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Abstract

Background: The current and future applications of genomic data may raise ethical and privacy concerns.
Processing and storing of this data introduce a risk of abuse by potential offenders since the human genome
contains sensitive personal information. For this reason, we have developed a privacy-preserving method, named
Varlock providing secure storage of sequenced genomic data. We used a public set of population allele frequencies
to mask the personal alleles detected in genomic reads. Each personal allele described by the public set is masked
by a randomly selected population allele with respect to its frequency. Masked alleles are preserved in an encrypted
confidential file that can be shared in whole or in part using public-key cryptography.

Results: Our method masked the personal variants and introduced new variants detected in a personal masked
genome. Alternative alleles with lower population frequency were masked and introduced more often. We
performed a joint PCA analysis of personal and masked VCFs, showing that the VCFs between the two groups
cannot be trivially mapped. Moreover, the method is reversible and personal alleles in specific genomic regions can
be unmasked on demand.

Conclusion: Our method masks personal alleles within genomic reads while preserving valuable non-sensitive
properties of sequenced DNA fragments for further research. Personal alleles in the desired genomic regions may
be restored and shared with patients, clinics, and researchers. We suggest that the method can provide an
additional security layer for storing and sharing of the raw aligned reads.
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Background
The advancements in DNA sequencing technology sup-
port increasingly complex and accurate interpretation of
genomic data which leads to exposure of sensitive per-
sonal information [7, 11, 30, 32]. Genomic privacy of an
individual may be breached through different types of at-
tacks, in particular, identity tracing, attribute disclosure,
and completion attacks [21]. To address this issue, gen-
omic data is regulated as personal data [29, 31] and must
be protected accordingly. On the other hand, it is

important to support availability of and access to gen-
omic data for precision medicine, genomic research, fo-
rensic investigation, and recreational genomics [2, 23].
In general, many genomic analyses are focused on

short genomic variants and a typical method of the prior
art extracts these variants from the underlying genomic
reads. Such method stores only the variants in a secure
form and discards the original genomic reads or en-
crypts them, so they can be reanalysed in future [3, 4,
10, 13, 17, 33]. However, it is a common practice to con-
firm uncertain variants by manual examination of the
underlying mapped genomic reads (alignments), and
specific variants can remain undetected due to their mis-
classification as sequencing errors [16]. Moreover, the
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current variant calling algorithms are not mature, and it
is unknown which type of data produced by the sequen-
cing process will be necessary for any future algorithms
[5]. Alignments carry additional information which can
be employed directly in the detection of structural varia-
tions such as copy number variations (CNVs) or aneu-
ploidies in clinical non-invasive prenatal testing (NIPT)
[20, 25, 26]. The detection methods for these variants do
not consider short variations and require coverage data
provided by alignments.
Various privacy-preserving solutions for processing gen-

omic data have been proposed. Lauter et al. adapt several
algorithms used in genome-wide association studies
(GWAS) to process genomic data encrypted with homo-
morphic encryption [17]. Sousa et al. use this type of en-
cryption to securely store and search encoded variants on
a cloud server [33]. A secure multiparty computation can
ensure diagnosis of causal variants in a group of patients
affected by the same Mendelian disorder [13]. To the best
of our knowledge, only few privacy-preserving methods
for genomic reads exist. Among them, Decouchant et al.
[9] use Bloom filter to classify unaligned genomic reads to
privacy-sensitive or non-sensitive, improving the same
previous approach for short reads [8]. The protocol pro-
posed by Ayday et al. [5] encrypts genomic reads and
stores them in a biobank, from which a trusted medical
unit can request a range of nucleotides without revealing
the range to the biobank. Huang et al. [12] presented a
novel file format as an alternative to BAM and CRAM
files, offering compression and encryption of aligned reads
and their selective retrieval.
In this paper, we present our methodology which pre-

serves raw alignments and their unique properties with-
out disclosing personal information while facilitating
secure storage of alignment data with the support of dy-
namic consent approach. More specifically, we mask
personal single nucleotide variation (SNV) alleles within
alignments of a sequenced genome while preserving
existing alignment data (coverage, quality, etc.). The
masking solution is reversible, allowing any user with ac-
cess to masked personal alleles to unmask them within
any arbitrary region of the genome. The user can also
share access to a subset of the masked alleles in
encrypted form with another user. Thus, a patient could
share the subset of genuine reads related to a particular
gene with a medical unit. We implemented the proposed
methods, validated them with real personal genomic
data, and evaluated the reported genomic variation.

Results
We validated the performance of our methodology with
five distinct analyses: (1) the single case study on a se-
lected personal genomic sample, (2) the principal com-
ponent analysis (PCA) on a set of genomic samples to

show the effect of masking on personal alleles, (3) the
second PCA analysis on two distinct populations, (4) the
comparison of VCF files called on original samples with
VCF files called on masked samples, and (5) the com-
parison between detected pathogenic variants in clinic-
ally relevant genes before and after masking.

Single case study
The performance of the masking method was evaluated
by a comparison between (1) called variants on a BAM
file with personal genome from central European popu-
lation, (2) called variants on the corresponding masked
BAM file, and (3) the set of variants from the non-
Finnish European population in The Genome Aggrega-
tion Database (gnomAD) [15] database. We selected
only the passing variants with total coverage and quality
above 30 from both personal and masked VCF files to
provide high-confidence results. We identified five cat-
egories of variant positions from personal VCF, masked
VCF, and population VCF (Fig. 1). (1) Not found: A vast
majority of variant positions in the population VCF is not
found in the personal VCF. This was expected as the
population VCF is called on thousands of personal ge-
nomes, and masking of rare variants tends to result in a
homozygous reference. (2) Masked: This case occurs when
a homozygous reference allele masks a homozygous alter-
native allele. (3) Not masked: An alternative allele at this
position was either preserved or replaced by another alter-
native allele while zygosity may be changed. (4) Intro-
duced: When an alternative allele replaces a reference
allele at a homozygous position, a new variant appears. (5)
Not covered: A set of personal variant positions not cov-
ered by the population VCF. These are presumably rare
variants or variants specific for a particular local popula-
tion that were not present in the gnomAD database.
We compared the distributions of alternative allele fre-

quencies by VCF to show their nature and the effect of
masking (Fig. 2). The population VCF contains a vast
amount of low-frequency alleles which have little chance
to be introduced by the masking process into the masked
VCF despite considering every variant covered by personal
BAM. In case of the personal VCF, personal allele fre-
quency has the anticipated ratio of 0.5 for a heterozygote
and 1.0 for a homozygote. However, actual ratios may vary
due to low coverage or sequencing errors. As can be ob-
served, masked VCF preserves the distribution of personal
allele frequency to a considerable extent.
Furthermore, we compared the distribution of alterna-

tive population allele frequencies between the masked
VCF and the not masked VCF (Fig. 3). The ratio of
masked alleles increases with decreasing allele frequency,
therefore, rare variants have a higher chance to be
masked by the method. Similarly, the ratio of intro-
duced alleles increases with decreasing allele

Hekel et al. BMC Genomics          (2021) 22:712 Page 2 of 13



frequency. On the other hand, common population
alleles have a lower chance to be masked or intro-
duced; nonetheless, they are specific for the popula-
tion and not for an individual.
Finally, we compared the alleles within the not masked

set between the personal VCF and the masked VCF. The
alternative alleles from both VCFs were joined by their po-
sitions, allowing a direct comparison of an alternative al-
lele and its frequency between the two files. An alternative
allele was replaced by another alternative allele in only 14
(0.32%) from the total of 4435 reported positions making
this issue negligible. We compared frequencies of the

4421 remaining positions with matching alleles between
the personal and masked file and found a mismatch in
1515 (34.27%) of them. The changes of frequencies of al-
ternative alleles in these positions were caused by a change
of a homozygous pair of alleles to a heterozygous one or
vice-versa due to the masking method.

The masking effect on personal alleles
In the first PCA masking analysis, we merged all the
passing SNVs from both personal and masked VCFs (66
files in total) into a single VCF. The PCA analysis was per-
formed on this file using PLINK [27], which is a toolset

Fig. 1 Intersections between the sets of positions with alternative alleles from three VCF files: population VCF, personal VCF, and masked VCF
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Fig. 2 The distribution of alternative allele frequency reported by population VCF, personal VCF, and masked VCF

Fig. 3 The ratio of masked to not masked alleles and its relation to population allele frequency
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for genome association analysis. The analysis was per-
formed twice, each time with a different set of population
frequencies (VOF file). Firstly, with all populations from
gnomAD database, and secondly, with the non-Finnish
European population as it best matches the central Euro-
pean population of locally-sequenced individuals [6].
We plotted the first two principal components and

distinguished the original and masked VCFs with a
marker type. In the first case (Fig. 4) we masked the
VCFs using the whole gnomAD variation as population
allele frequencies. As a result, the masked VCFs are
clearly separated from the personal VCFs as two differ-
ent clusters, implying that the masking using whole gno-
mAD variation caused a shift from the population of
origin to the mixture of gnomAD populations. In the
second case (Figs. 5 and 6), we selected only the non-
Finnish European gnomAD population allele frequencies
thus creating a single cluster. This time, the masked
VCFs cannot be unambiguously mapped to correspond-
ing personal VCFs since they stay within the same popu-
lation space. Moreover, outliers – the VCFs with specific
genotypes – are shifted towards the population cluster.

The masking effect on personal alleles from two distinct
populations
In the second PCA analysis, we compared the mask-
ing effect jointly on exome samples from the 1000
Genome Project [1]. To find and plot the principal

components, we used the same approach as in the
first analysis. In particular, we selected five samples
from the African population (AFR) and five samples
from the non-Finnish European population (NFE). We
masked each sample with both the AFR and the NFE allele
frequencies from the gnomAD database. Personal samples
from the NFE population are clearly clustered on the left,
while personal samples from the AFR population are
mostly separated and placed on the right side of the image
(Fig. 7). The samples masked with the matching popula-
tion stay in the vicinity of the related personal samples, i.e.
they cannot be distinguished from other samples within
this population. In contrast, samples masked with the
other population are shifted towards this population area
but may not reach full similarity with this population.
Nevertheless, this approach masked the original popula-
tion of the sample. In conclusion, the masking of personal
variation is effective when the population of masking fre-
quencies matches the population of the personal sample.
We provide additional analyses confirming this statement
in the Additional file 1; Section 4; Figs. 2, 3, 4, 5.

Masking of pathogenic variation
In this section, we focused the analysis on clinically rele-
vant variants which are considered to be privacy-sensitive.
More specifically, this concerns the variants classified as
pathogenic or likely pathogenic based on the current
guidelines on the interpretation of sequence variants [28].

Fig. 4 Personal VCFs are clearly shifted from the original local population (non-Finnish European) to VCFs masked with alleles from all gnomAD
populations. Lines link the individual original BAMs (circles) with their masked counterparts (triangles)
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Fig. 5 All masked VCFs, including outliers in their personal form, are clustered in the same region. The lines link the individual original BAMs
(circles) with their masked counterparts (triangles). For details of the cluster, see Fig. 6

Fig. 6 The detail of the cluster from Fig. 5. The lines link the individual original BAMs (circles) with their masked counterparts (triangles)

Hekel et al. BMC Genomics          (2021) 22:712 Page 6 of 13



We manually examined the pathogenic variants according
to the annotations provided by the Ensembl Variant Effect
Predictor [19] within the clinically relevant genes defined
by American College of Medical Genetics (ACMG) [14] in
all 33 personal and masked samples. Three variants from
the personal set were masked, and three new variants were
introduced in the masked set. A single variant had no
population allele frequency defined and could not there-
fore be processed by the method. Within the personal set,
we found 5 different variants across 12 samples. One of
them (rs1805124) was present in 10 samples. Within the
masked set, we found 6 different variants in 19 samples
while one of them (rs1805124) was present in 16 samples.
The population allele frequency of the rs1805124 variant
was 23.96% which resulted in low masking probability and
high introduction probability. We also observed a zygosity
change in this particular variation in a single masked sam-
ple. This analysis demonstrated the effectiveness of mask-
ing personal alleles, especially those with low population
frequency. Nevertheless, clinically relevant alleles may be
missing from public variation archives and the allele popu-
lation frequencies must be known beforehand in order to
mask the related variants.

Reversibility of masking
We used 33 clinical exomes to validate the reversibility of
the masking method. First, we masked and unmasked all

the 33 samples. Next, we called variants on both original
and masked samples, producing two sets of 33 VCF files.
We compared the number of called variants for each sam-
ple between the two sets and also their file contents with
the standard Linux shell diff command. The comparison
showed that the unmasking method fully restored the ori-
ginal alignment data, resulting in two identical call sets for
each genomic sample, containing 276,295 variants in total.
Moreover, we confirmed an exact match of records from
each sample between its original and unmasked version in
both BAM and VCF files.

Discussion
The growing number of sequenced genomes and im-
proving genomic interpretation makes their carriers and
their relatives vulnerable to privacy violations [7, 11, 21,
31]. It is therefore essential to prevent unauthorised
copying, modifying, and sharing of private genomic data.
On the other hand, sharing of data is a fundamental part
of genomic research inevitable in clinical practice [23,
32]. Given these points, a practical solution to genomic
privacy represents a certain trade-off between privacy
and utility of the data [21, 31].
Many methods for preserving genomic privacy encrypt

genomic data entirely aiming to secure personal variants
[3, 4, 10, 13, 17, 33]. For example, the encryption keys
are in the possession of a manager which does not

Fig. 7 Personal and masked VCFs from African (red) and non-Finnish European (blue) population. Each of the two personal VCFs was masked
with non-Finnish European (triangle) and African (square) population allele frequencies. The arrows point to a position of the masked version of
the personal VCF, while the coloured arrow denotes masking with population allele frequencies matching the origin of the personal VCF
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require the participation of a patient, except for his or
her consent [5]. Although the protocol distributes the
roles in secure processing of genomic data to distinct
parties, it relies on a trusted medical unit, which pos-
sesses individual access rights to different parts of the
data. On the contrary, our method allows an individual
to retain full control over his or her digital genome, sup-
porting a dynamic consent approach with limited access
only to his or her personal alleles.
Other methods detect sensitive personal reads using

the Bloom filter, which is built from a public database of
genomic variation and relies on exact matching through
hashing [8, 9]. However, the exact mechanism for obfus-
cation of the sensitive reads is not further explained.
The devised format for secure storage of compressed
aligned reads in another paper creates a substantial over-
head for downstream analyses, since standard bioinfor-
matic tools do not support it [12]. This format provides
a solution to privacy control of genomic reads; however,
it does not address the issue of secure sharing of re-
trieved reads.
We have demonstrated that using allele frequencies

from the same population of origin as the masked
sample makes the masking more effective. Specifically,
the set of masked variants resembles a generic sample
from this population and cannot be trivially mapped
back to the original set in a pool of similar samples.
However, considering that masking population allele
frequencies are public, the offender can always tell
which genomic positions may be masked, and exploit
any rare personal variants not covered by the method.
This could be mitigated by using a more comprehen-
sive set of masking population allele frequencies as
well as by the addition of random masking (Add-
itional file 1; Section 3). In future research, we intend
to mask all personal variants not covered by popula-
tion allele frequencies using called variants on per-
sonal BAM as yet another input to the methodology.
Furthermore, the method can be instantly improved
by masking indels and short tandem repeats using the
presented approach for masking SNVs when compre-
hensible population frequencies for these types of
variation become available.

Conclusions
Our method masked SNV alleles within genomic align-
ments and securely preserved them using standard RSA
encryption. We were also able to restore original align-
ments using the encrypted masked alleles with the asso-
ciated access key or provide partial access to these
alleles to another entity without disclosing them to a
third party. A masked BAM preserves natural popula-
tion distribution of alternative allele frequencies,
which may be an advantage against a potential

offender, since he or she cannot tell if the BAM is
masked. The extent of masking depends on the com-
prehensiveness of the population allele frequencies
used as an input. It can therefore be continually im-
proved with expanding catalogues of genomic human
variation. Its effectiveness depends on proper selection
of the masking population. For example, using mask-
ing allele frequencies from the same population as
the sample is suitable for hiding an individual within
this particular population. We can also use masking
allele frequencies from a different population to make
the encrypted sample resemble a sample from this
particular population. In some cases, personal re-
identification from the masked genome is still pos-
sible despite masking of the SNVs. Regardless of the
above, the purpose of Varlock is not de-identification
of a genome, or replacement of standard security
methods. Instead, we believe that concepts presented
herein will find application in future medical and la-
boratory information management systems.

Methods
The Varlock methodology provides methods for mask-
ing, unmasking, and sharing of personal alleles found in
alignments stored as a BAM file. More specifically, the
masking method (Fig. 8) masks personal alleles found in
alignments using publicly known population allele fre-
quencies from a dedicated VOF file (Additional file 1;
Section 1; Tables 1 and 2). The output set of masked al-
leles represents all differences between original and
masked alignments and is stored in a dedicated BDIFF
file (Additional file 1; Section 2, Tables 3 and 4). The
masked alleles are encrypted as a single file using an
asymmetric encryption scheme (Additional file 1; Sec-
tion 2; Fig. 1) only enabling the holder of the associated
private key to decrypt them.
The unmasking method (Fig. 9) represents a partially

reversed masking method. The file with masked alleles is
decrypted with the associated private key and is proc-
essed simultaneously with masked alignments back into
personal alignments. The dissemination (Fig. 10) method
re-encrypts the file with masked alleles in an arbitrary
range, making the associated subset of alleles accessible
to a specific user. Firstly, the file with masked alleles is
decrypted by the associated private key. Secondly, a sub-
set of masked alleles is selected, and lastly, the selected
masked alleles are encrypted as a new file with the pub-
lic key of a specific user.

Masking of alleles
A sequenced genomic position is typically covered by
multiple alignments, which may carry different alleles
due to heterozygosity, sequencing, or alignment errors.
Both personal alleles are equally likely to be represented
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in the alignments, albeit their mutual ratio can substan-
tially vary for any given position. Therefore, each gen-
omic position with a population variant is described as a
list of alleles, and a personal pair of alleles is determined
as the two most represented ones. In detail, an allele is
considered personal if it constitutes a sufficiently large
portion of alignments covering the position of a variant
[22]. If only one such allele exists, the position is evalu-
ated as homozygous, and two identical alleles are
assigned to the position. If two different alleles with suf-
ficient representation exist, the position is considered
heterozygous, and two different alleles are assigned to
the position. If there are more than two sufficiently

represented alleles, the methodology skips the variant
position.
The process of masking and unmasking alleles per

any given position has several steps (Fig. 11). Each
allele from the pair of masking alleles is selected
randomly from the multinomial distribution of popu-
lation alleles. The masking pair of alleles acts as a re-
placement for the pair of personal alleles assigned
previously. Moreover, the zygosity at the masked pos-
ition can change from homozygous to heterozygous
and vice versa (If a reference allele replaces both al-
ternative personal alleles, a variant cannot be detected
in masked alignments and it therefore becomes

Fig. 8 Workflow of the masking method, where BAM file and VOF file are processed into the masked BAM and BDIFF files. The BDIFF file is
subsequently encrypted

Fig. 9 Workflow of the unmasking method, where the BDIFF file is decrypted and used to unmask the masked BAM file to restore the personal
BAM file
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masked. Conversely, if an alternative allele replaces ei-
ther of the personal reference alleles, a new variant
can be called at this position in masked alignments
and it thus becomes introduced. All personal alleles
within the alignments covering a particular variant
are replaced by masking alleles. However, personal al-
leles may be replaced by the same pair of masking al-
leles, which is the most common case - a pair of
reference alleles is mapped to itself. The remaining
alleles found within the alignments are considered to
be sequencing or alignment errors. These alleles can
still be replaced by other than masking alleles. We
elaborate more on the aspects of the masking process
in Additional file 1; Section 3.

Unmasking of alleles
All alleles within masked alignments, or their specific
subsets, can be unmasked by the BDIFF file, containing
the replaced personal alleles and deleted qualities. This
operation transforms masked alignments to original

alignments. User has to provide masked alignments and
an associated encrypted BDIFF file along with the RSA
private key whose public counterpart was used in the
BDIFF encryption. The decryption of unmapped reads is
handled separately, and the user can choose whether to
decrypt them or not.
The first step of the unmasking method is the decryp-

tion of the encrypted BDIFF file (Additional file 1;
Section 2; Fig. 1). The algorithm reads the encrypted
AES key and the file signature from the beginning of the
file. The AES key is decrypted with a provided private
key and then used to decrypt the actual encrypted
BDIFF file. The decrypted file is verified with a public
key against its signature to prove its origin.

Sharing of alleles
The holder of the private key that was used to encrypt
the BDIFF file can share the alleles described by the
BDIFF file and associated masked alignments by re-
encrypting the BDIFF file in the desired genomic range.

Fig. 10 Workflow of the sharing method showing decryption of BDIFF and encryption of its subrange intended for a specific user
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The BDIFF file is first decrypted by the private key and
then encrypted by the public key of another user who
can decrypt the file later. If a subrange of the effective
range for re-encryption is provided, only records inside
or intersecting this range are considered, and this range
becomes the effective range of the new BDIFF file. The
re-encryption process can be repeated with different
combinations of genomic ranges and public keys, produ-
cing different accesses for individual users. In addition,
the decrypted BDIFF file can be verified with the
holder’s public key by comparing the checksum of
masked alignments to the checksum stored in the
encrypted BDIFF file header. This ensures that the
BDIFF file belongs to the masked alignments and that
they were not modified.

Validation
To validate the Varlock, we collected a set of 33 clinical
exomes from the central European population. The
DNA samples were sequenced on Illumina platform fol-
lowing enrichment and library preparation using Tru-
Sight One clinical exome sequencing panel following the
manufacturer’s instructions. Next, we called variants on
each exome with a fine-tuned variant calling pipeline
comprising the BWA-MEM alignment mapper algo-
rithm [18] and DeepVariant caller [24].The pipeline pro-
duced 33 BAM files mapped to the GRCh38 reference
genome and the same number of corresponding VCF
files. Finally, we masked each BAM file with the Varlock
and subsequently called variants on these masked BAM
files thus producing the same number of VCF files.

Fig. 11 Flow of masking and unmasking alleles at a single variant position within covering alignments. The masking is represented as “mask
alleles” in Fig. 8, and the unmasking is represented as “unmask alleles” in Fig. 9
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In addition, we used the third release of the 1000 Ge-
nomes Project as the source of samples for the second
PCA analysis [1]. We selected the first five exome sam-
ples from the non-Finnish European (Toscani) popula-
tion and the first five exome samples from the African
(African Caribbean) population. We provide the list of
these samples in the Additional file 2.
As the source of population variants, we used The Gen-

ome Aggregation Database version 3 (gnomAD v3) [15]
mapped to the GRCh38 reference genome, which spans
71,702 genomes from unrelated individuals of various eth-
nicities. We downloaded the database in the form of a sin-
gle VCF file, selected the passing SNVs within ranges of
Trusight One clinical exome panel, and merged duplicate
variant positions as multiallelic. Finally, we converted the
file to VOF format intended for masking.
To validate masking of pathogenic variation we anno-

tated the VCF files in our dataset with the Ensembl Vari-
ant Effect Predictor using the cache version 101 [19]
providing gene annotations in order to filter relevant
variants, which were manually examined later.
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Genomes Project (https://www.internationalgenome.org/data-portal/sample).
The samples can be searched with the accession numbers provided in
Additional file 2 and downloaded from this portal.
We annotated the VCF files with additional data with the tool Ensembl
Variant Effect Predictor version 101, which downloaded annotation data
automatically.
The clinical exomes dataset used to evaluate Varlock is not publicly available
due to personal data protection but is available from the corresponding
author on a reasonable request.
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