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Abstract

Background: Trees such as Populus are planted extensively for reforestation and afforestation. However, their
successful establishment greatly depends upon ambient environmental conditions and their relative resistance to
abiotic and biotic stresses. Polyphenol oxidase (PPO) is a ubiquitous metalloproteinase in plants, which plays crucial
roles in mediating plant resistance against biotic and abiotic stresses. Although the whole genome sequence of
Populus trichocarpa has long been published, little is known about the PPO genes in Populus, especially those
related to drought stress, mechanical damage, and insect feeding. Additionally, there is a paucity of information
regarding hormonal responses at the whole genome level.

Results: A genome-wide analysis of the poplar PPO family was performed in the present study, and 18 PtrPPO
genes were identified. Bioinformatics and gRT-PCR were then used to analyze the gene structure, phylogeny,
chromosomal localization, gene replication, cis-elements, and expression patterns of PtrPPOs. Sequence analysis
revealed that two-thirds of the PtrPPO genes lacked intronic sequences. Phylogenetic analysis showed that all PPO
genes were categorized into 11 groups, and woody plants harbored many PPO genes. Eighteen PtrPPO genes were
disproportionally localized on 19 chromosomes, and 3 pairs of segmented replication genes and 4 tandem repeat
genomes were detected in poplars. Cis-acting element analysis identified numerous growth and developmental
elements, secondary metabolism processes, and stress-related elements in the promoters of different PPO
members. Furthermore, PtrPPO genes were expressed preferentially in the tissues and fruits of young plants. In
addition, the expression of some PtrPPOs could be significantly induced by polyethylene glycol, abscisic acid, and
methyl jasmonate, thereby revealing their potential role in regulating the stress response. Currently, we identified
potential upstream TFs of PtrPPOs using bioinformatics.
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Conclusions: Comprehensive analysis is helpful for selecting candidate PPO genes for follow-up studies on
biological function, and progress in understanding the molecular genetic basis of stress resistance in forest trees

might lead to the development of genetic resources.
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Background

Aggravated global warming induces more frequent and
severe the local stress in whole ecosystems [1, 2]. Plants
have evolved complex mechanisms to defend themselves
against various biotic and abiotic stresses [3, 4]. For ex-
ample, plants frequently encounter insect pests and have
evolved an efficient immune response that mainly de-
pends on producing specific metabolites and defense
proteins [5, 6]. At the same time, plants competently
transform their morphological structure, synthesize fa-
vorable metabolites, and evolve complex molecular
mechanisms to deal with abiotic stresses [7—9], such as
drought, cold, heat, and salt stress.

Polyphenol oxidase (PPO) is a widely distributed metal-
loproteinase that primarily exists in plants, fungi, and in-
sects [10]. It can not only catalyze the oxidation of
catechol to quinones but also acts on monophenol mono-
oxygenase substrates. In a broad sense, PPO can be classi-
fied into three categories, i.e., tyrosinase (EC.1.14.18.1),
catechol oxidase (EC.1.10.3.2), and laccase (EC.1.10.3.1)
[11]. Of these three types of PPO, catecholase is mainly
distributed in plants, while laccase and tyrosinase are dis-
tributed in microorganisms [12]. The function of PPO in
plants is largely determined by three conserved domains
i.e., KEDV, tyrosinase, and DWL [13].

PPO proteins predominantly exist in terrestrial plants,
such as apple, litchi, spinach, potato, legume, tea, mul-
berry leaf, tobacco, and grapevine, as well as in fungi
and some bacteria [11]. Under normal circumstances,
PPO is inactive and tightly binds to the inner capsule
membrane; activated PPO plays an important role after
tissue damage. In addition, several PPO genes have been
identified in Musa acuminata, Malus domestica, Oryza
sativa, Sorghum bicolor, Solanum tuberosum, Ananas
comosus, and Cucumis sativus [11, 14-19]. However,
there are considerable differences in the distribution and
function of PPO proteins in different plants. The loca-
tion of PPO varies with plant species and maturity level;
nevertheless, in most plant leaves, PPO is primarily dis-
tributed in chloroplasts [13], while almost all sub-cells of
potato tubers contain PPO [12]. Polyphenol oxidase in
tea exists in dissociative and combinative states; the
former is chiefly found in the cytoplasm, while the latter
is mainly found in chloroplasts, mitochondria, and other
organelles [11, 20]. Majority of studies have revealed that
PPO activity and polyphenol content in tea shoots sig-
nificantly affect the quality of red tea [21].

Extensive literature mining has revealed that the ex-
pression of PPO genes in plants is closely related to
stress and response to insect and mechanical damage,
diseases, and microorganism invasion [11, 22]. Addition-
ally, the PPO gene family exhibits a heightened response
to methyl jasmonate (MeJA) in Salvia miltiorrhiza and
Nicotiana tabacum L [23, 24]. Moreover, overexpression
of the PPO gene in tomato can enhance plant resistance
to insect pests, including Spodoptera litura, Helicoverpa
armigera, and Spodoptera exigua [25, 26]. Similarly, the
overexpression of PPO genes in poplar trees can result
in inhibition of the growth of Malacosoma disstria [27].
Furthermore, upregulation of PPO expression in Lyco-
persicon esculentum, Juglans regia, Taraxacum officinale,
and Fragaria ananassa enhances plant resistance to
fungi [11, 25]. Some key enzymes in the phenolic meta-
bolic system play an essential role in mediating the re-
sistance of plants to pathogenic microorganisms. For
example, the pathogen-related protein PPO can catalyze
the formation of lignin and quinones, thus promoting
the formation of defensive barriers and protecting cells
from invasion by strengthening the cell structure [28].

Populus has many advantages in basic research as a
typical model woody plant with relatively upper eco-
logical, economic, and cultural significance [29-31].
Stress severely restricts poplar cultivation in plantations.
There are few functional studies on the role of the PPO
protein family in biotic and abiotic stress in poplar trees.
Here, we identified 18 putative PPO proteins in the
Populus trichocarpa genome. Comparative genomics,
transcriptomics, and RT-qPCR were used to comprehen-
sively analyze the PPO protein family in poplar to pro-
vide a theoretical basis for studies on the characteristics
and functions of PPOs in poplar development and stress
response.

Results

Identification and analysis of poplar PPOs

Eighteen putative PPO genes were identified from the
published P. trichocarpa reference genome sequence and
were successively designated PtrPPOI1 to PtrPPO18 ac-
cording to their location on the genome (Figure S1). In
order to clearly understand the characteristics of the
PPO family in poplar, we analyzed the gene length, tran-
scriptional sequence length, CDS (coding sequence)
length, the position of the conserved domain, amino acid
(AA) length, protein molecular weight (MW), grand
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average of hydropathicity (GRAVY), and isoelectric point
(PI) of the proteins encoded by these genes (Table 1).

Among the 18 PtrPPO proteins, PtrPPO2 was the
shortest with 192 amino acids, whereas PtrPPO9 was the
longest (606 AA). The MW of PtrPPO proteins was
22.200 to 68.678 kDa, the GRAVY of the proteins was —
0.821 (PtrPPO2) to - 0.337 (PtrPPO11), and PI was 5.21
(PtrPPO4) to 7.53 (PtrPPO14). Generally, identifying the
molecular characteristics of PPOs will be helpful in
studying their specific biological functions.

Evolutionary and phylogenetic analysis of the PPO family
To better understand the evolution and differentiation
of PPO family proteins among species, 138 PPO amino
acid sequences from 25 species were used to construct
an unrooted tree (Fig. la). These sequences were then
divided into 11 groups (I-XI), among which groups VIII
and IX contained the most members, including 51 mem-
bers accounting for 36.96% of the deduced PPO protein.
PtrPPO protein was found in groups V, VIII, IX, and XI.
Simultaneously, 14 PPO proteins in poplar were concen-
trated in group IX and clustered in the same branch as 7
PPO proteins in Salix purpurea.

To determine the origin and evolution of PPO genes,
we searched for PPO genes in 25 species of lower
aquatic plants and higher terrestrial plants (Fig. 1b).
Interestingly, this gene was absent in Arabidopsis, but
four PPO genes were found in monocotyledonous O.
sativa. It is worth noting that PPO genes are widely dis-
tributed in woody plants, especially in P. trichocarpa

Table 1 Summary of Populus PPO genes
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(18), M. domestica (15), and S. purpurea (10). However,
Marchantia polymorpha (common liverwort, an herb-
aceous plant) contains 17 PPO genes. In conclusion, the
distribution of PPO genes in woody plants was much
greater than that in herbaceous plants, indicating that
considerable differentiation and doubling of PPO genes
might have occurred during the evolution of perennial
woody plants.

Determination of gene structure, conserved domains, and
motifs

To explore the evolutionary relationship between differ-
ent members of the PPO gene family more clearly, a
phylogenetic tree was constructed using 18 PPO pro-
teins from Populus (Fig. 2a), and their gene structure,
conserved protein motifs, and conserved structure were
assessed. Most PtrPPO genes (approximately two-thirds
of the genes) had no introns, while the other six genes
(PtrPP0O2/3/5/11/14/17) had at most three introns. Sur-
prisingly, none of the genes with two and three introns
had a UTR (Fig. 2b). For example, PtrPPO7/8/1 genes
lacked an intron, but they all had UTRs. However,
PtrPP0O2/5/14 contained at least two introns but no
UTR.

Generally, genes with high similarity in amino acid
sequences in the same family may have similar bio-
logical functions. We identified three conserved do-
mains (PPO1-KFDV, tyrosinase, and PPO1_DWL) in
the PPO protein sequence using CDD and SMART
software (Fig. 2d and Table S3). All PPO proteins,

Name Gene model ID gDNA Transcript CDS Domains AA MW GRAVY PI

PtrPPO1 Potri.001G387900 1921 1921 1746 159-367/377-428/453-578 581 64.913 -0453 6.00
PtrPPO2 Potri.001G388000 662 579 579 5-44/47-97/110-189 192 22.200 -0.821 574
PtrPPO3 Potri.001G388100 2552 1584 1566 91-307/317-368/393-518 521 58651 -0413 535
PtrPPO4 Potri.001G388200 1927 1927 1746 159-367/377-428/453-578 581 64.757 -0436 521
PtrPPOS5 Potri.001G388300 2009 1326 1326 74-227/237-287/313-438 441 49.561 -0.527 528
PtrPPO6 Potri.001G388400 1752 1752 1746 159-367/377-428/453-578 581 64.999 -0.449 5.96
PtrPPO7 Potri.001G388600 1805 1805 1746 159-367/377-428/453-578 581 64.667 -0424 5.68
PtrPPO8 Potri.001G388800 1940 1940 1746 159-367/377-428/453-578 581 65.008 -0449 6.14
PtrPPO9 Potri.001G388900 2149 2149 1821 193-400/407-455/482-603 606 68.678 -0.450 6.53
PtrPPO10 Potri.004G038500 1346 1346 744 118-244 247 27230 -0.515 6.93
PtrPPO11 Potri.004G156500 2303 2140 1764 140-357/363-413/453-585 587 67459 -0337 6.36
PtrPPO12 Potri.011G047200 1058 1058 732 115-240 243 26419 -0419 6.21
PtrPPO13 Potri.011G047300 2135 2135 1773 160-368/374-425/460-587 590 66.288 -0.536 6.55
PtrPPO14 Potri.011G108200 3295 1713 1713 184-348/358-408/430-522 570 64.747 -0.516 7.53
PtrPPO15 Potri.011G108300 2013 2013 1692 145-351/361-411/433-560 563 64.066 -0.514 5.96
PtrPPO16 Potri.T061900 1921 1914 1746 159-367/377-428/453-578 581 65.077 -0455 6.23
PtrPPO17 Potri.T062100 1889 1688 1638 159-331/341-392/417-542 545 60.654 -0420 5.86
PtrPPO18 Potri.T062200 1947 1947 1746 159-367/377-428/453-578 581 64.889 -0.442 6.30




He et al. BMC Genomics

(2021) 22:731 Page 4 of 15

.

Number of PPOs genes

)]

T
IN

L

8l

Fig. 1 Evolutionary and phylogenetic analysis of the PPO family in diverse plant species. a The phylogenetic tree of PPO proteins from Aquilegia
coerulea (AqcPPO), Ananas comosus (AcPPO), Amaranthus hypochondriacus (AhPPO), Carica papaya (CpPPO), Cucumis sativus (CsPPO), Eucalyptus grandis
(EgPPO), Gossypium raimondii (GrPPO), Kalanchoe fedtschenkoi (KPPO), Kalanchoe laxiflora (KIPPO), Linum usitatissimum (LuPPO), Musa acuminata
(MaPPO), Malus domestica (MdPPO), Mimulus guttatus (MgPPO), Marchantia polymorpha (MpPPO), Oryza sativa (OsPPO), Oropetium thomaeum (OtPPO),
Populus trichocarpa (PtrPPO), Panicum virgatum (PvPPO), Ricinus communis (RcPPO), Sorghum bicolor (SbPPO), Sphagnum fallax (SfPPO), Solanum
lycopersicum (SIPPO), Spirodela polyrhiza (SpiPPO), Salix purpurea (SpPPO), and Solanum tuberosum (StPPO). The shape and color in front of the node
represent the identified PPOs, in which the black circle represents MdPPOs, the black rectangle represents CsPPOs, the black pentagram represents
AcPPOs, the black triangle represents MaPPOs, the red circle represents OsPPOs, the red rectangle represents SbPPOs, and the red pentagram represents
StPPOs. b Comparisons of PPO protein numbers across 25 plant species. The accession numbers and gene names are all shown in Table S2
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Fig. 2 Phylogenetic, gene structure, conserved protein structure, and motif analyses of PtrPPOs. a Phylogenetic tree constructed using full-length

amino acid sequences from 18 PtrPPOs. b Exon-intron structure analysis of PtrPPO genes. Blue boxes represent UTRs; yellow boxes indicate exons;
black lines represent introns. ¢ Motif distribution of PtrPPO members. d conserved protein domain analysis of PtrPPOs. The length of each pattern
is displayed proportionally
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except for PtrPPO10/12, had these three structures,
which may endow them with similar biological func-
tions. Meanwhile, 10 conserved motifs were identified
in the PtrPPOs protein sequence using MEME
(Fig. 2c). Amino acid sequence encode, and SeqLogo
of the Motif are displayed in Table S4. Among them,
two motifs (2 and 9) were related to the C-terminal
PPO-KFDV domain, motif 4 was related to the inter-
mediate PPO_DWL domain, and five motifs (1, 6, 8,
3, and 5) were related to the N-terminal tyrosinase
domain. Moreover, we found two novel motifs (motifs
7 and 10) at the N-terminal of most PtrPPO protein
sequences.

Analysis of chromosomal location and gene duplication

To further understand the evolution and differentiation
of PPO family genes, we analyzed the chromosomal dis-
tribution, synteny, and evolution of the 18 PPO genes in
Populus. The PPO genes were primarily distributed on
chromosomes 1, 4, 11, and scaffold_64 (Fig. 3 and Figure
S1). Moreover, half of the PPO genes in poplar were dis-
tributed on chromosome 1, while there were, at least,

Page 5 of 15

two PPO genes on the other chromosomes. It has been
reported that the chromosome region within 200 kb
containing two or more genes is defined as a tandem
replication event [32]. The 18 genes (PtrPPO1/2/3/4/5/
6/7/8/9, PtrPPO12/13, PtrPPO14/15, PtrPPO16/17/18)
formed four tandem repeat regions distributed on chro-
mosomes 1, 11, and scaffold_64 (Fig. 3). The high se-
quence similarity between repetitive gene pairs indicates
that they are likely involved in regulating similar bio-
logical processes. Furthermore, nine PPO genes formed
a complex tandem repeat on chromosome 1, indicating
a hot spot for PPO gene distribution. We also found that
six genes (PtrPPO1/14, PtrPPO8/15, PtrPPO10/12)
formed three segmental duplication events using the
MCScanX method. These results suggest that PtrPPOs
might be produced by gene replication, while tandem
duplication and repetitive fragment events collectively
catalyze the evolution of PPO genes in poplar.

We constructed comparative syntenic maps between
poplar and four other species to analyze PPO gene evo-
lution in woody plants further. Syntenic maps revealed
that nine pairs of homologous genes were found

Fig. 3 Schematic diagram depicting PPO gene distribution and Inter-chromosomal relationships in Populus chromosomes. The gray lines represent all
synteny blocks in the chromosome of Populus trichocarpa. Red, blue, and green lines indicate duplicated PPO gene pairs in Populus trichocarpa.
Chromosome number is shown in the middle of the arc square. The length of each arc corresponds to the length of the chromosome (Mb)

ptrPPO16
ptrPPO17

ptrPPO18
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between P. trichocarpa and S. purpurea, and three pairs
of homologous genes were found between P. trichocarpa
and M. domestica (Fig. 4 and Table S5). Some PtrPPO
genes (PtrPPOI10 and PtrPPO12) were discovered to be
connected with at least two synonym gene pairs (espe-
cially between poplar and willow, and between poplar
and apple PPO genes), suggesting that these genes may
play essential roles in the evolutionary process of the
PPO gene family. However, the findings of previous
studies and those of the present study revealed that
there was no synteny in Populus vs. O. sativa and Popu-
lus vs. A. thaliana [11], suggesting that multiple PPO
genes may be formed during the differentiation of woody
plants.

PtrPPO cis-element analysis

To determine the expression pattern of PtrPPOs, the
TSS promoter-upstream region (~2000bp) sequences
were extracted from the genomic DNA sequence of P.
trichocarpa. The cis-elements of the PtrPPOs promoter
were analyzed using the PlantCARE database (Fig. 5).
The specific functions of these motifs (cis-elements) are
annotated in Table S6. A series of cis-acting elements in-
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palisade mesophyll cell differentiation, seed-specific
regulation, cell cycle regulation, endosperm expression,
meristem expression, and gibberellin-responsive and
auxin-responsive elements, were identified, indicating
the crucial role of PtrPPOs in poplar development. For
example, the promoter regions of many PPO genes were
identified to contain gibberellin-responsive elements,
and the PtrPPOS promoter contained three gibberellin-
responsive elements, indicating that this gene is likely in-
volved in gibberellin-signal transduction (Table S7).
Moreover, the promoter region of PtrPPO10 contains el-
ements of cell cycle regulation, meristem expression,
and endosperm expression, indicating that this gene may
be involved in the regulation of poplar growth and
development.

Furthermore, PtrPPO promoter regions were associ-
ated with secondary metabolism processes, including
zein metabolism regulation and flavonoid biosynthetic
gene regulation. PtrPPO8 contained elements related to
the aforementioned processes, suggesting that this gene
might be involved in secondary metabolism in Populus.
Besides, some stress-related elements were present in
the promoter region, including MeJA responsiveness,

volved in all aspects of poplar development, including salicylic acid responsiveness, abscisic acid
<
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Fig. 4 Collinearity analysis of PPO genes in poplar and four typical plant species. The gray lines in the background represent collinear blocks
between Populus and another species’ genomes, while the red lines highlight the syntenic PPO gene pairs. P.trichocarpa, Populus trichocarpa;
S.purpurea, Salix purpurea; M.domestica, Malus domestica; O. sativa, Oryza sativa
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Fig. 5 Cis-element analysis of the PtrPPOs. The relative locations of stress and growth-related cis-elements in the PtrPPO promoter region.
Different colors represent different cis-acting elements, and their position corresponds to the corresponding position of the promoter

responsiveness, drought inducibility, defense and stress
responsiveness, anoxic specific inducibility elements, and
low-temperature responsiveness, which implied that
PtrPPOs might also respond to stress. Except for
PtrPPO4/6/9/12/18, all other PPO genes contained
MeJA-responsive elements (Table S7), indicating that
most PPO genes were involved in MeJA signal transduc-
tion. Moreover, PtrPPO13 harbored multiple elements
associated with stress, including two MeJA-responsive
elements, one salicylic-acid-responsive element, four
abscisic-acid-responsive elements, and two defense and
stress responsive elements (Table S7), indicating that
PtrPPO13 may respond to both biological and abiotic
stresses.

RNA-seq analysis of Populus PPO genes

To explore the role of PPO genes in poplar growth and
development, we analyzed the tissue expression patterns
of 18 PtrPPOs in the transcriptomic dataset. First, we
found that PtrPPO2 was not detected in all tissues and
that it might be a pseudogene or might have a specific
spatiotemporal expression pattern (not included in the
library). Next, we constructed a dual clustering heat map
(sample and gene) to investigate the expression profile
of these genes in 15 Populus tissues (Fig. 6a and Table
S8). Interestingly, some genes were preferentially
expressed in specific plant tissues. Eight genes were
highly expressed in young expanding leaves (PtrPPO14/
15/18/3/7/16/4/5), two genes in whole suckers and
freshly expanding leaves (PtrPPO14/15), five genes in
dormant and prechilled buds (PtrPPO18/3/7/4/5), and
one gene in mature seeds (PtrPP0OY). It was further re-
vealed that most of these genes were found in young
plant tissues or seeds. For example, PtrPPOI8 was

expressed at high levels in young tissues but at low levels
in mature tissues (such as mature leaves and petioles).

To further understand the role of PPO genes in the re-
sponse of poplar plants to stress, we mapped the expres-
sion configurations of the 18 poplar PPO genes
following exposure to drought and beetle- and
mechanical-damage using the uploaded transcriptome
dataset (Fig. 6b and Table S9). The heat map revealed
that the expression of PtrPPO9 was significantly induced
in leaves in response to drought stress, and all three
treatments significantly induced the expression of
PtrPPO13. However, the expression of PtrPPO11/14/15
was significantly inhibited under conditions of beetle-
and mechanical-damage-induced stress. These results
will be helpful for future research on gene function.

Expression profile of Populus PPO genes in different plant
tissues and treatments

The level of PPO gene expression in plants is closely re-
lated to stress and primarily reflects disease, insect and
mechanical damage, and microorganism invasion [11,
22]. Results showed that the expression of five genes,
i.e., PtrPPO9/11/13/14/15, was significantly induced or
inhibited under conditions of stress. To verify the reli-
ability of PPO gene expression in the transcriptome, the
expression of 5 PPO (PtrPP09/11/13/14/15) genes was
investigated using RT-qPCR (Fig. 7a). Consistent with
the previous results, most genes were expressed in
young tissues. For example, except for PtrPPO13, which
was preferentially expressed in mature leaves, the other
four genes (PtrPP0O9/11/14/15) were expressed primarily
in the young leaves. Notably, PtrPP09/11/13/14/15 were
expressed at high levels in leaves (compare to other tis-
sues, such as xylem, phloem, and root).
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Fig. 6 Expression profile of PPO genes under developmental and stress conditions. a Heat maps showing the expression levels of 18 PtrPPO
genes in different tissues at different developmental stages based on transcriptome data. b Heat maps depicting the expression levels of 18
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To further validate whether PPO abundance was af-
fected by abiotic stress and hormone treatment, the ex-
pression of 5 PPO members—from among the 18
PtrPPOs genes—was carefully investigated in response to
PEG, ABA, and MeJA treatment using qRT-PCR (Fig.
7b—d). When poplar plants were treated with PEG, the
expression of the other four genes was significantly in-
duced except PtrPPO11 (Fig. 7b). PEG treatment signifi-
cantly upregulated the expression of PtrPP0O9/13 that
peaked 6h after treatment. PtrPPOI4 was significantly
upregulated after 3h of treatment, and its expression
level remained at approximately 2-fold. Furthermore,
PtrPPO15 was upregulated following PEG treatment,
with a maximum expression of approximately 8-fold
(compared to pre-treatment levels) after 9 h.

In response to ABA treatment, PtrPP09/13 showed
similar expression patterns, with the expression of both
genes significantly induced in response to ABA treat-
ment, peaking after 3 h of treatment (approximately 20-

and 15-fold pre-treatment levels, respectively) (Fig. 7c).
However, the expression of PtrPPO11/14/15 was signifi-
cantly inhibited by ABA. In response to MeJA treatment,
the expression of PtrPPOI13 was significantly induced,
reaching a maximum value approximately 5-fold that of
pre-treatment expression levels at 6 h of treatment, de-
creasing to approximately 3-fold at 9 h of treatment (Fig.
7d). In contrast, the expression of PtrPPO11/14/15 was
significantly inhibited by MeJA, whereas that of PtrPPO9
was induced at 1 and 3 h but significantly inhibited at 9
and 12 h. Overall, each treatment may differentially in-
duce and/or inhibit the expression of PPO genes in
Populus.

Identification and expression pattern analysis of potential
upstream transcription factors (TFs) of PtrPPOs

To further understand how PtrPP0O9/11/13/14/15 func-
tion under stressful conditions, we identified potential
upstream TFs of PtrPPOs using bioinformatics (Table
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$10). The regulatory network generated using Cytoscape
(Fig. 8a) revealed that the expression of PtrPP0O9/11/13/
14/15 might be regulated by 10, 7, 19, 20, and 1 TFs, re-
spectively. These TFs include Dof, ERF, BBR-BPC,
MIKC_MADS, AP2, LBD, ARF, bHLH, B3, C2H2,
GRAS, GATA, MYB, Nin-like, SBP, TALE, and WRKY
family  proteins. Moreover,  Potri.002G026700,
Potri.002G151700, Potri.010G181000, and
Potri.014G074200 may simultaneously regulate the ex-
pression of PtrPPO9/13/14 genes. We also found that
Potri.010G101400 may regulate the expression of three
genes PtrPPO13/14/15.

We simultaneously evaluated the expression pattern of
potential upstream TFs of PtrPP0O9/11/13/14/15 under
stress conditions (Fig. 8b—f and Table S11). The poten-
tial upstream MIKC_MADS TFs (Potri.002G151700)
and bHLH TFs (Potri.003G207200) of PtrPPO9 were sig-
nificantly upregulated in response to drought, beetle-,
and mechanical-damage in poplar leaves (Fig. 8b). In
addition, the expression of Potri.003G034200 (Dof family

protein), Potri.009G064700 (bHLH family protein), and
Potri.004G056900 (Dof family protein) was significantly
induced in beetle-damaged leaves (Fig. 8b). When poplar
trees were exposed to beetle- and mechanical-damage,
the expression of potential upstream ARF TFs
(Potri.005G236700 and Potri.012G106100) of PtrPPOI11
was significantly induced, and that of the potential up-
stream Dof TFs (Potri.001G238400 and
Potri.007G036400) of PtrPPOI11 was significantly inhib-
ited (Fig. 8¢).

Exposure of poplar trees to beetle- and mechanical-
damage-induced stress resulted in the significant down-
regulation of the potential upstream TALE
(Potri.002G113300), bHLH (Potri.007G023600), Dof
(Potri.007G036400), and B3 TFs (Potri.001G322700) of
PtrPPO13 (Fig. 8d). Moreover, the expression of the po-
tential upstream TFs of PtrPPOI14 was significantly in-
duced by stress, except for ERF TFs (Potri.018G028000)
(Fig. 8e). The expression of potential upstream BBR-BPC
TF (Potri.010G101400) of PtrPPOI15 was significantly
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Fig. 8 Bioinformatic analysis of potential upstream transcription factors (TFs) of PtrPPOs. a Molecular regulatory network analysis of TFs-PtrPPO9/
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upregulated by drought stress in poplar leaves; however,
it was significantly inhibited by beetle- and mechanical-
damage induced stress (Fig. 8f).

Discussion

As widespread copper metalloenzymes in plants, PPOs
play an important role in plant growth, development,
and stress tolerance [10, 20, 24]. With the development
of whole genome sequencing, an increasing number of
PPO genes have been identified in different plants, in-
cluding apple, litchi, opium, potato, legumes, tea, mul-
berry, and tobacco [11]. However, the PPO family in the
woody poplar plants is yet to be fully understood.

In the present study, 18 PPO genes were identified in
poplar plants, and the characteristics of all products after
replication, transcription, and translation were analyzed;
additionally, their systematic evolution and expression
models were constructed. In line with previous gene
family studies [32], PPO genes in poplars were desig-
nated PtrPPO1 to PtrPPO18 according to their chromo-
somal locations (Table 1 and Figure S1). Except for
PtrPPO10/12, all PtrPPO proteins had three conserved
domains (KFDV, tyrosinase, and DWL), which may
endow them with similar biological functions. It has
been reported that the loss of protein structure could
lead to different gene functions [33]. As both PtrPPOI0
and PtrPPO12 only had one KFDV domain (Fig. 2d),

they were clustered in the same branch (Fig. 1a and 2a),
and the length of gDNA and the number of motifs in
the protein were significantly lower than those in other
genes (Fig. 2c). Furthermore, PtrPPOI10 and PtrPPOI12
only contained the PPO1_KFDV domain (Fig. 2d), sug-
gesting the two proteins may have similar functions. As
shown above, PtrPPO10 and PtrPPO12 cluster together
when tissue expression patterns are investigated (Fig.
6a). The two genes have similar tissue expression pat-
terns, and both are expressed at high levels in flowers
and seeds, indicating that they may play a role in the for-
mation of poplar flowers and seeds.

Most PtrPPOs have no introns, whereas some have
three introns at most (Fig. 2b). Research has shown that
introns play essential roles in the regulation of the tran-
scriptome [34]. In order to respond quickly to stress, or-
ganisms need to stimulate the expression of genes, and
gene structures with a few or no introns contribute to
the rapid expression of mRNA [35]. For example,
PtrPPO7/8/1 genes lack introns, but contain UTRs;
therefore, they can transcribe faster to form mRNA. In
many plants, PPO genes respond quickly to both bio-
logical and abiotic stresses [11, 24].

We constructed an evolutionary tree from 25 model
plants and divided it into 11 sections to further deter-
mine the origin and evolution of PPO genes. Consistent
with the aforementioned results (Fig. 2a), PtrPPO
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protein was found in Groups V, VIII, IX, and XI (Fig.
1la). The phylogenetic tree analysis of family genes can
clearly describe the evolutionary course of genes [36].
Because Populus (poplar) and Salix (willow) are both
members of the family Salicaceae [37], most of their
PPO genes are clustered in the same branch (IX). Not-
ably, the PPO gene was not found in Arabidopsis, but
four PPO genes were found in monocotyledonous O.
sativa (Fig. 1b). It is worth noting that PPO genes are
widely distributed in woody plants, especially in P. tri-
chocarpa (18), M. domestica (15), and S. purpurea (10).
No gene pairs have been found between Arabidopsis and
poplar, whereas multiple gene pairs have been found be-
tween apple and poplar and between S. purpurea and
poplar (Fig. 4), indicating that considerable differenti-
ation and doubling of PPOs might have taken place dur-
ing the evolution of perennial woody plants.

The increase in gene family members and the mechan-
ism of genome evolution primarily depend on gene repli-
cation events, including tandem and segmented
replications [38]. In the current study, 18 PtrPPO genes
were unevenly distributed on 19 poplar chromosomes,
and half of these PtrPPO genes were located on chromo-
some 1. This phenomenon of uneven distribution of chro-
mosomes indicates that the change occurred before
species differentiation. A total of three pairs of segmented
replication genes and four tandem repeat genomes were
detected in poplars, indicating that both tandem and seg-
mental repeats contribute to the evolution of PtrPPO
genes in Populus (Fig. 3). Previous gene family studies
have shown that tandem repeat genes may have similar
functions and expression patterns [34, 39]. For example,
PtrPPOI12/13 has a similar expression level in all tissues,
while PtrPPO14/15 show a downward trend under adverse
conditions (Fig. 6). Similar expression levels indicate simi-
lar functions and structures of tandem repeat genes.

The expression pattern of PPO genes in various tissues
has been demonstrated in numerous species [22, 27, 28,
40]. Due to the difference in the number of PPOs in dif-
ferent species, there are no uniform gene expression
profiles of PPO genes in plants. According to the RNA-
seq data of poplar, some genes are preferentially
expressed in young plant tissues and seeds (Fig. 6a), sug-
gesting these tissues are more attractive to intruders.
Consistent with the above results, fluorescence quantita-
tive PCR results also showed that the PPO was expressed
preferentially in young leaves than in other tissues (Fig.
7a). Research elsewhere has indicated that young leaves
have higher PPO activity than old leaves [41].

The expression of PPO genes in plants is closely re-
lated to stress and mainly responds to insect and mech-
anical damage, diseases, and microorganism invasion
[11, 22]. Transcriptome dataset analysis revealed that
some PPO genes in poplar were significantly induced
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(PtrPPO 9/13) and inhibited (PtrPPO 11/14/15) by
drought. A similar trend was observed using RT-qPCR.
PEG and ABA treatments significantly upregulated
PtrPPO 9/13 expression (Fig. 7b and c). By analyzing the
promoters of PtrPPO 9/13, we found that there were
multiple abscisic acid responsiveness elements in these
two promoters (Fig. 5). PtrPPO9 was significantly upreg-
ulated under conditions of PEG and ABA treatment
than under MeJA treatment, indicating that PtrPPO9
had a higher probability of being induced by abiotic
stress. In addition, PPO genes in Nicotiana tabacum and
Glycine max were significantly induced by ABA [24, 42].
Transcriptome analysis verified that PtrPPO13 was sig-
nificantly upregulated, and PtrPPO11/14/15 was signifi-
cantly inhibited in response to mechanical injury and
damage caused by the poplar borer (beetle; Fig. 6b).
Me]JA is involved in signal transduction during insect at-
tack and plant mechanical damage [23, 24]. MeJA re-
sponsiveness elements were identified on the PtrPPO13
promoter.  Additionally, RT-qPCR revealed that
PtrPPO13 was significantly induced by MeJA (Fig. 7d).
PtrPPO13 was significantly induced by PEG, ABA, and
MeJA treatments, reaching a peak at 3 or 6 h, suggesting
that PtrPPO13 might be involved in biological and abi-
otic stress. Compared with the expression profiles re-
vealed by RNA-seq data, the patterns of qRT-PCR
expression were dissimilar. Various reasons might cause
the observed differences in expressions.

In recent years, promoters, TFs, and microRNAs (miR-
NAs) have been found to regulate PPO response to stress
in plants [11]. miR528, miR12112, and miR058 from Ba-
nana, Salvia miltiorrhiza, and Grapevine can silence PPO
genes and participate in cold stress and MeJA response,
respectively [23, 43—45]. Similarly, TFs play a crucial role
in the transcriptional regulation of genes [46]. The poten-
tial upstream TFs of PtrPPOs were identified using bio-
informatics (Fig. 8a). Compared with the previous results
(Fig. 6b), some potential upstream TFs of PtrPPOs were
also induced significantly in stress (Fig. 8a-f). Recently, it
has been reported that MnMYB3R1 in Mulberry can com-
bine with the MSA element on the MnPPOIl promoter
and then regulate MnPPOI to increase plant drought re-
sistance [28]. In conclusion, PPOs play a critical role in
the regulation of stress response.

The finding of the current study allows us to infer the
functional roles of PPO genes in poplar plants. Compre-
hensive analysis is useful to select candidate PPO genes
for further functional characterization, while genetic im-
provement of stress resistance in forest trees provides
genetic resources.

Conclusions
To summarize, whole-genome analysis of the poplar
PPO family was accomplished, and 18 PtrPPO genes
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were identified. Bioinformatics and qRT-PCR were then
used to analyze the gene structure, phylogeny, chromo-
somal localization, gene replication, cis-elements, and
expression patterns of PtrPPOs. Finally, we found that
PPO genes were preferentially expressed in young plant
tissues and fruits, and some genes could be significantly
induced by PEG, ABA, and MeJA, indicating that PPO
plays an integral part in the stress resistance of poplars.
This research will help to explore the function of PPO
genes in Populus.

Methods

Genome-wide identification and retrieval of PPO genes in
P. trichocarpa

The extraction and identification of poplar family mem-
bers were conducted according to a previously described
method [47]. The genome data of A. thaliana (Athali-
ana_447_TAIR10.fa.gz), O. sativa  (Osativa_323_
v7.0.fa.gz), and P. trichocarpa (Ptrichocarpa_533_
v4.0.fa.gz) were obtained from the Phytozome database
(https://phytozome.jgi.doe.gov/pz/portal.html) [48]. In
addition, BLAST and HMMER were used to identify 18
PPO proteins with conserved structures in poplar plants.
Redundant sequences were manually discarded. Further-
more, the conservative structure, molecular weights, iso-
electric points, and hydrophilicity analysis of the
identified PPOs were conducted using SMART on the
ExPasy server (https://web.expasy.org/protparam/) [32].

Evolutionary relationships of PPO genes

A total of 138 PPO proteins from Agquilegia coerulea,
Ananas comosus, Amaranthus hypochondriacus, Carica
papaya, Cucumis sativus, Eucalyptus grandis, Gossypium
raimondii, Kalanchoe fedtschenkoi, Kalanchoe laxiflora,
Linum usitatissimum, Musa acuminata, Malus domes-
tica, Mimulus guttatus, Marchantia polymorpha, Oryza
sativa, Oropetium thomaeum, Populus trichocarpa, Pani-
cum virgatum, Ricinus communis, Sorghum bicolor,
Sphagnum fallax, Solanum lycopersicum, Spirodela poly-
rhiza, Salix purpurea, and Solanum tuberosum were ob-
tained from the Phytozome database [49]. They all had
PPO-KFDV conserved domains. The amino acids of all
PPO target sequences were analyzed using ClustalX, and
then the phylogenetic tree was constructed using the
Neighbor-Joining (NJ) method in MEGA?7.0. The acces-
sion numbers and gene names are all shown in Table S2.

Analysis of gene and protein structures and motifs

The Gene Structure Display Server (http://gsds.cbi.pku.
edu.cn/) [50] was used to analyze the introns, exons, and
UTRs of the 18 poplar PPO genes. The conserved motifs
and domains of candidate PPO proteins were identified
using MEME (https://meme-suite.org/meme/tools/
meme) [51] and Conserved Domains Database (CDD)
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(https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/
bwrpsb.cgi?) [52], respectively. Finally, the conserved
motifs and structures of all PPO proteins in poplar were
drawn using TBtools (https://github.com/CJ-Chen/
TBtools). Previously described specific parameter set-
tings were used [53].

Chromosomal locations and gene duplication

The chromosomal positions of PtrPPOs were collected
from the Phytozome database [49]. MCScanX was used
to analyze PPO gene duplication events [54]. TBtools
was used to display the locations and collinearity of
PtrPPO genes.

Analysis of cis-regulatory elements

The promoter sequences (2000 bp upstream of the start
codon) of PPOs were analyzed online using Plant-CARE
(http://bioinformatics.psb.ugent.be/webtools/plantcare/
html/) [55], and all cis-regulatory elements related to
hormones and stress were identified.

Transcriptomic data sets to analyze the expression
patterns of PPOs

To evaluate PtrPPOs gene expression profiles, the pub-
licly available transcriptomic data were obtained from
PopGenlE (https://popgenie.org/) [56]. In the current
study, transcriptome data were collected from stressed
plants (drought, mechanical damage, insect beetle dam-
age) and 15 different plant tissues (non-girdled twigs,
dormant flowers, expanded flowers, mature leaves,
expanding flowers, whole-sucker suckers, mature petiole,
prechilling buds, dormant buds, freshly expanded leaves,
non-girdled leaves, girdled leaves, mature seeds, young
expanding leaves, and dormant cambium phloem) dur-
ing the growth and development of P. trichocarpa. The
relative expression of PtrPPOs was displayed as a heat
map generated using TBtools [53].

Plant materials and treatments

Populus (Populus trichocarpa) plant seeds were acquired
from Sichuan Agricultural University trail Populus plant-
ing base [48]. One-year-old Populus trichocarpa seedlings
were planted in a plastic plot (16.0 h light; 20-25 °C; 70%
air humidity) in Wenjiang, Chengdu, China (30°70" N,
103°85" E, 537.11 m above sea level). The plants were
watered with 1L Hoagland nutrient solution every 2
weeks for 2 months before treatment [46]. Previously,
PEG, ABA, and MeJA treatments have been used to inves-
tigate the gene responses to abiotic stresses in plants [48,
57, 58]. Sixty-day-old seedlings were treated with PEG,
ABA, and MeJA. At least five biological replicates were
used for each treatment. For PEG treatments, similarly
grown P. trichocarpa seedlings (40-50-cm height, with
30-35 leaves) were treated with 15% PEG6000 for 0, 1, 3,
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6,9, and 12 h. For phytohormone analysis, similarly grown
P. trichocarpa seedlings were treated with a solution con-
taining 200 uM ABA (Sigma-Aldrich, Santa Clara, CA,
USA) and MeJA (Sigma-Aldrich), for 0, 1, 3, 6, 9, and 12
h. The leaves were separated from the plant at the differ-
ent processing time points, rapidly frozen in liquid nitro-
gen, and stored in an ultra-low temperature freezer
(Thermo Fisher Scientific, Waltham, MA, USA).

Poplar tissues and organs were sampled in accordance
with a previously described method [48]. Plant tissues
and organs were sampled under stress-free conditions;
each plant tissue and organ had at least five biological
replicates. We simultaneously collected different P. tri-
chocarpa organs and tissues, including young, mature,
and old leaves, xylem, phloem, and roots, and immedi-
ately immersed them in liquid nitrogen.

RNA extraction and quantitative real-time (qQRT-PCR)
analysis

Approximately 1g of tissue was isolated for total RNA
extraction. Total RNA was prepared using the plant total
RNA extraction kit (Aidlab, Beijing, China) according to
the manufacturer’s protocol, and 2 pug of total RNA was
reverse transcribed into ¢cDNA using the Tiangen Fast
Quant RT Kit (Tiangen Biotech Co. Ltd., Beijing, China).
qRT-PCR was conducted as per a previously described
protocol [59]. Based on the target gene fragment, Primer
Premier 6.0 was used to design primers online; all
primers used are listed in Table S1. At least 20 replicates
(5 biological replicates x4 technical replicates) were
used per experiment.

Bioinformatic analysis of potential TFs upstream of
PtrPPOs

The plant regulatory network database PlantRegMap
(http://plantregmap.gao-lab.org/) [60] was used to iden-
tify potential upstream transcriptional factors of
PtrPPO9/11/13/14/15. The molecular network regula-
tion map of target genes and upstream transcription fac-
tors was drawn using Cytoscape [61]. Transcriptome
data for upstream transcription factors under stress con-
ditions (drought and mechanical and insect damage)
were obtained from PopGenlE (https://popgenie.org/)
[56] and the heat maps were drawn using TBtools.

Availability of data and materials

The datasets generated and/or analyzed during the
current study are available in this article and additional
files. The nucleotide and protein sequences of PPO-
related genes in Aquilegia coerulea, Ananas comosus,
Amaranthus hypochondriacus, Carica papaya, Cucumis
sativus, Eucalyptus grandis, Gossypium raimondii, Kal-
anchoe fedtschenkoi, Kalanchoe laxiflora, Linum usitatis-
simum, Musa acuminata, Malus domestica, Mimulus
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guttatus, Marchantia polymorpha, Oryza sativa, Orope-
tium thomaeum, Populus trichocarpa, Panicum virga-
tum, Ricinus communis, Sorghum bicolor, Sphagnum
fallax, Solanum lycopersicum, Spirodela polyrhiza, Salix
purpurea, and Solanum tuberosum are available in the
Phytozome v12.1 database (JGI, https://phytozome.jgi.
doe.gov/pz/portal.html).

Statistical analyses

Microsoft Excel 2020 (Microsoft Corporation, Redmond,
WA, USA) and SPSS v.17.0 (SPSS Inc., Chicago, IL,
USA) were used to analyze the experimental data. Both
one-way analysis of variance was used to determine the
significance of the differences among treatments. Stu-
dent’s t-test was used to calculate P-values (*P < 0.05;
**P<0.01). The data were normalized, and all samples
were normally distributed in terms of homogeneity of
variance.
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