diverged con-
siderably. In fact, the average Fst value observed be-
tween two SLW lines is similar to values reported
between distinct European pig breeds [37, 43, 48]. The
differentiation between the sire and dam line might re-
sult from distinct breeding objectives with negative gen-
etic correlations [49]. While the sire line is mainly
selected for meat and fattening traits, the dam line is
mainly selected for reproduction traits. Using CLR and
iHS, we detected 51 candidate signatures of selection, of
which only six overlapped between both lines, suggesting
that different loci are under selection in the sire and
dam line. However, previous research indicates that se-
lection for complex traits, such as production and
reproduction, acts on many loci, thus barely leaves
strong footprints in the genome [50, 51]. Moreover,
both lines diverged only few generations ago, render-
ing limited time for shifts in allele frequency due to
selection. We suspect that the strong differentiation
between the SLW sire and dam line is also a result of
genetic drift [52-54] due to very small effective popu-
lation size and pronounced founder effects resulting
from the unbalanced use of individual boars in artifi-
cial insemination.
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A reference panel of less than 70 sequenced key ances-
tor animals facilitated imputing sequence variant geno-
types at high accuracy and detecting trait-associated
nucleotides using genome-wide association testing in
cattle populations [6, 55]. Sequence variant genotypes
are typically inferred using two-step imputation ap-
proaches. This requires the presence of a representative
number of animals that had been genotyped at high
density [11]. However, routine genotyping in the SLW
populations is performed using a customized Porci-
neSNP60 BeadChip. Genotypes from high-density mi-
croarrays (e.g., 600 K) are not available. Thus, precluding
the accurate imputation of sequence variant genotypes
from the key ancestor animals using the well-established
stepwise imputation approach [13]. This limitation
prompted us to investigate an alternative approach to
reference-guided sequence variant imputation. We con-
sidered the 70 key ancestor animals as a reference to call
genotypes from low-pass sequencing data (1.11-fold) of
genetically similar pigs. In agreement with previous
studies in human and cattle populations, the genotyping
accuracy from the low-pass sequencing data was very
high [8, 15, 56]. Moreover, the low-pass sequencing-
derived genomic relationship coefficients were highly
correlated with those obtained using microarray geno-
typing. This suggests that the low-pass sequencing-
derived imputed genotypes may readily be used for gen-
omic prediction [56, 57]. However, the diagonal ele-
ments of the genomic relationship matrix were higher
and had less variance using the genotypes from low-pass
sequencing than microarray genotyping, likely because
the sequenced key ancestor animals do not represent the
full haplotype diversity of the SLW populations which
precludes the imputation of rarer sites that predomin-
antly occur in the heterozygous state. High-coverage se-
quencing of few additional animals that carry rare
haplotypes may mitigate this ascertainment bias [58] and
increase the accuracy of genotyping by low-pass sequen-
cing, particularly for rare alleles. While a subset of the
22.62 million variants obtained is sufficient to accurately
predict genomic breeding values, the full variant cata-
logue, once available for a large mapping cohort, will fa-
cilitate powerful genome-wide association studies at
nucleotide resolution.

Conclusions

The high-coverage sequencing of 70 key ancestor ani-
mals from two SLW lines and subsequent reference-
guided variant discovery revealed 26,862,369 poly-
morphic sites. Population-genetic analyses suggest con-
siderable genetic differentiation between both lines. Our
results indicate that the key ancestor genomes may serve
as a haplotype reference panel for genotyping by low-
pass sequencing at high accuracy in the Swiss pig breeds.
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Using genotyping by low-pass sequencing increases the
variant density over the currently used microarray by >
350-fold, thus providing a valuable resource for powerful
genome-wide association testing.

Methods

Animals and whole-genome sequencing

Whole genome sequence data were generated for 70
boars. Sixty-five boars (32 from the dam line and 33
from the sire line) were selected based on their marginal
genetic contribution to the current breeding populations
using a key ancestor approach [3, 4]. The marginal gen-
etic contribution was estimated based on a numerator
relationship matrix that was constructed using the PyPe-
dal python package [59]. The effective population size of
the sire and dam line was estimated based on the differ-
ence in pedigree-derived inbreeding coefficients between
active breeding animals and their parents following eq.
(3) presented in Leroy et al. [60]. The inbreeding coeffi-
cients were extracted from the numerator relationship
matrix. Animals born after 01.01.2018 were considered
as active breeding animals. In addition, we considered
whole-genome sequence data from five boars from the
sire line that were generated previously [39]. DNA was
prepared from preserved blood samples that were pro-
vided by SUISAG (the Swiss competence center for pig
breeding). No animals were specially sampled for the
present study. Illumina TruSeq PCR-free libraries with
insert sizes of 350 bp were prepared and sequenced with
an Illumina NovaSeq6000 instrument using 2 x 150 bp
paired-end reads.

Alignment quality, read mapping and depth of coverage
We used the fastp software [61] to remove adapter se-
quences and reads that had Phred-scaled quality less
than 15 for more than 15% of the bases. Subsequently,
the filtered reads were aligned to the SSC11.1 assembly
of the porcine genome [62] using the mem-algorithm of
the BWA software [63]. The Picard tools software suite
[64] and Sambamba [65] were applied to mark duplicate
reads and sort the alignments by coordinates, respect-
ively. To calculate depth of coverage, we extracted the
number of reads covering a genomic position using the
mosdepth software [66]. For the coverage calculation, we
discarded reads with mapping quality < 10 and SAM bit-
wise flag value of 1796.

Variant calling

We used the BaseRecalibrator module of the Genome
Analysis Toolkit (GATK - version 4.1.0 [19];) to adjust
the base quality scores while supplying 63,881,592
unique positions from the porcine dbSNP version 150 as
known variants. We applied the HaplotypeCaller, Geno-
micsDBImport and GenotypeGVCFs modules from the
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GATK to discover and genotype SNP and INDEL in the
70 SLW pigs together with 28 samples from various
breeds that were sequenced earlier. Subsequently, we ap-
plied the VariantFiltration module of the GATK accord-
ing to best practice recommendations for site-level hard
filtration to retain high-quality variants. Beagle (version
4.1 [18];) haplotype phasing and imputation was applied
to impute sporadically missing sites and improve the pri-
mary genotypes obtained using the GATK.

The concordance between sequence- and array called
genotypes was calculated for 68 pigs that also had Illu-
mina PorcineSNP60 BeadChip microarray-derived geno-
types. We considered only autosomal SNP. We
converted the TOP/BOT alleles of the microarray-
derived genotypes to REF/ALT allele coding to make
them compatible with the sequence-derived genotypes.
This was possible for 54,600 SNP. Sequence variant
genotyping accuracy was quantified using genotypic con-
cordance, non-reference sensitivity and non-reference
discrepancy [19, 44].

Invariant sites and variants within regions with an ex-
cessive depth of coverage (> mean coverage +2 * SD)
were removed using VCFtools (v. 0.1.16 [67];). The
resulting data were split into two datasets containing 23,
774,053 and 23,531,919 variants segregating in 32 boars
from the dam line and 38 boars from the sire line,
respectively.

Functional annotation

Functional consequences of the variants (including SIFT
scores [21] for missense variants) were predicted with
the Ensembl Variant Effect Predictor (VEP, version 91.3
[20];) using local cache files from Ensembl release 98.
The transition to transversion ratio (Ti/Tv) was calcu-
lated using BCFtools command stats (version 1.8 [68];).

Detection of mendelian trait-associated variants and
coverage analysis

We downloaded genomic coordinates of 47 likely causal
variants from the Online Mendelian Inheritance in Ani-
mals (OMIA) database [22]. Genes harboring likely
causal variants for which the genomic coordinates were
not annotated according to SSC11.1 were manually
inspected. Read alignments and sequence coverage in re-
gions harboring known larger structural variants were
manually inspected.

Population structure and genetic diversity analysis

The structure of the two lines was investigated using
ADMIXTURE (v1.3.0 [69];). To avoid confounding due
to extensive linkage disequilibrium (LD), we removed
correlated loci based on high levels (+* > 0.6) of pairwise
LD using PLINK (version 1.9 [70];) with the “--indep-
pairwise 100 25 0.6” option before running the
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ADMIXTURE analysis. The number of ancestral clusters
(K) was set from 1 to 3, and five-fold cross-validation
was performed to determine the K value with the lowest
cross-validation error.

A genomic relationship matrix was built using 23,691,
198 autosomal sequence variants that had a minor allele
frequency higher than 0.01 using PLINK. The principal
components of the genomic relationship matrix were
calculated using the GCTA (version 1.92.1 [71];) soft-
ware. We applied the GCTA flag “--grm-singleton” to
identify four pairs of animals with relationship coeffi-
cients ranging from 0.32 to 0.37. One animal from each
pair was removed for the Fst and signature of selection
analyses (1 from the dam line and 3 from the sire line).

We calculated the weighted genome wide fixation
index (Fst, [72]) based on pairwise differences in the
variances of allele frequencies using 24,926,366 biallelic
variants. Fg values were calculated in 10 kb sliding win-
dows with an overlap of 5kb using the “--weir-fst-pop”
flag of VCFtools (v.1.2.11 [67];). The manhattan plot was
constructed using the R package qqman [73].

Nucleotide diversity (1) was calculated over all biallelic
autosomal variants in 10kb sliding windows with an
overlap of 5 kb using VCFtools.

Runs of homozygosity (ROH) were estimated with
BCFtools/ROH [74] using the GATK-derived genotypes
(containing the Phred-scaled likelihoods). We considered
biallelic SNP that had non-missing genotypes in all ani-
mals (maximal missing count per site was set to 0). Ac-
cording to Tortereau et al. [75], we assumed a constant
recombination rate of 0.7 cM/Mb along the chromo-
somes. Average genomic inbreeding (Froy) was calcu-
lated assuming an autosomal genome length of 2,265,
774,640 bases. Following a recent study by Bhati et al.
[76], we classified the ROH based on their length (short:
50-100 kb, medium: 100 kb - 2 Mb, long: > 2 Mb).

Signatures of selection (CLR and iHS) and candidate
regions

Putative signatures of selection were detected using inte-
grated Haplotype Scores (iHS) and composite likelihood
ratios (CLR). The iHS [77] reveals ‘soft sweeps, i.e., sig-
natures of selection where selection for beneficial alleles
is still ongoing. The CLR [78] reveals ‘hard sweeps’, i.e.,
signatures of selection where beneficial alleles recently
reached fixation. We considered 24,926,366 autosomal
biallelic SNP from 31 and 35 boars from the dam and
sire line, respectively. The genotypes were phased using
Beagle (version 5.1 [79];) with disabled imputation and
effective population size set to 50. The CLR statistic was
calculated chromosome-wise with the SweepFinder2
software [80] using a pre-computed empirical allele fre-
quency spectrum and 100 kb spacing between test sites
(-lg 100,000). Using the R package rehh 2.0 [81], we
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applied the function scan_hh to estimate the integrated
extended haplotype homozygosity (EHH) on variants
with MAF > 0.05 for each chromosome separately. Sub-
sequently, we applied the function ihh2ihs to obtain
standardized iHS values in 100kb non-overlapping
windows.

The function calc_candidate_regions from the rehh 2.0
package [81] was applied to select candidate signatures
of selection in 100kb windows using the parameters
“window_size = 1E6”, “overlap = 1E5”, “pval = F” and
“min_n_extr_mrk = 1”. Empirical significance thresholds
were chosen after visual inspection of the distribution of
the test statistics (0.1% in iHS and 0.5% in CLR). Genes
overlapping with candidate signatures of selections were
determined based on the Ensembl (release 98) annota-
tion of the porcine genome.

Analysis of low-pass sequence data

A median number of 16,131,419 paired-end (2x150bp)
reads were generated for 96 pigs from the dam line and
96 pigs from the sire line. Adapter sequences and bases
and reads with low sequencing quality were removed
with fastp [61]. Subsequently, the reads were aligned to
the porcine reference genome (SSC11.1) using the mem-
algorithm of BWA [63] and duplicate reads were marked
using Samblaster [82]. Following the read alignment, six
samples were excluded because the mapping rate and
the proportion of properly paired reads was less than 70
and 75%, respectively. Additionally, we excluded 10 sam-
ples for which the average coverage was less than 0.2-
fold and one sample for which ancestry could not be
verified.

To compile the reference haplotypes, we retained 22,
618,811 biallelic autosomal SNP that were polymorphic
(minor allele count >1) among the 70 key ancestor pigs.
Following the approach proposed by Rubinacci et al. [8],
we used the mpileup and call commands of BCFtools
[68] to calculate genotype likelihoods at the 22,618,811
polymorphic sites in the 175 low-pass sequenced and
reference-aligned samples. Subsequently, we applied the
phasing and imputation algorithm implemented in
GLIMPSE_phase [8] to refine the BCFtools-derived
genotype calls using the previously established haplotype
reference panel. This approach produced genotypes at
22,618,811 sites for the 175 low-pass sequenced samples.
A genomic relationship matrix among the low-pass se-
quenced animals was constructed from the low-pass se-
quencing data-derived genotypes using GCTA [71].

Abbreviations

CLR: Composite likelihood ratio; Fsy: Fixation index; iHS: Integrated haplotype
score; INDEL: Insertions and deletions; LD: Linkage disequilibrium; MAF: Minor
allele frequency; OMIA: Online Mendelian Inheritance in Animals;

PCA: Principal component analysis; QTL: Quantitative trait loci; ROH: Run of
homozygosity; SLW: Swiss Large White; SNP: Single nucleotide

Page 12 of 14

polymorphism; Ti/Tv: Transition/transversion ratio; WGS: Whole-genome
sequencing

Supplementary Information
The online version contains supplementary material available at https://doi.
0rg/10.1186/512864-021-07610-5.

Additional file 1 Fig. S1. Admixture analysis. Ancestry of 70 pigs with
K =2 ancestral populations estimated using 1,207,189 biallelic SNPs after
LD pruning. Ancestry proportions were estimated using the ADMIXTURE
software. Each bar represents an individual and the colors indicate the
proportion of genes originating from K ancestral populations. The
animals are ordered by population.

Additional file 2 Fig. S2. Manhattan plot of Fsr values. Weir and
Cockerham Fsr estimates were calculated in 10 kb sliding windows
between 31 dam and 35 sire boars. Black dotted line indicates a value of
0.25.

Additional file 3 Table S1. List of variants listed in the OMIA database
and their corresponding frequency in the two pig lines.

Additional file 4 Fig. S3. Depth of coverage at a region on SSC8
encompassing the KIT gene. Representative plots of different depth of
coverage detected in the sequenced pigs at a large duplication (DUP1 -
SSC8: 41,223,212 - 41,783,660 bp) encompassing the KIT gene. Grey
vertical bars represent the absolute coverage observed in four animals.
The green dotted lines represent the median and 2*median coverage
along SSC8. In order to determine the number of extra copies, we
divided for each sequenced animal the average coverage observed at
SSC8 by the average coverage observed at DUP1 (chr8: 41,223,212 -
41,783,660 bp). The number of additional copies ranged from 1 to 4. 16,
27, 4,20, 2 and 1 animal had 1.5-1.9x, 2%, 2.1-2.4x, 2.5-2.9x and 3x the
average coverage of SSC8 at DUP1, respectively. The average copy
number was 2.07 and 2.19 in the dam and sire line, respectively. The 560
kb duplication (DUP1) encompasses two smaller duplications DUP2 and
DUP3/4. DUP2 is 4.3 kb long and upstream, while DUP3 and DUP4 are 23
kb and 4.3 kb duplications downstream of the KIT gene.

Additional file 5 Table S2. Candidate signatures of selection based on
CLR and iHS analyses. Genes annotated to the region are given for each
signature of selection.

Additional file 6 Fig. S4. Principal components analysis of key ancestor
and low-pass sequenced animals. Plot of the first two principal compo-
nents showing the relationship of 96 dam and 96 sire animals sequenced
at low (< 1.5-fold) coverage and 32 dam and 38 sire animals sequenced
at high (~ 16.5-fold) coverage.
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